OPPENHEIMER LECTURE: Condensed Matter Physics: The Goldilocks Science

Monday, March 11, 2013 - 5:00pm
Chevron Auditorium in International House
Universy Professor of Physics, UC Berkeley
Public Lecture: 
Sarah Wittmer
(510) 558-8812
Video Duration: 

I have the privilege of telling you about some of the achievements and research in Condensed Matter Physics (CMP), also known as Solid State Physics. Since the focus in CMP is on energies, sizes, and time scales that are not extremely big or extremely small, but somewhere we loosely call the “middle”, it is an area of science that reminds us of Goldilocks who said, "Ahhh, this porridge is just right," and she happily ate it all up. It can be argued that because of its “Goldilocks nature”, CMP has many links to other branches of physics and more generally other areas of science and engineering. These collaborations with fields like electrical engineering, computer science, material science, medical science, and chemistry have led to applications that have made significant contributions to our everyday life. The transistor, solar battery, MRI, and other solid-state devices such as lasers, are a few of the many applications associated with this field. So it can be said that physics is the central science, and CMP, which is the largest branch of physics, is in the center of physics.

CMP is very broad and has both an applied and a fundamental physics component. I will focus mainly on the latter with emphasis on this field’s intellectual and conceptual contributions to science. I plan to describe some of the fascinating research involving semiconductors, superconductors, and nanoscience. I’ll begin by telling of the development of these areas over the past hundred years, and then I’ll discuss some current achievements and discoveries with some focus on contributions from individuals in our own Physics Department. I’ll also relay a few observations about Einstein and his seminal research in CMP. However I should add that Einstein suggested that we might never have a theoretical explanation of superconductivity, but Einstein was not always right.