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Experiments on two-dimensional vortex patterns
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The evolution of a strongly magnetized electron system is identical to that of an ideal
two-dimensional~2-D! fluid; an electron column is equivalent to a fluid vortex. We have studied the
stability of 2-D vortex patterns with electron columns confined in a Malmberg–Penning trap. The
following cases are presented: the stability ofN vortices arranged in a ring; the stability ofN
vortices arranged in a ring with a central vortex; the stability of more complicated vortex patterns.
© 2000 American Institute of Physics.@S1070-6631~00!00902-8#
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I. INTRODUCTION

In the late 1800s, the stability of two-dimensional~2-D!
vortex patterns attracted attention because of its connec
with a vortex model of the atom. Lord Kelvin solved the ca
of three vortices arranged in a ring,1 but it was not until J. J.
Thomson’s Adams Prize essay of 1883 that the cases of t
through seven vortices were solved, with instability p
dicted for seven vortices.2 In 1931, T. H. Havelock general
ized the calculation toN vortices arranged in a ring with
circular outer boundary, showing thatN>7 was unstable.3

He also considered the case ofN vortices arranged in a ring
with a fixed central vortex and demonstrated that a su
ciently strong central vortex could stabilize an otherwise
stable ring.

Experimentally, stable vortex patterns were first o
served in rotating superfluid4He by Yarmchuk, Gordon, and
Packard in 1979.4,5 Vortices cooled into stable patterns as t
superfluid interacted with the normal fluid component.
the experimenters had little control over the initial patte
they could not test the stability of patterns directly. Th
experiment motivated Campbell and Ziff to computationa
generate a catalog of stable 2-D vortex patterns forN
51 – 30 and for certainN up to 217, hereafter referred to a
The Catalog.6,7

Stable vortex patterns have also been observed
electron columns confined in Malmberg–Penning traps
Malmberg–Penning trap uses static magnetic and ele
fields to confine electrons.8,9 A simple trap, diagrammed in
Fig. 1, consists of three coaxial, conducting cylinders c
tained within a high vacuum chamber. Radial confinemen
provided by an axial magnetic field, about which the ele
trons gyrate. Axial confinement is provided by negative
biasing the end cylinders with respect to the central one
which the electrons bounce back and forth. The electrons
destructively imaged by grounding one end cylinder, allo
ing them to stream along the magnetic field and onto a ph
phor screen, producing a light image. This image is th
detected by a charge-coupled device camera.

Under certain experimental conditions, the motion o
strongly magnetized electron column is bounce avera
along the magnetic field and the column behaves two dim
sionally. A system of columns evolves by the interacti
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with its self-electric field and is described by the 2-D Drif
Poisson equations, whereẑ is along the magnetic field
v(r ,u,t) is the velocity,f(r ,u,t) is the electrostatic poten
tial, andn(r ,u,t) is thez-averaged electron density.

E3B drift velocity:

v52
1

B
¹f3ẑ.

Poisson equation:

¹2f5
e

e0
n.

Continuity equation:

]n

]t
1v•¹n50.

Boundary condition:

f~r wall ,u,t !50.

These equations are identical to the 2-D Euler equations
scribing an ideal 2-D fluid; thus, the two systems evol
identically. The vorticity of the electron ‘‘fluid’’ is propor-
tional to the electron density:

V[¹3v5
e

e0B
nẑ.

Hence, a strongly magnetized electron column is equiva
to a 2-D fluid vortex.10–12 Because we only trap electron
we only have one sign of vorticity.

The formation of stable 2-D patterns in a Malmberg
Penning trap was first reported by Fine, Cass, Flynn,
Driscoll.13 Their electron source was a spiral tungsten fi
ment, which injected a spiral electron distribution. This d
tribution was Kelvin-Helmholtz unstable and produced ma
vortices~on the order of 100!, which subsequently merged o
were sheared away. They discovered that the decay of t
system was sometimes arrested by the formation of st
patterns. This ‘‘crystallization’’ requires a cooling mech
nism, which is not obvious in these electron systems,
could be due to interactions with background electrons,14,15
© 2000 American Institute of Physics
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collisions with the background gas, or finite length effec
Note that they also had little control over the initial patte

We constructed a Malmberg–Penning trap with a ces
antimonide photocathode as the electron source.16,17 The
photocathode provides increased control over the initial e
tron distribution, enabling us to inject arbitrary 2-D vorte
patterns directly.

II. EXPERIMENTAL PROCEDURE

To study the stability of a particular 2-D vortex patter
we make a slide of the pattern using a printer with transp
ency film. The slide is illuminated with white light and pro
jected onto the photocathode. Electrons are emitted o
where there is light, so the initial electron pattern cor
sponds to the light image. The electron pattern is trapped
hold time is varied, and the time for one bulk rotation (TR)
and the pattern’s lifetime (TL) are measured. Any new stab
patterns that emerge from the dynamics are noted; this
crystallization into a new pattern may depend on the ba
ground electron density~see Sec. I!, either injected initially
or generated by the columns’ dissipation.

A pattern is considered stable ifTL.100 TR , a time
sufficient for point vortex dynamics, but before dissipati
effects become significant.TR is on the order of 1 ms, bu
depends on the pattern. The columns are observed to ex
and dissipate on the order of 1 s. The electron–electron
electron–neutral collision times are on the order of 1 and
ms, respectively. Other possible dissipative mechanisms
finite temperature effects,18 ‘‘rotational pumping,’’19

asymmetry-induced transport,20 and long-rangeE3B drift
interactions.21

The radius of the individual electron columns is 0.0
cm, except where noted, to simulate the point vortex theo
under study~it was not our goal to test patterns of finite si
vortices,22 though these experiments could be easily p
formed!. The length of the columns is approximately that
the confinement region, 20 cm. The strengths of the in
vidual columns are within 10% of the targeted values,
measured by the phosphor screen diagnostic. The pat
have an outer radius of 0.50 cm, corresponding to a ra
normalized by the outer boundary radius~2.0 cm! of 0.25,
except where noted. This radius is below the radii predic
to be unstable due to the effect of the boundary3 ~nonuniform
photoemission in the outer regions of the photocathode
vented us from probing this stability criteria, but this expe
ment has been performed for the case of two vortices
Mitchell and Driscoll using electron columns23!. The injected
background electron density is more than a factor of 40
low the column density.

FIG. 1. The geometry of a simple Malmberg–Penning trap.
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We used a large magnetic field, 3 T, and a fast injec
ms, to reduce the smearing that occurs during a patte
injection. The photocathode voltage is approximately25 V
and the confinement gate voltages are220 V, close to the
cathode voltage, to confine the longest possible electron
umns and thereby reduce finite length blurring effects18

These parameters typically inject electron columns with
density of 13107 cm23 and a temperature of 1 eV, corre
sponding to a Debye length of 0.20 cm.

III. N VORTICES ARRANGED IN A RING

The problem ofN vortices arranged in a ring was solve
by Havelock. The experimental lifetimes forN52 – 10 are
presented in Fig. 2 and demonstrate excellent agreement
his theory.

~1! N,7: These patterns are stable (TL.1000 TR), as
predicted.

~2! N57: This pattern is stable (TL5300TR). Theoreti-
cally, N57 patterns are neutrally stable with no bounda
but unstable with one. We have a boundary, but the norm
ized ring radius is 0.25 and therefore the influence of
boundary should be small. Sometime after 300TR , the ring
evolves into a new stable pattern with six vortices in a ri
with one central vortex~the only stableN57 pattern in The
Catalog, see Fig. 3!. This recrystallization occurs very late i
the pattern’s evolution and could be facilitated by the ba
ground electron density generated by the columns’ diss
tion.

~3! N.7: These patterns are unstable (TL'1TR), as
predicted. TheN58 ring evolves into seven vortices in
ring with one central vortex~the only stableN58 pattern in
The Catalog!. TheN59 ring evolves into eight vortices in a
ring with one central vortex~the most stableN59 pattern in
The Catalog!. The recrystallization of theN58 and 9 pat-
terns could be facilitated by the injected background elect

FIG. 2. Lifetime vsN, for N vortices arranged in a ring. The predictedN
57 stability limit is indicated by the dashed line.

FIG. 3. TheN57 evolution. A new stable pattern emerges at 400TR and
lives for another 1000TR .
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density, since these patterns emerge very early during
pattern’s evolution~'10 TR). The N510 ring rearranges
and two vortices merge at 1.67TR ~Fig. 4!; no stable pattern
evolves.

IV. N VORTICES ARRANGED IN A RING WITH A
CENTRAL VORTEX

The problem ofN vortices arranged in a ring with a fixe
central vortex was also solved by Havelock. Physically
fixed central vortex could be simulated by a wire along
trap’s axis. In our experiments, though, the central vortex
free to move, and this case has been considered by a nu
of authors, including Morikawa and Swenson24 and
Campbell.25 Freeing the central vortex allows it to go un
stable and introduces an upper stability limit on the cen
vortex’s strength. The lower limit corresponds to the ri
vortices going unstable, as in Sec. III.

Recently, Lansky and O’Neil have analyzed the effect
a circular outer boundary on the central vortex’s stabi
limits.26 In our experiments, the ring’s small normalized r
dius affects the stability limits by less than 1%, below t
accuracy to which we can control a column’s density a
radius.

The strength of an electron column is given byG
5npr 2. Experimentally, controlling the density is difficul
We find it easier to control the radius of the central colum
thereby manipulating its strength~however, this method in-
troduces the possibility of finite vortex size issues!. As an

FIG. 5. N51011 initial states, demonstrating how we manipulate the c
tral vortex’s strength by controlling its size.

FIG. 4. TheN510 evolution. Two vortices merge at 1.67TR and no stable
pattern emerges.
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example, Fig. 5 shows initial states forN51011 vortices.g
is defined as the central vortex’s strength normalized b
ring vortex’s strength. For our experimental parameters,
find that this technique works well for 0<g<4. For g.4,
the stronger central electron column shears the ring colu
during the injection.

Figure 6 summarizes the experimental lifetimes forN
5311 to 1011, demonstrating general but not comple
agreement with the predicted stability limits.

~1! For N5311 to 511, we are able to probeg ’s upper
stability limit, but not its lower limit (g lower,0). The agree-
ment is excellent forN5311 and 411, but poor for 5

-

FIG. 6. Lifetime vs the central vortex’s strength, forN vortices arranged in
a ring with a central vortex. ForN5311 to 511, the upper stability limit
is indicated by the dashed line~the lower limit is off-scale!. ForN5711 to
1011, the lower stability limit is indicated~the upper limit is off-scale!.
Both limits are off-scale forN5611.

FIG. 7. A selection of stable patterns that emerge when probing the u
stability limit of g. Each lives for another 500TR .



er

ry
-
te
r
ll

o

la
le

re
lo

d

co
c
r
iu
te
ry

p
io
le
lly

n

-

he
ar-
ame

ues

ith

on
li-
ain
rns
pat-

ata-
util-
g

at-
the

-

or-

te

ula

A
n the

292 Phys. Fluids, Vol. 12, No. 2, February 2000 D. Durkin and J. Fajans
11. Figure 7 shows a selection of stable patterns that em
from initially unstable patterns~becausegÞ1, these patterns
are not in The Catalog!. Since these patterns emerge ve
early during the evolution~'10 TR), the evolutions and sub
sequent recrystallizations could be influenced by the injec
background electron density~thereby possibly accounting fo
the poor behavior ofN5511). The emerged patterns are a
long lived (TL'500 TR) and therefore very stable.

~2! For N5611, the theoretical stability limits are n
longer accessible with the current setup (20.25<g<6.25).
Agreement with the upper limit is poor and patterns simi
to those in Fig. 7 emerge. Again, injected background e
tron density is suspect.

~3! For N5711 to 1011, we are able to probeg ’s
lower stability limit, but not its upper (gupper>9). Here, the
agreement with theory is excellent.

V. MORE COMPLICATED PATTERNS

2-D vortex patterns are not constrained to a ring. Figu
8 and 9 show more complicated patterns from The Cata
and their lifetimes; all are stable (TL.100TR), as predicted.

Figure 9 shows a special class of patterns compose
triangular numbers of vortices,N5116(112131 . . . ).
To inject these patterns, we used smaller radii electron
umns, 0.020 cm. The distance between adjacent rings of
umns is 0.20 cm, so that theN561 pattern has an oute
radius of 0.80 cm, normalized by the outer boundary rad
to 0.40. When the outer radius is greater than approxima
0.5, we find that patterns are destabilized by the bounda

Figure 10 shows a pattern forN56 that is not in The
Catalog. This pattern emerged from a maximum entro
theory developed by Jin and Dubin to predict the evolut
of stable vortex patterns from the turbulent decay of an e
tron system.14 This research inspired Coppa to analytica
study the stability of two sets ofN vortices with strengthsg1

and g2 arranged in two rings with radiir 1 and r 2 in a

FIG. 8. The initial states and lifetimes for three more complicated vor
patterns.

FIG. 9. The initial states and lifetimes for patterns composed of triang
numbers of vortices.
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boundary.27 If g15g2 and r 150.66, then a stable patter
will have r 250.49 ~from Coppa’s formulas!, as shown in
Fig. 10~a!; experimentally, it lives for over 800 bulk rota
tions. We also experimented with a smaller version:r 1

50.25 andr 25(0.49/0.66)(0.25)50.19. The initial state in
Fig. 10~b! exhibits a curious breathing motion around t
stableN56 hexagon. The patterns oscillate between ne
triangular and near-hexagonal states in the reference fr
rotating with the pattern, as shown in Figs. 10~b!–10~e!. One
breath takes approximately 1.5 bulk rotations and contin
for over 1000 bulk rotations.

VI. SUMMARY

Experiments on the stability ofN vortices arranged in a
ring, for N52 – 10, demonstrate excellent agreement w
theory. For most cases, the stability ofN vortices arranged in
a ring with a central vortex, forN5311 to 1011, demon-
strate good agreement with the predicted stability limits
the central vortex’s strength. The stability of more comp
cated vortex patterns from The Catalog is explored, ag
with excellent agreement. Moreover, stable vortex patte
sometimes emerge from unstable patterns; when these
terns consist of equal strength vortices, they are in The C
log. These experiments demonstrate the photocathode’s
ity for testing 2-D fluid theories in a Malmberg–Pennin
trap.
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