FOUND: The Holy Grail of High Energy Astrophysics!

Wednesday, February 19, 2014

Astronomers for the first time have peered into the heart of an exploding star in the final minutes of its existence.

The feat is one of the primary goals of NASA’s NuSTAR mission, launched in June 2012 to measure high-energy X-ray emissions from exploding stars, or supernovae, and black holes, including the massive black hole at the center of our Milky Way Galaxy.

The NuSTAR team reported in this week’s issue of the journal Nature the first map of titanium thrown out from the core of a star that exploded in 1671. That explosion produced the beautiful supernova remnant known as Cassiopeia A (Cas A).

The well-known supernova remnant has been photographed by many optical, infrared and X-ray telescopes in the past, but these revealed only how the star’s debris collided in a shock wave with the surrounding gas and dust and heated it up. NuSTAR has produced the first map of high-energy X-ray emissions from material created in the actual core of the exploding star: the radioactive isotope titanium-44, which was produced in the star’s core as it collapsed to a neutron star or black hole. The energy released in the core collapse supernova blew off the star’s outer layers, and the debris from this explosion has been expanding outward ever since at 5,000 kilometers per second.

“This has been a holy grail observation for high energy astrophysics for decades,” said coauthor and NuSTAR investigator Steven Boggs, UC Berkeley professor and chair of physics. “For the first time we are able to image the radioactive emission in a supernova remnant, which lets us probe the fundamental physics of the nuclear explosion at the heart of the supernova like we have never been able to do before.”

Robert Sanders
Research Area: