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The authors demonstrate a flux locking technique using injected heat current to linearize the output
of a superfluid helium-4 interferometer. A rotation flux through the interferometer loop produces a
shift in the phase of the superfluid order parameter. This shift is nullified via negative feedback by
a phase shift caused by the injected heat current. The feedback signal is then a linear function of
rotation flux. © 2007 American Institute of Physics. �DOI: 10.1063/1.2772659�

Interferometers are widely used in basic and applied sci-
ences. These instruments using sound, light, or de Broglie
matter waves typically have a transfer function wherein the
output amplitude �e.g., the Josephson critical current in a dc
superconducting quantum interference device1 �SQUID�� is a
cosinusoidally varying function of some variable of interest
�magnetic flux in the case of the SQUID�. To achieve wide-
spread practical utility, it is very useful to have some method
to linearize the instrument’s response. We report here a
method by which this can be achieved for a superfluid 4He
quantum interference device �SHeQUID�, a superfluid ana-
log of a superconducting dc SQUID.

The superfluid state in 4He is described by a macro-
scopic order parameter written as �= ���ei�, where � is the
quantum phase. A SHeQUID �see Fig. 1�a�� consists of two
“weak links” �marked X� placed in a loop filled with super-
fluid 4He that is hydraulically coupled to a flexible dia-
phragm �D�. A weak link here consists of �nominally� 30 nm
diameter apertures spaced 3 �m apart in a 100�100 square
lattice on a 60 nm thick silicon nitride membrane. The su-
perfluid within these arrays oscillates at the Josephson fre-
quency ��J=2�fJ=�� /�� when a chemical potential differ-
ence �� is applied across them.2,3 The chemical potential
difference is applied by electrically pulling on the diaphragm
�D� with the electrode �E�. The diaphragm serves as the in-
put element of a sensitive displacement sensor,4 which de-
tects the oscillations. The heater �R� and sink �S� are used
to inject a heat current into the top arm, thus producing a
superfluid counterflow, which corresponds to a phase drop
���heat� between the ends of the tube.5

Depending on the temperature, the weak links oscillate
either as sin � Josephson weak links or coherent phase slip
centers.3,6 In either case, each of the weak links emits a
strong Fourier component at frequency fJ. Let the amplitudes
of these first harmonics in the two arrays be represented as
I0,1 and I0,2. The superposition of the two oscillations de-
tected by the microphone can be written as Itotal= It sin��Jt
+	�, where the interference amplitude is given by

It = I0�cos2 
 + �2 sin2 
�1/2 � I0F��
� . �1�

Here I0� I0,1+ I0,2, 
����1−��2� /2 is half the difference in
the phase drops of the two oscillators, and F��
� is a dimen-
sionless nonlinear periodic function in 
 with an asymmetry
parameter defined as ���I0,1− I0,2� / �I0,1+ I0,2�.

Single valuedness of the order parameter demands that

��� � ·dl�=2�n for integer n �where the phase integral goes
around the interferometer loop�. When no currents flow7 in
the interferometer, there are no phase gradients and

��� � ·dl�=0. This phase integral condition is maintained even
if an external influence induces flow in the sense loop as long
as flow velocities remain sufficiently low �i.e., below the
velocity to create quantum vortices so that n remains 0�. If
��ext is the shift in the phase of the macroscopic wave func-
tion created by some external influence and ��heat the phase
shift due to a heat current in the top arm, the circulation
quantization condition allows us to write ��ext+��heat
+��1−��2=0 �see Fig. 1�b��. The phase differences across
the remaining segments of the loop are made negligible �by
design�. Then, Eq. �1� becomes

It = I0F����ext

2
+

��heat

2
	 . �2�

For example, in previous work,8 the external phase shifts
were produced by the �steady� rotation field of the earth,

which creates a rotation flux �� ·A� in the SHeQUID ��� is the

angular velocity vector of the earth and A� is the area vector
of the interferometer loop�. This rotation flux induces a so-
called Sagnac phase shift9,10 given by
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FIG. 1. �Color online� �a� Experimental apparatus. The inside is filled with
superfluid 4He and the entire apparatus is immersed in a bath of liquid
helium. �b� Equivalent SQUID circuit. ��ext is the phase shift produced by
some �possibly globally acting� external influence, which the SHeQUID is
being used to measure. ��1 and ��2 are the phase differences across the
two weak links and ��heat is the phase shift due to injected heater power R.
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��Sagnac = �4�m4/h��� · A� , �3�

where m4 is the atomic mass of 4He. Using this in Eq. �2�
�with no heat current�, the SHeQUID current amplitude It

is proportional to F��2��� ·A� /
�, where 
=h /m4=9.97
�10−8 m2 s−1 is the 4He quantum of circulation. Figure 2�a�
shows the nonlinear and periodic nature of the function F� in
Eq. �2�.

This nonlinearity is problematic because the sensitivity
of the SHeQUID �slope of the curve� varies as the rotation
flux is changed �see Ref. 8 for a discussion of this “open loop
gain” for the SHeQUID as a rotation sensor�. Although this
sensitivity is very high in the regions of steepest slope �e.g.,
the circled point in the figure�, it falls off dramatically at the
extrema. Also, because of the periodicity of the amplitude,
large changes in rotation flux can be determined only by
tracing the whole pattern �temporally impractical�. To take
advantage of the maximum sensitivity of the SHeQUID, it is
necessary to bias the device at the point of the greatest slope.
Further, to develop a practical rotation sensor �i.e., gyro-
scope�, it is important to be able to linearize the device to
have an output directly proportional to rotation flux.

Following the example of the SQUID �Refs. 11 and 12�
where the magnetic field of interest is cancelled by a �nega-
tive� feedback magnetic field, one could imagine holding the
current amplitude of the SHeQUID constant by an applied

retrograde rotation of the loop to cancel the rotation of inter-
est and thereby measure the original rotation stimulus. This
is clearly an awkward mechanical solution. Rather, we seek a
more convenient phase shifting influence, which can be eas-
ily applied to the interferometer loop in order to implement
this negative feedback scheme.

Figure 1�a� displays our solution to the problem. We
show an interferometer loop in which one arm is a straight
tube �of interior length �=2.5±0.05 cm and circular cross-
sectional area �= �3.78±0.04��10−2 cm2� containing a
heater �R� at one end. The other end of the tube terminates in
a roughened copper disk heat exchanger �S� that is the domi-
nant thermal path connecting the fluid in the interferometer
with the surrounding temperature-stabilized bath. This tube
is made of Stycast 1266 �insulating� to minimize the heat

loss through the walls. When power Q̇ is applied to the
heater, the phase difference created across the tube’s ends
because of the steady superfluid counterflow set up in the
tube is given by5

��heat =
l

�

2�m4

h

�n

��sTs
Q̇ , �4�

where �, �n, and �s are the total, normal, and superfluid den-
sities, respectively, s is the entropy per unit mass, and T is
the temperature in the cell.

As before, ��ext in Fig. 1�b� is the Sagnac phase shift
due to the earth. Equation �2� combined with Eqs. �3� and �4�
for the phase shifts then becomes

It = I0F��a�� · A� + bQ̇� , �5�

where a�2�m4 /h and b��l /����m4 /h���n /��sTs� are con-
stants for a given temperature.

Any change in rotation flux can now be cancelled by
injecting heater power to keep the argument of F� constant in
Eq. �5�. The interferometer can thus be maintained at fixed
current amplitude and the flux is “locked.” Further, the
amount of power needed for this purpose provides a linear

measure of the change in rotation flux: ��� ·A� �=bQ̇ /a.
Figure 2 demonstrates the operation of the feedback.

Figure 2�a� shows the signature sinusoidal interference pat-
tern due to the reorientation of the SHeQUID loop about the
vertical with no feedback applied. This is the previously
mentioned Sagnac effect caused by the earth’s rotation. The
vertical axis is proportional to the measured amplitude of
Josephson oscillations in the SHeQUID. We vary the rotation

flux �� ·A� by changing the angle between the loop and the
earth’s spin axis.

Figure 2�b� shows the same measured amplitude as in
Fig. 2�a�, this time with power applied to the heater thereby
creating a phase change in the heater tube, which compen-
sates for the rotation flux change. Within the noise level of
the experiment, the SHeQUID current amplitude is now in-

dependent of rotation flux �i.e., a�� ·A� +bQ̇=constant�.
Figure 2�c� shows the heater power Q̇ that is injected

to maintain the current amplitude constant plotted against

rotation flux �� ·A� . Within the noise level, it is seen that

Q̇��� ·A� . The loop is now phase locked and the output is
linearized. Using the calibration obtained from Fig. 2�c�,
incident rotation flux may be measured via this negative
feedback mechanism. Similarly, using Eqs. �2� and �4�, any

FIG. 2. �a� Current amplitude �ng/s� modulation due to changes in the
earth’s rotation flux �via reorientation of loop area� in the absence of heater
power biasing. �b� Modulation compensated by injected heater current thus
making the amplitude independent of the rotation flux. Amplitude is main-
tained constant at the bias point circled in �a�. �c� Feedback heater power
�µW� needed for a given value of rotation flux to maintain the oscillation
amplitude at a constant level, as shown in �b�. This heater power serves as a
linear measure of the rotation that is used to nullify. This effectively gives us
a flux locked SHeQUID. These data are taken at T�−T
16 mK.
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unknown phase-shifting influence ��ext can be directly mea-
sured simply by monitoring the feedback heater power. In
practice, this feedback scheme works for injected heater
power values lower than that corresponding to 250 complete
cycles in Fig. 2�a� �i.e., for phase shifts up to 250�2��. For
heater power values greater than this limit �which varies with
temperature but is about a few hundred microwatts�, we ob-
serve a rapid onset of quantum turbulence, which renders the
interferometer useless for measuring external influences.
Noise spectra and drift considerations are discussed
elsewhere.13,14

In conclusion, the flux locking method described here
linearizes a SHeQUID so that this class of instrument can be
used to monitor widely varying phase shifting influences
such as rotation.
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