How the Universe Got It's Bounce Back

Wednesday, January 31, 2018

For the first time, cosmologists have shown that it’s theoretically possible for a contracting universe to bounce and expand. The new work resuscitates an old idea that directly challenges the Big Bang theory of cosmic origins.

Humans have always entertained two basic theories about the origin of the universe. “In one of them, the universe emerges in a single instant of creation (as in the Jewish-Christian and the Brazilian Carajás cosmogonies),” the cosmologists Mario Novello and Santiago Perez-Bergliaffa noted in 2008. In the other, “the universe is eternal, consisting of an infinite series of cycles (as in the cosmogonies of the Babylonians and Egyptians).” The division in modern cosmology “somehow parallels that of the cosmogonic myths,” Novello and Perez-Bergliaffa wrote.

In recent decades, it hasn’t seemed like much of a contest. The Big Bang theory, standard stuff of textbooks and television shows, enjoys strong support among today’s cosmologists. The rival eternal-universe picture had the edge a century ago, but it lost ground as astronomers observed that the cosmos is expanding and that it was small and simple about 14 billion years ago. In the most popular modern version of the theory, the Big Bang began with an episode called “cosmic inflation” — a burst of exponential expansion during which an infinitesimal speck of space-time ballooned into a smooth, flat, macroscopic cosmos, which expanded more gently thereafter.

With a single initial ingredient (the “inflaton field”), inflationary models reproduce many broad-brush features of the cosmos today. But as an origin story, inflation is lacking; it raises questions about what preceded it and where that initial, inflaton-laden speck came from. Undeterred, many theorists think the inflaton field must fit naturally into a more complete, though still unknown, theory of time’s origin.

But in the past few years, a growing number of cosmologists have cautiously revisited the alternative. They say the Big Bang might instead have been a Big Bounce. Some cosmologists favor a picture in which the universe expands and contracts cyclically like a lung, bouncing each time it shrinks to a certain size, while others propose that the cosmos only bounced once — that it had been contracting, before the bounce, since the infinite past, and that it will expand forever after. In either model, time continues into the past and future without end.

With modern science, there’s hope of settling this ancient debate. In the years ahead, telescopes could find definitive evidence for cosmic inflation. During the primordial growth spurt — if it happened — quantum ripples in the fabric of space-time would have become stretched and later imprinted as subtle swirls in the polarization of ancient light called the cosmic microwave background. Current and future telescope experiments are hunting for these swirls. If they aren’t seen in the next couple of decades, this won’t entirely disprove inflation (the telltale swirls could simply be too faint to make out), but it will strengthen the case for bounce cosmology, which doesn’t predict the swirl pattern.

Already, several groups are making progress at once. Most significantly, in the last year, physicists have come up with two new ways that bounces could conceivably occur. One of the models, described in a paper that will appear in the Journal of Cosmology and Astroparticle Physics, comes from Anna Ijjas of Columbia University, extending earlier work with her former adviser, the Princeton professor and high-profile bounce cosmologist Paul Steinhardt. More surprisingly, the other new bounce solution, accepted for publication in Physical Review D, was proposed by Peter Graham, David Kaplan and Surjeet Rajendran, a well-known trio of collaborators who mainly focus on particle physics questions and have no previous connection to the bounce cosmology community. It’s a noteworthy development in a field that’s highly polarized on the bang vs. bounce question.

Read entire article in Quanta magazine.

Natalie Wolchover