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Abstract. Research and development of superfluid weak links has been hindered by the absence of a source of dc chemical
potential, similar to a simple battery or voltage source for analogous superconducting devices. We describe here a method for
generating a dc chemical potential difference,∆µ, across a weak link array in superfluid4He. The presence of a∆µ forces
quantum oscillations at a Josephson frequency, selectable by the adjustment of input power to a heater. We discuss a case in
which the frequency locks onto a resonance feature where it exhibits remarkable stability, and amplitude magnification by a
factor of 40.
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Transient superfluid4He oscillations can be generated
in a array of sub-micron apertures with the application
of a pressure step,∆P [1], or a temperature step∆T
[2]. The frequency of the oscillationsfJ obeys the gen-
eralized Josephson frequency relation,fJ = ∆µ/h. Here
∆µ = m4(∆P/ρ − s∆T ) is the chemical potential across
the array,m4 is the helium-4 atomic mass,ρ is the fluid
density, ands its entropy per unit mass. Here we describe
and demonstrate a method for producing continuous os-
cillations at a constant frequency, first proposed by Pena-
nen and Chui [3]. A heater is used to maintain the con-
stant∆µ which drives the oscillations. For reasons we do
not yet fully understand, the system exhibits a high de-
gree of stability at certain discrete frequencies. We pro-
pose a simple mathematical framework to describe the
phenomenon.

Our experimental cell has been described in detail
elsewhere [2]. A small volume of superfluid4He, itself
immersed in a superfluid4He bath, is bounded on one
side by the array (4225 apertures, nominally 70 nm in
diameter, spaced on a 3µm square lattice, in a 50 nm
thick silicon nitride membrane), and on the other side by
a flexible diaphragm. Inside the small volume there is a
heater. The displacement of the diaphragm, detected us-
ing a SQUID-based transducer, indicates both the pres-
sure∆P across the array, and fluid flow through it.

If a small powerW is applied to the heater, the inner
volume warms, causing a net current to flow into it until
steady state is reached. At this point∆µ = 0 and∆P =
ρs∆T . Normal currentIn continues to flow, according to

In = −ρnβ
η

(
ρn

∆P
ρ

+ρss∆T

)
. (1)

This reduces toIn = ρnβ∆P/η when∆µ = 0. Hereρn

andρs are the normal and superfluid densities,η is the
normal fluid viscosity, andβ is a geometrical factor.
To maintain zero net current at steady state, a super
current flows in the opposite direction:Is = −In. The
steady state∆T is reached when the heater power is
balanced by thermal conduction through the walls of the
inner volume, heat carried out by normal flow, and heat
required to “warm” incoming superflow:

W =
∆T
R

+ sT

(
Is − ρs

ρn
In

)
. (2)

Here R is the thermal resistance between the helium
inside the inner volume at temperatureT + ∆T , and the
helium outside, at constant temperatureT .

If the heater power is slowly increased,∆T , ∆P, In
andIs all increase according to the above relations, and
∆µ = 0 is maintained.Is, however, cannot exceed the
superfluid critical currentIc. Instead, whenW exceeds
a critical value,∆µ becomes non-zero and Josephson
frequency oscillations, or “whistling,” begins. A new
steady state can be achieved in which the oscillations
continue,∆µ = h fJ �= 0, the mean (dc) superflowIs,dc
replacesIs in eq. 2, andIn = −Is,dc.

Such a sequence of events is plotted in fig. 1. This
data was taken atTλ − T = 1 mK. For t < 0, a con-
stant 63 nW is applied to the heater, and the measured
pressure∆P = 0.25 Pa agrees with that predicted for
when∆µ = 0: ∆P = ρsRW/

(
1+ρ2s2T Rβ/η

)
. Begin-

ning at t = 0 the heater power is ramped linearly to a
final 112 nW over 16 seconds. Initially∆P rises to main-
tain ∆µ = 0 as the heater power rises, but att � 1.5 sec,
the superfluid begins to oscillate. One might expect that
transition to the whistling state to occur whenIs reaches
Ic, at a fountain pressure∆Pc = η Ic/ρnβn. An indepen-
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FIGURE 1. Method for producing a constant chemical po-
tential difference and steady superfluid4He oscillations in a
sub-micron aperture array. (a) Power delivered to the heater.
(b) Evolution of the pressure across the array. The inset is a
0.4 sec wide section of data centered on the transition into the
oscillating state that occurs att � 1.5 sec. (c) The oscillation
frequency, shown locking into a stable frequency att � 5 sec.

dent measurement yieldedIc = 5.6×10−12 kg/sec. The
corresponding∆Pc is 2.0 Pa, almost a factor of 10 larger
than the∆P = 0.27 Pa at which the system actually began
to whistle. This suggests that the system is metastable at
fountain pressures well below∆Pc, and fluctuations can
cause it to switch into a whistling state. Indeed, a close
look at the transition att � 1.5 sec in the∆P(t) plot of
fig. 1b (see inset) reveals 23 Hz Helmholtz mode oscilla-
tions (not the same as Josephson frequency whistling) of
increasing amplitude just before∆P begins to drop and
the superfluid begins to whistle.

As shown in fig. 1c, after the whistling begins, its
frequency (and therefore∆µ) rises steadily as the heater
power continues to increase and∆P drops. Att � 5 sec,
the frequency abruptly plateaus and∆P begins rising
again. For the next 11 seconds,∆P continues to rise
roughly linearly as the heater power rises, untilt = 16
sec where the heater power reaches its final value and∆P
relaxes to a steady state value. Fromt � 5 sec tot = 16
sec, the whistle, at 6.816 kHz with a width of only 0.25
Hz, drifts (downward) only 0.7 Hz, even while the heater
power and pressure are increasing by 50%. We do not
yet understand the reason for this remarkable stability.

At t > 24 sec, the system remains in a steady state as
long as the heater power is maintained. It seems likely
that the 6.8 kHz value the whistle frequency locks onto is
associated with a resonance feature of the system, but we
have not yet determined the nature of this resonance. The
amplitude of the 6.8 kHz signal is unexpectedly large –
almost 40 times larger than would result from a current
oscillation of amplitudeIc. Fromt � 5 sec tot = 16 sec,
the amplitude of the whistle varies (increases) by only
2%.

We have observed the system lock on to other fre-
quencies as well. The frequency can be manipulated by
varying the heater power – the steady state frequency
achieved is dependent on the history of the heater power
and on how fast it is changed.

The main unknown in the steady state formalism pre-
sented above is the mean superflowIs,dc. We believe
this quantity will depend primarily on the whistle fre-
quency fJ , and possibly its phaseφ, with the spectrum
Is,dc( fJ ,φ) determined by the interaction of the super-
fluid oscillations with the resonant behavior of the overall
system, perhaps similar in nature to the Fiske or Shapiro
effects in superconductors [4], and in superfluid3He
[5]. The intersection of this spectrum with the function
fJ(Is,dc,W ) derived from the steady state formalism will
determine an allowed set of Josephson frequencies with
unstable, metastable, and stable branches which can be
traversed by manipulation of the heater powerW . If the
nature of theIs,dc( fJ,φ) spectrum can be understood, it
may be possible to design a cell to optimize stability and
signal-to-noise.

We have demonstrated a method with which we have
produced superfluid4He aperture array oscillations with
a highly stable frequency and considerable amplitude
magnification. The nature of the resonance behavior re-
mains to be explained. This technique may prove to be an
ideal method of operating a4He weak link device analo-
gous to the dc-SQUID, which would be highly sensitive
to rotation.

This work is supported in part by the NSF-DMR and
NASA.
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