
Physics 250 Spring 2000 Solutions to Homework 1 Budker/Kimball

At the question period after a Dirac lecture at the University of Toronto, somebody
in the audience remarked: ”Professor Dirac, I do not understand how you derived
the formula on the top left side of the blackboard.”
”This is not a question,” snapped Dirac, ”it is a statement. Next question, please.”

- George Gamow, excerpted from Thirty Years that Shook Physics.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

I would also like to make a disclaimer: these solutions do not necessarily reflect
the style of solution that Prof. Budker intends. Prof. Budker prefers back-of-
the-envelope calculations with as little math as possible. These solutions include
extra background material and derivations which motivate the simpler calculations
involved in the solutions of the problems, in case some of the material is new to
you.

Problem 1 Effect of optical pumping on light absorption

Let’s begin with a quick review of the interaction of light with atoms, the results
of which we can employ in the solution of the problem. The information contained
in this review comes from three basic sources: I.I. Sobelman, Atomic Spectra and
Radiative Transitions, (Springer, Berlin, 1992); B.H. Bransden and C.J. Joachain,
Physics of Atoms and Molecules, (Longman, Essex UK, 1983); and notes from
Prof. Littlejohn’s Physics 138 class.

Review of the Interaction of Light with Atoms

Fermi’s Golden Rule, originally obtained by Dirac from first order time-dependent
perturbation theory, gives us the transition rate dWab between atomic states |a〉
and |b〉 for atoms in an electromagnetic field described by the Hamiltonian H ′:

dWab ≈ 2π
�
|H ′

ab|2ρa(E) =
2π
�
|H ′

ab|2δ(Ea − Eb + �ω)
V d�k

(2π)3
, (1)

where Ea and Eb are the energies of |a〉 and |b〉, respectively, ω is the light fre-
quency, �k is the light wave vector, and V is the volume of the box in which we
confine our photons so that their wavefunctions are normalizable (it will cancel
out later, of course). Equation (1) describes the emission of a photon with a wave
vector in the interval �k to �k+ d�k and polarization ε̂k̂,j⊥�k. The perturbing Hamil-
tonian (for a single electron atom, although for multielectron atoms we can just
include a sum over all the electrons) is given by:

H ′ = − e
mc
�p · ε̂k̂,j

(
ak̂,je

i�k·�r + a†
k̂,j
e−i�k·�r

)
, (2)

where �p is the electron momentum, ak̂,j and a
†
k̂,j

are the appropriate photon anni-
hilation and creation operators. This Hamiltonian comes from including the vector
potential �A(�r, t) due to light in the Hamiltonian describing our atomic system:

H =
1
2m

(
�p+
e

c
�A(�r, t)

)2

+ V (r).

If we expand the kinetic energy term in the Hamiltonian, we find that:

T =
p2

2m
+
e

2mc

(
�p · �A+ �A · �p

)
+
e2

2mc2
�A2.

The two cross terms are equal in the Coulomb gauge and the term e2

2mc2
�A2 is

assumed small since �A is small for the light fields in this problem, so we have:

H =
p2

2m
+ V (r) +

e

mc
�p · �A.

Quantization of the electromagnetic field (second quantization) gives us the form
of the perturbing Hamiltonian in Eqn. (2).

We note that 〈a|H ′|b〉 is nonzero only when the number of photons in the k̂, j
mode increases or decreases by unity. Thus we have for emission:

〈a, n+ 1|H ′|b, n〉 = − e
mc

√
2π�c2(n+ 1)

ωV
ε̂k̂,j · 〈a|�pei

�k·�r|b〉, (3)

and for absorption:

〈b, n− 1|H ′|a, n〉 = − e
mc

√
2π�c2n
ωV

ε̂k̂,j · 〈b|�pe−i�k·�r|a〉, (4)

where n is the number of photons in a particular mode. Employing Eqns. (3) and
(4) in Fermi’s Golden Rule, Eqn. (1), we obtain:

dWab

dΩ
=

e2ω

2π�c3m2
|ε̂k̂,j · 〈a|�pei

�k·�r|b〉|2
(
n̄k̂,j + 1

)
(5)

February 1, 2000



Physics 250 Spring 2000 Solutions to Homework 1 Budker/Kimball

dWba

dΩ
=

e2ω

2π�c3m2
|ε̂k̂,j · 〈b|�pe−i�k·�r|a〉|2

(
n̄k̂,j

)
, (6)

where n̄k̂,j is the mean number of photons in a particular mode. Equation (5)
describes spontaneous and stimulated transitions from |b〉 → |a〉 and Eqn. (6)
describes stimulated transitions from |a〉 → |b〉.
We employ the electric dipole (E1) approximation to describe the interaction of
the atom with the light field. Basically, we assume that λ 	 d where λ is the
wavelength of the light and d is the characteristic dimension of the atom. This
allows us to assume

�k · �r 
 1,

and thus ei�k·�r ∼ 1. So we may write

〈b|�pei�k·�r|a〉 ≈ 〈b|�p|a〉. (7)

We can invoke a simple commutation relation, namely:

[�r,H0] = i�
d�r

dt
=
i��p

m
,

where H0 is the atomic Hamiltonian, to find that:

〈b|�p|a〉 = −im
�

〈b|(�rH0 −H0�r)|a〉 = −imω〈b|�r|a〉, (8)

Now we introduce the transition electric dipole moment,

�dba = 〈b|e�r|a〉,

and we can write the transition rates from Eqns. (5) and (6) in terms of �dba:

dWab

dΩ
=
ω3

2π�c3
|ε̂k̂,j · �dab|2

(
n̄k̂,j + 1

)
, (9)

dWba

dΩ
=
ω3

2π�c3
|ε̂k̂,j · �dba|2

(
n̄k̂,j

)
. (10)

In this problem, we choose the ẑ-axis along �d. We now want to investigate how the
transition rates depend on the angular momenta of the upper and lower states. Let

us re-label |a〉 = |γJM〉 and |b〉 = |γ′J ′M ′〉, where J, J ′ are total angular momenta
of the lower and upper states,M,M ′ are the projections of the angular momentum
along the ẑ-axis and γ, γ′ account for any additional quantum numbers. Then we
can decompose ε̂k̂,j · �dab using the spherical basis:

ê1 = − 1√
2
(x̂+ iŷ),

ê0 = ẑ,

ê−1 =
1√
2
(x̂− iŷ).

So we have

ε̂k̂,j · �dab =
∑

q

εq〈γJM |dq|γ′J ′M ′〉 (11)

Now we can invoke the Wigner-Eckart theorem for irreducible tensor operators
(T k

q ), which states:

〈γJM |T k
q |γ′J ′M ′〉 = 〈γJ ||T k||γ′J ′〉〈JM |J ′kM ′q〉. (12)

where 〈γJ ||T k||γ′J ′〉 is the reduced matrix element and 〈JM |J ′kM ′q〉 are the
appropriate Clebsch-Gordan coefficients. Please note that there are other defini-
tions of the reduced matrix element floating about in the literature, in particular
Sobelman uses:

〈γJM |T k
q |γ′J ′M ′〉 = 1√

1 + 2k
〈γJ ||T k||γ′J ′〉〈JM |J ′kM ′q〉.

The dipole operator is a rank one tensor (k = 1). The pump light is polarized
in the ẑ-direction, so for optical pumping we only need to consider the q = 0
case, but for spontaneous emission any polarization is allowed, so we must include
q = −1, 0, 1 cases.
So for absorption we have:

dWba

dΩ
=
ω3n̄

2π�c3
|〈γ′J ′||d||γJ〉|2|〈J ′M ′|J1M0〉|2. (13)

and for spontaneous emission to a particular Zeeman sublevel |JM〉 (here we ne-
glect stimulated emission), we have:
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dWab

dΩ
=
ω3

2π�c3
∑
q,M ′

|〈γJ ||d||γ′J ′〉|2|〈JM |J ′1M ′q〉|2. (14)

1 → 0 Case

We begin with an isotropic distribution of atoms in the ground state Zeeman
sublevels (N/3 in each sublevel, where N is the total number of atoms). Note
that in the low light intensity regime, the attenuation of the light intensity is
proportional to the number of atoms in ground state sublevels which interact with
light times the probability for absorption from such a sublevel. Only one of the
ground state Zeeman sublevels, namely M = 0, interacts with the pump light in
the 1 → 0 case. Some fraction ∆N of the atoms, which depends on the pump light
intensity, will be excited to the upper state.

The |00〉 state can decay into any of the ground state sublevels. From Eqn. (14)
we see that the only difference in the formulae for decay rates to different sub-
levels is the Clebsch-Gordan coefficients involved. For the 0 → 1 transitions, the
spontaneous decay rates are proportional to:∑

q,M ′
|〈11|J ′1M ′q〉|2 = |〈11|0101〉|2 = 1/3,

∑
q,M ′

|〈10|J ′1M ′q〉|2 = |〈10|0100〉|2 = 1/3,

∑
q,M ′

|〈1− 1|J ′1M ′q〉|2 = |〈1− 1|010− 1〉|2 = 1/3.

So in fact the atoms excited to the upper state decay with equal likelihood to any
of the ground state sublevels. This can also be deduced just from the isotropy of
space, since atoms in the |00〉 state are unpolarized, so they must decay with equal
likelihood to each of the ground state sublevels. Thus we conclude the ground
state populations after one optical pumping cycle are given by:

N1 =
N

3
+

∆N
3

N0 =
N

3
− 2∆N

3

Figure 1: Illustration of the effects of optical pumping on an J = 1 ground state
for J → J − 1, J , and J + 1 transitions. The incident light is linearly polarized
in the ẑ direction. We choose our quantization axis along the ẑ direction. (a)
1 → 0 transition: atoms are pumped into the | + 1〉 and | − 1〉 states, both of
which are dark, so optical pumping decreases absorption. (b) 1 → 1 transition:
atoms are pumped into |0〉, which is a dark state. (c) 1 → 2 transition: atoms tend
to be pumped into |0〉, which interacts more strongly with the light field (as can
be verified by comparison of Clebsch-Gordan coefficients). Thus optical pumping
increases absorption.
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N−1 =
N

3
+

∆N
3

So the population of the dark states (states which do not interact with the pump
light) increases, while the population of the bright state |10〉 decreases. This causes
absorption of light to decrease.

1 → 1 Case

In this case two ground state sublevels (|11〉, |1− 1〉) interact with the pump light
while |10〉 is a dark state. This can be seen from Eqn. (13) by comparing the
Clebsch-Gordan coefficients:

|〈J ′M ′|J1M0〉|2 = |〈11|1110〉|2 = 1/2,

|〈J ′M ′|J1M0〉|2 = |〈10|1100〉|2 = 0,

|〈J ′M ′|J1M0〉|2 = |〈1− 1|11− 10〉|2 = 1/2.

So the transition rates from |11〉, |1− 1〉 are the same. Once again, we will assume
that ∆N atoms from each of the bright states make transitions to the appropriate
excited states.

Decay from the the excited Zeeman sublevels to the respective ground state sub-
levels is described by Eqn. (14), and the relative rates are proportional to:∑

q,M ′
|〈11|J ′1M ′q〉|2 = |〈11|1101〉|2 = 1/2,

∑
q,M ′

|〈10|J ′1M ′q〉|2 = |〈10|111− 1〉|2 + |〈10|11− 11〉|2 = 1/2 + 1/2 = 1,

∑
q,M ′

|〈1− 1|J ′1M ′q〉|2 = |〈1− 1|11− 10〉|2 = 1/2.

From which we can deduce the relative changes in population of the ground state
Zeeman sublevels:

N1 =
N

3
− ∆N

2

N0 =
N

3
+ ∆N

N−1 =
N

3
− ∆N

2

The bright states are depleted and atoms are pumped into the dark state, so the
absorption of light decreases.

1 → 2 Case

In this case, all three ground state Zeeman sublevels interact with the pump light,
i.e. there are no dark states. The strength of the interaction with light (absorption
rate) does vary between the states, as can be seen by comparing the Clebsch-
Gordan coefficients.

|〈J ′M ′|J1M0〉|2 = |〈21|1110〉|2 = 1/2,

|〈J ′M ′|J1M0〉|2 = |〈20|1100〉|2 = 2/3,

|〈J ′M ′|J1M0〉|2 = |〈2− 1|11− 10〉|2 = 1/2.

In this situation, ∆N atoms are pumped from the |11〉, |1,−1〉 states and (4/3)·∆N
atoms are pumped from the |10〉 state. Now we can compute the relative rates
of spontaneous decay into the various sublevels, taking into account the difference
in initial population of the excited states. Also to get the right total number of
atoms, we have to normalize the rates from a given excited state sublevel. For
the 1 → 0, 1 cases, the Clebsch-Gordan coefficients worked out so that they were
already normalized as you can verify.

First, let’s take care of the normalization. The possible decays from |21〉 are
described by the Clebsch-Gordan coefficients:

|〈11|2110〉|2 = 3
10

|〈10|211− 1〉|2 = 3
10
.

So half the atoms from |21〉 decay to |11〉 and half decay to |10〉. Analogously,
half of the atoms from |2− 1〉 decay to |1− 1〉 and half decay to |10〉. For the |20〉
state, we find that:

|〈11|2101〉|2 = 1
10
,

|〈10|2100〉|2 = 2
5
,

|〈1− 1|210− 1〉|2 = 1
10
.

So we find that 2/3 of the atoms from the |20〉 state end up in the |10〉 state,
1/6 decay to |11〉 and 1/6 decay to |1− 1〉. To normalize all the coefficients, we
just need to multiply by 5/3. This turns out to be related to the reduced matrix
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element which we have ignored. Taking into account the initial populations of the
excited state Zeeman sublevels, we find:

∑
q,M ′

|〈11|J ′1M ′q〉|2 = 4
3
|〈11|2101〉|2 + |〈11|2110〉|2 = 2

15
+

3
10

=
13
30

∑
q,M ′

|〈10|J ′1M ′q〉|2 = |〈10|211− 1〉|2 + |〈10|21− 11〉|2 + 4
3
|〈10|2100〉|2

=
3
10

+
3
10

+
8
15

=
34
30∑

q,M ′
|〈1− 1|J ′1M ′q〉|2 = |〈1− 1|21− 10〉|2 + 4

3
|〈1− 1|210− 1〉|2 = 2

15
+

3
10

=
13
30

Then multiplying by 5/3 gives us the amount of atoms which decay back into each
ground state sublevel. Now we can easily compute the change in population for
each of the sublevels:

N1 =
N

3
−∆N +

13∆N
18

=
N

3
− 5∆N

18

N0 =
N

3
− 4∆N

3
+

34∆N
18

=
N

3
+

5∆N
9

N−1 =
N

3
−∆N +

13∆N
18

=
N

3
− 5∆N

18

So we see that the population of the |10〉 state, which is more absorbing, increases.
Therefore absorption of light increases in this case!

Problem 2 Magnetic field inside a magnetized sphere

First, we need to determine the magnetic field inside a uniformly magnetized
sphere. We can think of this problem in terms of the bound surface and volume
currents for such a system (pardon me for using SI units here, we’ll convert to CGS
in the end for those who prefer the gentler units), given by [see, e.g., D. Griffiths,
Introduction to Electrodynamics, (Prentice-Hall, Upper Saddle River, 1999)]:

�Jb = ∇× �M = 0, (15)

�Kb = �M × n̂ =M sin θφ̂. (16)

Let’s determine the vector potential �A due to the bound surface current.

�A(�r) =
µ0

4π

∫ �K(�r)
ρ
da =

µ0

4π

∫
M sin θφ̂
ρ

da, (17)

where da = R2 sin θdθdφ and ρ =
√
R2 + r2 − 2Rr cos θ is the distance from the

point of interest to da. This result of the integral for points inside the sphere
(r < R) is given by:

�A(r, θ, φ) =
µ0M

3
r sin θφ̂. (18)

The magnetic field inside a uniformly magnetized sphere then follows from �B =
∇× �A:

�B = ∇× �A(r, θ, φ) = 2µ0M

3
ẑ. (19)

In CGS units, our result is:

�B =
8πM
3
ẑ. (20)

The magnetic field is uniform and independent of the radius of the sphere. So
the field inside a small imaginary sphere within the large sphere is in this sense
entirely due to itself. If you carved out a small sphere inside the larger one (by
superimposing a small sphere of opposite magnetization), we would see that the
field inside the cavity is zero.
Therefore, the magnetic field which the little sphere sees is:

�B(small sphere) = 0

This is good for optical pumping magnetometers because it allows them to sample
the field due to external sources rather than being sensitive to the field produced
when the atoms are polarized. Note that this result does not hold for non-spherical
cells!
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Problem 3 Measurement of electric fields with the quadratic Stark Shift

The Stark shift is proportional to the square of the electric field:

∆S = αE2 (21)

we are given that for E = 10 kV/cm, the sensitivity to Stark shifts is

δ∆S

∆S
= 10−4.

(a)

The relationship between the uncertainty in the determination of E and the sen-
sitivity to the Stark shift is:

δ∆S = α2EδE, (22)

so we have
δ∆S

∆S
=
α2EδE
αE2

= 2
δE

E
= 10−4.

So our uncertainty in the determination of the 10 kV/cm field is:

δE =
1
2
V/cm

(b)

Since our sensitivity to the Stark shifts is an absolute sensitivity (doesn’t vary with
electric field), we have for any electric field E∗:

δ∆S

∆S(E∗)
= 10−4 · (10 kV/cm)

2

(E∗)2
. (23)

The smallest detectable field is when δ∆S

∆S
= 1. This occurs when:

E∗ = 100 V/cm

This result is rather interesting. The basic idea is that if we have a small field E′

in addition to a larger field E0, the Stark shift is given by:

∆S = α(E0 + E′)2 ≈ α(E2
0 + 2E0E

′).

So the effect of the small field is enhanced by the presence of the larger field due
to interference. However, if all we have is the small field, our Stark shift is just

∆S = α(E′)2,

so we are less sensitive to the field. Such ideas are important in atomic parity-
violation experiments, where parity-violating terms due to the weak interaction
are interfered with larger terms due to the electromagnetic interaction, allowing
them to be detected.

Problem 4 Larmor precession in alkali atoms

The shift in the energy of an atomic level due to interaction of an external magnetic
field with the magnetic moments due to the spin of the electron and the orbital
angular momentum is given by:

∆E = �µ · �B = �ΩL, (24)

where ΩL is the Larmor frequency and the magnetic moment of the particular
atomic state is given by:

�µ = −µB

(
gL�L+ gS �S

)
, (25)

where µB is the Bohr magneton, gL = 1 and gS ≈ 2 (although not exactly, as we
learned from Dirac and geonium). We can then relate the magnetic moment to
the total angular momentum of the state �J = �L+ �S:

�µ = −µB

(
�L+ 2�S

)
= −µB

(
�J + �S

)
= −µB

(
�J +

〈�S · �J〉
J(J + 1)

�J

)
, (26)

where

〈�S〉 = 〈�S · �J〉
J(J + 1)

�J

gives the mean value of �S along �J times �J . We can then solve for 〈�S · �J〉 in terms
of eigenvalues of our system:

�J − �S = �L,
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J2 + S2 − 2�S · �J = L2,

so we find that

〈�S · �J〉 = J(J + 1) + S(S + 1)− L(L+ 1)
2

. (27)

So the relation between the total angular momentum and the magnetic moment
of the system is given by:

�µ = −gJµB
�J, (28)

where

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (29)

If we now include the nuclear spin �I in our total angular momentum �F = �I+ �J we
have more total angular momentum (also known as mechanical angular momen-
tum), but our interaction Hamiltonian remains the same since the nuclear mag-
netic moment interacts only weakly with the magnetic field. So we just change our
g-factor by the projection of �J along �F . The calculation is similar to those above:

�µ = −gFµB
�F , (30)

where

gF = gJ

(
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

)
. (31)

For alkali atom ground states S=1/2, L=0, J=1/2, and gJ = 2. The total angular
momentum in this case can be F = I ± 1/2. So the Landé factor is given by

gF =
F (F + 1) + 3/4− I(I + 1)

F (F + 1)
.

For F = I + 1/2 we get:

gF =
F (F + 1) + 3/4− (F − 1/2)(F + 1/2)

F (F + 1)
=

F + 1
F (F + 1)

=
1
F

=
1

I + 1/2
,

and for F = I − 1/2 we get:

gF =
F (F + 1) + 3/4− (F + 1/2)(F + 3/2)

F (F + 1)
=

−F
F (F + 1)

=
−1
F + 1

=
−1

I + 1/2
.

So we have for our Landé factors:

Figure 2: Illustration of the relative orientation of �J to the total angular momen-
tum �F for F = I ± 1/2.

gF =
±1

I + 1/2

The relative sign of the two Larmor frequencies is different because �J , which is
responsible for the interaction with the magnetic field, has different orientation
with respect to the total angular momentum �F in the two cases. The magnitude of
the Larmor frequency is reduced with increasing I due to the increase in mechanical
angular momentum, since the strength of the magnetic interaction remains fixed.
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