
Physics 250 Spring 2000 Solutions to Homework 2 Budker/Kimball

Above the front door of Niels Bohr’s cottage was nailed a horseshoe. A visitor who
saw it exclaimed: ”Being as great a scientist as you are, do you really believe that
a horseshoe above the entrance to a home brings good luck?”
”No,” answered Bohr, ”I certainly do not believe in this superstition. But you
know,” he added with a smile, ”they say that it does bring luck even if you don’t
believe in it!”

- George Gamow, excerpted from Thirty Years that Shook Physics.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 5 Geonium: Motion of an electron in a Penning Trap

The motion of an electron in a Penning trap (geonium) can be deduced from con-
sidering the potential energy of the e− due to the applied quadrupole electrostatic
field, whose potential is given by

φE = A
(
x2 + y2 − 2z2

)
,

the strong, homogeneous magnetic field �B = B0ẑ, and the weak ”bottle” magnetic
field

�b = −β
(
zxx̂− zyŷ +

(
z2 − x2 + y2

2

)
ẑ

)
.

(a)

Now we consider the axial oscillation frequency on-axis (x = y = 0). In this case,
only the electrostatic field and the bottle field contribute to the potential energy.
The Hamiltonian H is given by:

H =
p2

z

2me
− �µ ·�b− eφE =

p2
z

2me
+ µeffβz

2 + 2eAz2, (1)

where µeff is the effective magnetic moment of the electron due to its spin, cyclotron
and magnetron motion. Equation (1) is the Hamiltonian for a simple harmonic
oscillator:

H =
p2

z

2me
+

1
2
meω

2
Az

2, (2)

where the axial oscillation frequency is given by:

ω2
A =

2
me

(µeffβ + 2eA). (3)

The second term in Eq. (3) is the unperturbed axial oscillation frequency (i.e. the
axial frequency without the bottle field), given by Eq. (2) from H. Dehmelt, Am.
J. Phys. 58, 17 (1990):

ω2
z =

4eA
me

. (4)

So the axial oscillation frequency in the presence of the bottle field is given by:

ωA =
(
2µeffβ

me
+ ω2

z

)1/2

≈ ωz +
µeffβ

ωzme
. (5)

The correction to the axial oscillation frequency is thus given by:

δωz ≈ µeffβ

ωzme
. (6)

Now we need to determine µeff , which is given by:

µeff = µs + µc + µm, (7)

where µs is the spin magnetic moment, µc is the cyclotron magnetic moment, and
µm is the magetic moment due to magnetron motion. The spin magnetic moment
is:

µs = geµBm ≈ 2µBm, (8)

where m = ±1/2 is the spin projection along the z-axis and µB is the Bohr
magneton:

µB =
e�

2mec
. (9)

The cyclotron motion in the strong, homogeneous magnetic field �B is described
approximately (here we ignore the shift due to the electric quadrupole field) by
the balance of the magnetic and centrifugal forces on the electron:

erωc

c
B0 = merω

2
c , (10)

which gives the cyclotron frequency:

ωc =
e

mec
B0. (11)

This system can also be described with the equations for a simple harmonic os-
cillator with only a single degree of freedom. Here is a simple derivation of this
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fact from L.D. Landau and E.M. Lifschitz, Quantum Mechanics, (Butterworth-
Heinemann, Oxford, 1977), based on the original derivation by Landau himself in
1930 (the energy levels for this system are known as the Landau levels). The vector
potential �A for a uniform field in the ẑ direction can be written, for example, as:

�A = −B0yx̂.

The Hamiltonian Hc governing this cyclotron motion is then:

Hc =
1

2me

(
(px + eB0y/c)2 + p2

y + p2
z

)
,

where we recall that the kinetic momentum m�v in the presence of a magnetic
vector potential is related to the canonical momentum �p by:

m�v = �p− q

c
�A,

where q is the charge and �A is the vector potential. Note that the Hamiltonian does
not contain the coordinates x and z, so [Hc, px] = [Hc, pz] = 0, so the eigenvalues
of px and pz can take on any real value. Clearly motion in the axial direction (ẑ)
can therefore be decoupled from the cyclotron motion in this case. Therfore the
effective Hamiltonian H

(xy)
c describing motion in the xy-plane is:

H(xy)
c =

1
2me

p2
y +

1
2
meω

2
c (y − y0)

2
,

where y0 = −cpx/(eB0). Therefore the cyclotron motion can be described with
the formalism developed for the 1D simple harmonic oscillator, even though it is a
two dimensional problem! Furthermore, if we assign an energy µcB0 to each of the
Landau levels, we can associate the cyclotron frequency with a magnetic moment
according to:

�ωc

(
n+

1
2

)
=

e�

mec

(
n+

1
2

)
B0 = µcB0, (12)

where n is the cyclotron quantum number. From Eq. (12) we deduce:

µc = 2µB

(
n+

1
2

)
. (13)

The magnetron motion arises because the static electric quadrupole field also cre-
ates a radial electric force. The magnetron motion can also be solved for using
the similar formalism as applied above (see, e.g., L.S. Brown and G. Gabrielse,
Rev. Mod. Phys. 58(1), 233, (1986)). It turns out that the magnetic moment

due to the magetron motion is simply the ratio of the magnetron and cyclotron
frequencies times the magnetic moment due to the cyclotron motion (with a new
quantum number q to describe the magnetron motion):

µm = 2µB

(
ωm

ωc

)(
q +

1
2

)
. (14)

Employing the above relations in Eq. (6), we find:

δωz ≈ 2µBβ

ωzme

(
m+ n+

1
2
+ (q + 1/2)

ωm

ωc

)

agreeing with the equation from Dehmelt’s paper, if we neglect the 1/2 that goes
with the magnetron motion (since under typical experimental conditions q � 1).

(b)

We cannot in fact require that m = 0, since the spin quantum number can only
take on the values m = ±1/2. Therefore, let’s choose the minimum possible per-
turbation of the axial oscillation frequency δω(min)

z , which occurs when m = −1/2,
n = 0, and q = 0. It might also be argued that q = 0 is an unreasonable assump-
tion, since the magnetron frequency is 13 kHz and at the working temperature
for geonium, kT ≈ 100 GHz. Putting these concerns aside for the moment, the
minimum perturbation to the axial oscillation frequency is given by:

δω(min)
z =

1
2
ωm

ωc

2µBβ

ωzme
. (15)

This leads to the overall axial oscillation frequency:

ωA =
(
ωz + δω(min)

z

)(
a+

1
2

)
, (16)

where ωz is the unperturbed axial oscillation frequency from Eq. (4) and a is the
quantum number for the axial oscillation. We choose the ground state of such a
system (a = 0), which is described by the wavefunction:

ψg(z) =
(meω0

�π

)1/4

e−meω0z2/2�, (17)

where ω0 = 1
2

(
ωz + δω

(min)
z

)
. Since

ωz ≈ 2π · 60 MHz
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and

δω(min)
z ≈ 2π · 13× 103 Hz

2π · 141× 109 Hz
(2π · 1 Hz),

we have ω0 ≈ ωz.
From symmetry considerations 〈z〉 = 0, and a straightforward integral gives:

〈z2〉 =
∫ ∞

−∞
dz

(meωz

�π

)1/2

z2e−meωzz2/� =
�

2meωz
. (18)

Thus the dimensions of the wavepacket are given by:

(∆z)2 = 〈z2〉 − 〈z〉2 = �

2meωz
. (19)

Thus the minimum dimension of the electron wavepacket is:

∆z =
√

�

2meωz
≈ 3× 10−5cm

Since the wavepacket may have different radial and axial dimensions, we should
also consider the radial motion of the electron. This motion can also be treated as
a simple harmonic oscillator, so we find that:

(∆r)2 =
�

2meωm
, (20)

where ωm ≈ 2π · 13 kHz is the magnetron frequency. This gives us a radial
dimension of the electron wavepacket:

∆r =
√

�

2meωm
≈ 3× 10−3cm

Problem 6 Zeeman Slower

(a)

We assume that the atoms are always in resonance, and the optical pumping
saturation parameter κ = 1. The relevant optical pumping saturation parameter
in this case is given by:

κ =
d2E2

γ2
0

, (21)

where d is the transition dipole moment, E is the electric field of the light, and
γ0 is the natural width of the excited state. Essentially, this says that the rate of
pumping atoms from the ground state to the excited state,

Γp ≈ d2E2

γ0
,

is equal to the rate of spontaneous decay from the excited state γ0.

The average force 〈F 〉 transferred to the atoms from the laser light is given by:

〈F 〉 = ∆p
∆t

=
�k

4τ
, (22)

where �k is the momentum of an absorbed photon and τ is the lifetime of the upper
state. There is no average momentum imparted to the atoms from spontanteous
emission since photons are spontaneously emitted in (approximately) random di-
rections. ∆t is the time for one cycle of pumping and spontaneous emission. Since
κ = 1, the rates of spontaneous emission, stimulated emission, and stimulated ab-
sorption are the same (≈ γ0). We can then estimate that each cycle of absorption
and emission takes 2τ , and roughly half the time such a cycle involves sponta-
neous emission (no momentum is imparted to the atom by stimulated absorption
followed by stimulated emission). Thus the effective time for slowing an atom by
�k/M is 4τ . The average force for λ = 589 nm and τ = 16 ns is

〈F 〉 ≈ 2 · 10−15 g · cm · s−2.

The initial thermal velocity of the atoms effusing from the oven (assuming a
Maxwell distribution) is given by (see, e.g., F. Reif, Fundamentals of Statistical
and Thermal Physics, (McGraw-Hill, New York, 1965), pp. 268-9):

〈v〉 =
√

8kT
πM

, (23)

where M is the mass of sodium. From this we find the average initial momentum
〈p0〉 of a sodium atom is:

〈p0〉 =
√

8kTM
π

≈ 3 · 10−18 g · cm · s−1, (24)

which corresponds to a thermal velocity of 9 ·104 cm/s. The stopping time is given
by the ratio of the average light force to the initial momentum,

tstop ≈ 1.5× 10−3 s
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In the experiment, tstop ≈ 3 · 10−3 s, so κexp ∼ 1/2.

(b)

In this part of the problem, we assume all atoms have the same initial velocity
and neglect hyperfine structure, and assume κ = 1. The atoms are always kept in
resonance by the magnetic field, so the atoms undergo uniform deceleration:

a =
〈F 〉
M

=
�k

4τM
≈ 5× 107 cm · s−2. (25)

The light frequency is Doppler shifted by an amount

∆ω(z) = ω
v(z)
c

, (26)

where z is the distance from the trap and v(z) is the atomic velocity as a function
of the distance. The velocity as a function of distance in terms of the deceleration
a is

v(z) =
√
2az.

In order to keep the atoms on resonance, we need to equate the Zeeman shift
created by the magnetic field to the Doppler shift ∆ω(z).

For σ+ polarized light, atoms tend to be pumped into the MJ = 1/2 ground
state Zeeman sublevel. Since atoms experience many optical pumping cycles, it
is the energy difference between the 3 2S1/2 MJ = 1/2 and 3 2P3/2 MJ = 3/2
states which is important for slowing the atomic beam. The Zeeman shift of the
resonance frequency for σ+ polarized light is given by

∆ω = (ge · (3/2)− gg · (1/2))µBB(z)
�

, (27)

where ge = 4/3 and gg = 2 are the excited and ground state Landé factors (see
HW 1 solutions Eqn. (29)), µB is the Bohr magneton and B(z) is the magnetic
field as a function of distance from the trap. By equating Eqns. (26) and (27), we
find:

B(z) =
�ω0

√
2az

µBc

Numerically, this result is:

B(z) =
(

2π × 5 · 1014 Hz
2π × 1.4 · 106 Hz/G

1
3 · 1010 cm/s

√
108 cm · s−2

)√
z ≈ 1.2 · 102

√
z G.

Figure 1: Molecule moving about a cell with and without buffer gas. Although the
total collision frequency in the cell with buffer gas is higher, the effective volume
traced out by the molecule in a given time t is unchanged.

Problem 7 Collisions in gas mixture

The mean free path λ of a molecule between collisions is given by:

λ =
1
nσ

, (28)

where n is the density and σ is the collisional cross section. The average time
between collisions is λ/v̄, where v̄ is the average relative thermal velocity.

If a second buffer gas with density n′ and cross section σ′ is added into the system,
the total collision rate γ is:

γ = nσv̄ + n′σ′v̄′ = γself + γbuffer, (29)

where v̄′ is the average relative velocity between the molecules and buffer gas,
and γself and γbuffer are the rates for self- and buffer gas collisions, respectively.
Note that the collision rate between the original molecules is in fact unmodified,
there are just more total collisions! Thus the introduction of the buffer gas doesn’t
change the time between collisions of the original molecules with themselves.

This result is illustrated in Fig. 1: a molecule moving about the cell traces out an
effective volume σv̄t, and the probability of a collision becomes unity about when
the volume traced out = 1/n. These parameters are independent of the frequency
of collisions with the buffer gas. Note that this result is only true for equilibrium
conditions.

4


