Physics 250 Spring 2000 Solutions to

Homework 3 Budker/Kimball

”The purpose of physics is to understand the universe... the purpose of mathemat-

ics is, well, obscure to me...”
- Prof. Seamus Davis, UC Berkeley
I would like to emphasize that the somewhat controversial opinions expressed in

the solution to problem 10 are entirely the fault of the present author, but were
arrived at with great assistance from Prof. Budker, of course.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 8 Bose-Finstein condensation temperature

The DeBroglie wavelength of a particle is given by:
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where M is the mass of the particle and v is its velocity. The thermal velocity of
a particle can be found from the equipartition theorem:

ApB =

(2)

where T is the temperature and kp is Boltzmann’s constant. Thus the DeBroglie
wavelength as a function of temperature is given by:
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The DeBroglie wavelength is equal to the interparticle separation when:
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where n is the particle density, n = 10° cm~2 in this problem. From Eqns. (3)
and (4) we deduce the condition for the Bose-Einstein condensation temperature
T.:

(27h)2n2/3
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Numerically, we find:
(27)2 - (6.6 x 10710 eV - 5)2 - (10% cm™2) - (3 x 10! cm/s)?
3. (8.6 x 105 eV/K) - (23 - 931 x 10° eV)

An exact solution gives

T, = ~3x 1077 K.
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Problem 9  Laser Cooling vs. Light-Induced Drift

(a)
The typical force imparted to an atom in laser cooling is the photon momentum
hk divided by the lifetime of the upper state 7:

_ Ap Dk

At T

hw

CT

1.6 x 10712 erg
(3 x 1010 ¢m/s) - (10-8 s)

~

Fic ~ 5 x 10715 dyne,

where we choose hw ~ 1 eV = 1.6 x 10712 erg as the typical atomic energy scale
and 7~ 1078 s as the typical atomic lifetime.

(b)

The typical force imparted to an atom in light-induced drift (see pp. 131-136
in the Reader) is given by the difference between the frictional forces for ground
state and excited state atoms. For an ensemble of atoms with a given velocity
(which is selected via the tuning of the laser light), collisions with an atomic gas
in equilibrium tend to reduce the average momentum of the atomic ensemble to
zero. Therefore Ap ~ M7U,es, Where U5 is the average velocity of atoms resonant
with the light. Here we assume a relatively heavy buffer gas. The frequency of
such collisions (assuming atoms spend about half the time in the excited state) is

Ycol ~~ 5”0*1_71«:57
where ¢* is the collisional cross section for the excited state. Roughly, then, we
estimate the force on resonant atoms to be:

A 1
Fiip = Klt) ~ ’YcolAp ~ §nMO'*’L_}3CS.

We choose n = 3-10* cm™2, 0* ~ 107! cm?, and ,es ~ 10° cm/s as typical
values. Then
FLID ~ 10_10 dyne.

This is more than four orders of magnitude larger than the typical forces in laser
cooling!
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Problem 10  Bose-FEinstein Statistics for Photons

The spin-statistics theorem, which states that integer spin particles must be in a
symmetric state (with respect to particle interchange) and half-integer spin parti-
cles must be in an antisymmetric state, can be derived from relativistic quantum
field theory using assumptions of local Lorentz invariance, causality and the exis-
tence of anti-particle fields [see, e.g., S. Weinberg, The Quantum Theory of Fields,
(Cambridge University Press, Cambridge, 1995), pp. 229-238]. A violation of
the spin-statistics theorem would imply a violation of one of these assumptions
of relativistic quantum mechanics. Such a violation is not totally ruled out by
experiment: for example, there are a number of ongoing experiments to test local
Lorentz invariance [e.g., C.J. Berglund, L.R. Hunter, D. Krause Jr., E.O. Prigge,
M.S. Ronfeldt, and S.K. Lamoreaux, Phys. Rev. Lett. f75, 1879 (1995)]. It is
difficult to say how strictly tests of the assumptions of relativistic quantum me-
chanics limit violations of the spin-statistics theorem without reference to a specific
model. Experimental tests of the spin-statistics theorem can therefore probe the
validity of some of the most fundamental assumptions in physics. It should also
be remembered that relativistic quantum mechanics is not a final theory of all
phenomena, and is therefore inherently incomplete (just as classical mechanics
is superseded by special relativity, relativistic quantum mechanics will likely be
superseded by some deeper theory). There have been a few plausible scenarios
for small spin-statistics violations proposed, such as excitations of higher dimen-
sions (as in string theories) allowing particles to possess wrong-symmetry states in
the usual 3-dimensional space while maintaining the correct symmetry in the N-
dimensional space [O0.W. Greenberg and R.N. Mohapatra, Phys. Rev. D 39, 2032
(1989)]. Theoretical attempts to incorporate a small violation of the spin-statistics
theorem into standard quantum mechanics, most notably the quon algebra [O.W.
Greenberg, Phys. Rev. Lett. 64, 705 (1990)], appear inherently nonlocal in the
relativistic limit and therefore violate causality.

A crucial theoretical question is whether or not the spin-statistics connection can be
derived by simpler methods, in particular with nonrelativistic quantum mechanics.
A simpler proof might be able to connect spin-statistics with more well-established
assumptions of quantum mechanics and allow strict limits to be placed on possible
violations. An excellent summary of such attempts and their associated problems,
as well as a simplified proof using relativistic quantum mechanics, is presented
in [I. Duck and E.C.G. Sudarshan, Amer. J. of Phys. 66, 284 (1998)]. One of
the most notable arguments for the spin-statistics theorem is made by Feynman
[R.P. Feynman, in: The 1986 Dirac Memorial Lectures, (Cambridge University
Press, Cambridge, 1987)], and is summarized in Fig. 1. The argument, which
involves topological markers, has recently been formally extended by Berry and
Robbins [M.V. Berry and J.M. Robbins, Proc. Roy. Soc. London A 453, 1771
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Figure 1: Intuitive argument developed by Feynman to explain the spin-statistics
connection. Here we imagine the particles ¢ and b are in a coherent superposi-
tion ¢(a, b) = %(\T>a|l>b +1),11),). The basic problem with the argument is the
"markers” on the particles (telling us which way they face). There is no fundamen-
tal justification for why the final rotation is necessary. The markers can be replaced
with hypothetical tethers between the particles or more formal mathematics (spin
basis), but the same objection applies.

Feynman’s topological argument:

In order to have proper particle exchange,
particles must be rotated about the origin @ and
their centers, leading to a total rotation of 2m:
for fermions, this gives a -1 phase factor
in wave function, +1 phase factor for bosons.

(1997)]. The crucial problem with these rather intuitive arguments is that they
add some new postulate to quantum mechanics whose existence serves solely to
prove the spin-statistics theorem. Therefore they cannot provide a more strict
limit on violations of the spin-statistics theorem, and in fact appear redundant
since relativistic proofs already exist. These nonrelativistic proofs also imply that
the spatial-spin part of any wavefunction is symmetric for integer-spin particles and
antisymmetric for half-integer spin particles. This conclusion is not strictly true in
general, however, since the wavefunction can possess additional degrees of freedom
(such as color) [J. Anandan, Phys. Lett. A 248, 124 (1998)]. The symmetrization
postulate implies that the additional degrees of freedom must assume symmetric
or antisymmetric states (unlike nonidentical particles, which need not assume any
particular exchange symmetry).
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In considering the possibility of a small violation of Bose-Einstein statistics for
photons, it is necessary to ask how such a violation could manifest itself? We can
assume the validity of nonrelativistic quantum mechanics in all our arguments,
since spin-statistics violations do not appear to contradict any assumptions of this
theory (although the description of creation and annhilation of photons without
reference to relativistic quantum theory is a separate story). The spin-statistics
theorem concerns identical particles, which means that the particles cannot be
distinguished by any measurement. In particular, this means that all operators
corresponding to physical observables must commute with all exchange operators
&, for example [H,¢] = 0 for any Hamiltonian. This fact is used by Amado and
Primakoff to derive a superselection rule: the symmetry class of a state is conserved
and different symmetry classes do not mix [R. Amado and H. Primakoff, Phys.
Rev. C 22, 1338 (1980)]. This implies:

(AlH|S) =0, ()
where H is any Hamiltonian, and |S) and |A) are symmetric and antisymmetric
states respectively. In other words, if no new particles were created, then a class
of particles which started out in a symmetric state would remain symmetric for
all time. As Feynman said, ”so the problem would be pushed back to Creation
itself, and God only knows how that was done.” However, it is important to note
that the creation and annihilation of particles is beyond the scope of nonrelativis-
tic quantum mechanics. The quon algebra, for example, takes advantage of this
exception by postulating creation and annihilation operators which do not obey
the usual commutation relations, leading to the creation of particle states which
are neither symmetric nor antisymmetric.

In the following discussion we assume that a small violation of the spin-statistics
and/or symmetrization postulate would manifest itself as an intrinsic property
of all photons. One way to characterize this violation is to place all photons in a
common symmetry class which is neither symmetric nor antisymmetric, but rather
is described by a formal superposition of these two states U:

U =V1-v|S) £VV|4), (6)

where |S) is the symmetric wave function, |A) is the antisymmetric wave function,
and v is the probability for any process occurring only for an antisymmetric photon
state. When we say the photon state is described by a formal superposition, we
mean that even though [H,&] = 0 implies that we can write energy eigenstates of
our Hamiltonian (and, for that matter, any other operator) as eigenstates of the
exchange operator, we choose instead to write them as the above superposition.
We assume there is some as yet undiscovered principle which forces us to make
this choice. This is equivalent to a violation of the symmetrization postulate, which
states that all wave functions are eigenfunctions of the exchange operator.

The fact that the above state (Eq. (6)) violates the symmetrization postulate
can be illustrated with a generic two photon state ¥(a,b). If two photons are
interchanged, the expectation value of any physical observable is unaffected since
photons are identical. This implies, since ¥*¥ is an observable, that if ¥(a,b) is
an eigenfunction of the exchange operator £q:

Eab¥(a,b) =T (b,a) = em&\If(a7 b),

where ¢ is some phase. We can solve for ¢ by performing an additional interchange
to return us to our original state:

2,0 (a,b) = &ue' U (b, a) = e**T(a,b),

so ¢ = 0,7 (ie., e = £1). So the symmetrization postulate explicitly forbids
particles from being in a superposition of symmetric and antisymmetric states.

The state U behaves as an incoherent mixture precisely because the Primakoff
superselection rule forbids cross terms between states of different permutation
symmetry in the expectation value of any operator O:

(V|e¥) = (1 —v)(S|6[S) + v(A[O]A). (7)
However, in my opinion, the above description of spin-statistics violation is a little
different from describing the photons with a density matrix:

pPs 0 - 1—-v 0
0 pa ) 0 v ]’

where ps and pa are the populations of the exchange-symmetric and exchange-
antisymmetric states, respectively. The primary difference is that in the density
matrix, v of the photons are antisymmetric with respect to interchange while they
have no definite symmetry with respect to the other photons. When the photons
are described by a formal superposition of symmetric and antisymmetric states,
there is a probability v for any two photons to be antisymmetric with respect to
interchange and no possibility that their exchange symmetry is undefined. For this
reason, I prefer to use the formal superposition.

(8)

To understand what is meant by a ”symmetry class,” let’s consider some interac-
tion which generates an energy splitting huw,s between |.S) and | A). This interaction
introduces a time-dependent phase between |S) and |A), but in fact won’t change
the symmetry class in accordance with the Primakoff superselection rule:

U(t) = VI 0|S) + eest /| A). 9)

The accrued phase cancels in evaluation of any expectation value for ¥(¢), and
this is what is meant by symmetry class — the particular ratio between symmetric
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and antisymmetric contributions to the wave function is fixed for all members of
a given symmetry class. It is important to note that because of the Primakoff
superselection rule, there cannot be transitions ¥ — WU’ where ¥’ possesses a
different symmetry.

Two photon states and the Landau-Yang Theorem

Suppose we have two photons (a and b) in a state with a spatially symmetric wave
function. The possible spin states of the photons can be found starting from the
stretched state and applying lowering operators. The J;,; = 2 multiplet consists
of symmetric spin functions (where the states are labeled by |J, M), where J is
the total angular momentum of a particle or the system and M is the projection
along a particular axis):

|2a 2>t0t = ‘1>a|1>b7

2,1, = %uwa\on +[0),11),).
2.0) = 2 (11)al=D) + 200)J0), + 1), [1),),
2, 1)y = == (0}, 1), + [=1),10},).

tot — NG
and

12,=2) 100 = [=1)al=1)s-

The J¢or = 1 multiplet consists of anitsymmetric spin functions, and is therefore
forbidden by the spin-statistics theorem:

1,1),,, = %um\on 100 11),),
100 = —(1ul=1)y = [=Th,010,),
and )
11,1y, = —=(10),1—1), — [~1),0},).

tot — NG
Finally, there is the symmetric |0, 0),,, = [0),|0), state.

An immediate consequence is that a vector (J = 1) particle cannot decay into 2
photons. Since the photons conserve linear momentum in the particle rest frame
and space is isotropic, they must be emitted in spherical waves, so the spatial part
of the wavefunction is symmetric. In order to conserve angular momentum, the
photons must be in a J;,; = 1 state — however this state is antisymmetric and
therefore forbidden. This is known as the Landau-Yang theorem [L.D. Landau,

Dokl. Akad. Nauk., USSR 60, 207 (1948); C.N. Yang, Phys. Rev. 77, 242 (1950)].
If Bose-Einstein statistics for photons is violated, there can arise a branching ratio
o v for the forbidden decay into two photons. The decay of the Zj-boson into
two photons is forbidden by the Landau-Yang theorem, but the current limit on
v from Zy decay data is very poor, v < 1 [A. Yu. Ignatiev, G.C. Joshi, and M.
Matsuda, Mod. Phys. Lett. A 11, 871 (1996)].

Recently, a direct atomic physics test of Bose-Einstein statistics based on this
principle has been conducted [D. DeMille, D. Budker, N. Derr, and E. Deveney,
Phys. Rev. Lett. 83, 3978 (1999)]. This experiment searched for a two-photon
J =0 — J =1 transition with degenerate photons in atomic barium. The result
sets a limit ¥ < 1.2 x 1077, A new experiment, aimed at improving this limit by
several orders of magnitude is in progress here at Berkeley (headed up by our very
own Damon Brown and Dima Budker).

N photon states and Statistical Ensembles

There is a great deal of debate in the literature concerning spin-statistics violations
about how to represent multi-particle states. Since I am presently unable to come
to a solid conclusion, I propose to interpret a violation of the symmetrization
postulate and the spin statistics theorem to imply that all photons are in a mixed
permutation symmetry group described by wave functions of the form

¥ = VI=0S) + Virl4),

where v characterizes the probability of finding two photons in an exchange-
antisymmetric state. This would suggest that no matter how many photons you
have, v part of the time you measure them to be in exchange-antisymmetric states.

Large statistical ensembles of fermions and bosons can in principle be distinguished
by their distribution functions frp and fpg, respectively, where for photons (chem-
ical potential = 0):

1

frp = m (10)
and
1
JBE = pry (11)

where ¢€; is the energy of a state . The distributions give the average number of
particles in state ¢ for a thermal distribution. I believe, although it is a bit difficult
to prove presently, that the distribution function fgy for photons including a small
violation of the spin-statistics theorem would then be given by:

fBv = (1 — I/)fBE + vfrD- (12)
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Cosmic microwave background spectrum and fit to Planck blackbody
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Figure 2: Cosmic background radiation spectrum and fit to Planck blackbody
spectrum. Uncertainties are a small fraction of the line thickness.

Blackbody Spectrum

From the above (slightly tenuous) analysis, the Bose-violating Planck spectrum is
described by:

hc?ws 1—v v
T2 elhw/kpT) _ 1 + e(hw/kpT) +1 ’

where p(w,T') is the energy density per unit frequency and w is the frequency.

pw,T) =

(13)

One of the most accurate measurements of a blackbody spectrum is that of the
cosmic microwave background (CMB) radiation. Figure 2 shows the results of
measurements of the spectrum of the CMB radiation by the Far-InfraRed Abso-
lute Spectrophotometer (FIRAS) on board the COsmic Microwave Background
Explorer (COBE) satellite [see, e.g., D.J. Fixsen, et.al., Astr. Phys. Journal f473,
576 (1996)]. The deviations of the data from a perfect Planck spectrum are smaller
than the width of the line in the plot. The residuals from the fit of the COBE
data to a Planck blackbody spectrum can be used to obtain a limit on v.

Simulated data indicates that the residual difference between a Bose-violating spec-
trum and the fitted Planck spectrum are well described by the function:

op(w)=v-

2,,3
hcfw 1 B 0 7 (14)
2 e(hw/kpT) 4 1 e(hw/kT) _ 1

Maximum allowed distortion (95% CL) of COBE data from Planck spectrum
due to Bose-statistics violation for photons
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Figure 3: Residuals of the the fit of the cosmic microwave background radiation
to a Planck spectrum and maximum allowed distortion (95% CL) due to violation
of the spin-statistics theorem for photons.

where dp(w) is the residual difference between the Bose-violating spectrum and
the fitted Planck spectrum and ¢ ~ 1 is a parameter related to the fitting (since a
better fit is obtained by slightly overestimating the Bose-conserving contribution
to the spectrum). We use Eq. (14) to estimate the maximum allowed distortion
from the Planck spectrum from the residuals. The residuals are fit to Eq. (14)
with o as a free parameter, and the reduced x? is inflated to a level where the
likelihood of the fit being correct is only 5%. From this analysis we obtain a limit
on v. Figure 3 shows the maximum allowed distortion fit and the residuals from
the COBE data. From the fit, we find v < 3 x 10™* at the 95% confidence level.
This can be compared to the limit obtained from the experiment by DeMille et.
al. of v < 1.2 x 1077 at the 95% confidence level [D. DeMille, D. Budker, N. Derr,
and E. Deveney, Phys. Rev. Lett. 83, 3978 (1999)]. However, it should be noted
that there is a very different energy range and method of photon creation for the
two measurements.

Lasers

There is also evidence from the existence of lasers that photons obey Bose-
statistics. A large number of photons in the same mode of the electromagnetic
field means that a large number of photons occupy an exchange-symmetric state.
There was attempt to derive a limit on Bose-statistics violations for photons from
the existence of high powered lasers based on the quon theory [D.I. Fivel, Phys.
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Rev. A f43, 4913 (1991)], but some flaws were discovered in this argument [O.W.
Greenberg, in Workshop on Harmonic Oscillators, NASA Conference Pub. 3197,
eds. D. Han, Y.S. Kim, and W.W. Zachary (NASA, Greenbelt, 1993)]. Without a
specific model, it appears difficult to place a limit on v from laser behavior, since
the population of the exchange-antisymmetric mode would always be a small frac-
tion of the population of the symmetric mode. Roughly, the effect would manifest
itself as a linearly increasing (with respect to laser power) occupation of another
mode (the number of photons in the antisymmetric mode Ny ~ vNg, where Ng
is the number of photons in the usual symmetric mode). To my knowledge, no
sensitive search of this kind has been performed. However, the recent experiment
of DeMille et. al. seems to be a good way to measure the ”fraction” of photons
emitted from a specific laser which don’t obey Bose statistics.

Problem 11  Power spectrum of exponentially growing/decaying harmonic field

The Fourier transform of an exponentially decaying harmonically oscillating field
is a Lorentzian:

fo(w) = /00 e~ t1/2 sin(Qt)e " “tdt = L (15)

0 72+ 2iyw + (2 — w?)’
where v is the decay rate and 2 is the oscillation frequency. The Fourier trans-
form fi(w) of an exponentially growing harmonically oscillating field is also a
Lorentzian:

0
fr(w) = / /2 sin(Qt)e " “tdt = L (16)

-2 4+ 2iyw — (2 — w?)

—o0
If we add these two results, we get for the Fourier transform of exponentially
growing then decaying function:

—4iyws?

w?2)2 + 292(Q% + w?)’

f+(w)+f—(w):,_y4+(92_ (17)

To obtain the power spectrum, we take the norm-square of fi (w) + f_(w), which
gives for the power spectrum:

1672w2Q?
(' (2 — w2 4 2922 1+ 0?))

[f+(@) + f- () = (18)
The above power spectrum is compared to the power spectrum of an exponentially
decaying harmonic field in Fig. 4, which is broader than the sum of the growing
and decaying fields. This difference is due to the sharp edge at ¢ = 0 for the
exponentially decaying field, which is known to have many Fourier components.
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Figure 4: Solid line: power spectrum of an exponentially growing then decaying
sinusoidal field (v = 2, Q = 100); Dashed line: power spectrum of an exponentially
decaying sinusoidal field for the same parameters.

The power spectrum for an exponentially decaying harmonic field is given by:

2
@) = o

- . (19)
(v + (2% — w?)? + 29%(Q% + w?))

If the approximations 2 < w and w > 7 are made, the power spectrum for the
growing and decaying harmonic field is given by:

167202
W)+ f- (W) = . 20
F R O e e (20)
and for the decaying harmonic field:
QQ
2 ~
‘f—‘r(w)—’_f—(w” ~ w2(272+(Q—w)2)' (21)

As you can see by comparing Eqns. (20) and (21), the power spectrum of the usual
Lorentzian falls off as é, where A = Q — w, whereas the power spectrum of the
growing and decaying field falls off as ﬁ.



