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Abstract. We describe an experiment in which we induce a heat-driven superfluid flow in a
straight tube and monitor the phase difference across the tube’s ends with a superfluid 4He
quantum interference device (SHeQUID). We quantitatively verify the relation vs = (h̄/m)5φ.
We also demonstrate the linearization of a SHeQUID using the heat injection method.

Superfluid is described by a macroscopic wavefunction of the form Ψ =
√
ρse

iφ, where ρs is
the superfluid density and φ is the quantum mechanical phase. Applying a momentum operator
(p̂Ψ = −ih̄5Ψ = pΨ) with p = mvs immediately gives [1] the relation

vs =
h̄

m
5 φ, (1)

where this velocity is interpreted as that of the superfluid component in the framework of
Landau’s two-fluid model [2]. Although this relation has been used to understand many physical
phenomena such as the existence of vortices/quantized circulation etc., direct verification has
been difficult for the lack of an appropriate phase-measuring device. In an experiment reported
here, we generate a known superfluid velocity in a straight tube and measure the phase difference
across the tube’s ends with a superfluid 4He quantum interference device (SHeQUID) [3]. By so
doing, we quantitatively confirm Equation 1, verifying the direct relation between the superfluid
velocity and the phase gradient of the condensate macroscopic wavefunction.

Our experimental apparatus is shown in Figure 1a and described in more detail elsewhere [4].
The topmost tube (of length l(≈ 2.5cm) and cross-sectional area σ(≈ 3.8× 10−2cm2)) contains
a resistive heater (R) at one end and a thin roughened Cu sheet (S) at the other that serve
as a heat source and a sink respectively. When power Q̇ is applied to the heater, the normal
component flows away from the heat source with velocity vn while the superfluid component
flows towards it with velocity [1]

|vs| =
ρn

ρρsTsσ
Q̇, (2)

where ρ and ρn are the total and normal fluid densities, T is the temperature, and s is
the specific entropy (per unit mass). Equation 1 suggests that uniform vs should correspond
to a uniform phase gradient 5φheat along the top tube. We monitor the phase difference
∆φheat = l 5 φheat by configuring the top tube as part of a superfluid 4He interferometer
loop.

The output of a SHeQUID is a combined oscillation amplitude from two weak link junctions,
which exhibits interference depending on the relative phase differences ∆φ ≡ ∆φ1 − ∆φ2

that exists between them (where ∆φ1 and ∆φ2 are the phase drops across the two weak
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Figure 1. a) Experimental apparatus. Crosses indicate the superfluid weak link junctions.
Flexible diaphragm (D) and electrode (E) are used to drive the mass current oscillations. Two
pipes connected to the top arm have a width d(≈ 2.2mm). In writing ∆φheat = l 5 φheat,
l becomes uncertain by this amount d, which dominates the systematic uncertainty in this
experiment. b) Equivalent circuit.

links). When the two junctions are identical, the total oscillation amplitude can be written
[3] as It ∝ |cos(∆φ/2)|. For a closed loop drawn through two junctions and the heat
current tube (see Figure 1b for an equivalent circuit), we can write the accumulated phase
as ∆φheat+∆φ1−∆φ2 = 2πn and set n = 0 since the flow velocity is kept well below the critical
velocity to create quantum vortices. Using this relation with Equations 1 and 2, we find that
the uniform phase gradient associated with superfluid flow implies that the SHeQUID output
should modulate as

It ∝ |cos(π
m4

h
[
l

σ

ρn
ρρsTs

Q̇])|. (3)

Figure 2 shows the measured SHeQUID amplitude as a function of heat input in the top tube.
The solid line is a fit using a more general function (described elsewhere [3]) for the SHeQUID
output for two weak link junctions with unequal critical currents. The periodic variation in the
SHeQUID output as a function of Q̇ shows that there is indeed a uniform phase gradient across
the topmost tube such that 5φ ∝ vs.

The distance between two adjacent maxima seen in Figure 2a is the power that leads
to a 2π phase change across the heat current tube. Figure 2b shows these powers (Q̇2π)
measured at different temperatures. From Equation 3, we expect Q̇2π = (h/m4)β(T ), where
β(T ) ≡ (σ/l)(ρρsTs/ρn). We have computed β(T ) with published data on ρs, ρn, ρ, and s,
and the designed values of l and σ. We plot this function and multiply it by a constant to fit
the data in Figure 2b. The best multiplication factor is (9.1± 0.9)× 10−8m2/sec, which agrees
with the expected value of h/m4 = 9.97× 10−8m2/sec within the systematic uncertainty. This
result demonstrates the fundamental relation linking the macroscopic wavefunction picture and
the two-fluid description of superfluid helium.

Having demonstrated the heat current technique that injects phase variations into a
SHeQUID, we can now use it as a feedback element to nullify an external phase shift. This
linearizes the intrinsically nonlinear interference relation underlying the device and essentially
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Figure 2. a) Measured SHeQUID output as a function of Q̇. These data are taken at
Tλ − T ≈ 16mK. b) Power needed to cause the SHeQIUD output to move from one maximum
to the next.

gives a flux locked interferometer. As a proof of principle experiment, we have used the so-called
Sagnac phase shift [5] as the external phase shift here.

Rotation flux through the interferometer loop (~Ω · ~A where ~Ω is the angular velocity vector
of the earth, and ~A is the area vector of the interferometer loop) induces a phase shift given
by ∆φSagnac = (4πm4/h)~Ω · ~A. Figure 3a shows the interference pattern exhibited by the
SHeQUID when we reorient the apparatus about the vertical, thus changing the angle between
the interferometer loop and the earth’s spin axis. With both the Sagnac phase shift and the
heat current phase shift picked up by the SHeQUID, we can rewrite Equation 3 as

It ∝ |cos(a~Ω · ~A+ bQ̇)|, (4)

where a ≡ 2πm4/h and b ≡ (πm4/h)(l/σ)(ρn/ρρsTs). We can now use the heater power to
cancel any change in rotation flux so that a~Ω · ~A + bQ̇ remains constant. The interferometer
can then be maintained at any fixed output desired, and the flux is locked. This allows us to
bias the device at the point of the greatest slope and operate there without having to trace
many interference cycles arising from large changes in rotation flux. It also provides a linear
measure of the change in rotation flux since |~Ω · ~A| = bQ̇/a. Figure 3b shows the SHeQUID
output with power applied to the heater nullifying the Sagnac phase shift. Within the noise
level of the experiment, the SHeQUID is flux locked. Figure 3c shows the heater power injected
to keep a~Ω · ~A + bQ̇=constant. Clearly, Q̇ ∝ ~Ω · ~A, and the output is linearized. We find that
this feedback technique works well for injected heater power up to what corresponds to ∼250
flux quanta. As the heater power is increased further, we observe vortex crossing in the heat
current tube [7] followed by a rapid onset of quantum turbulence, making it impossible to make
reliable measurements of external phase shifting influences such as rotation.

In summary, we have directly verified the relation vs = (h̄/m)5 φ by driving the superfluid
flow in a straight tube and measuring the phase difference across the tube’s ends with a superfluid
matter wave interferometer. We have also used the heat current injection method to linearize
the output of a SHeQUID so that this class of interferometer can be widely used in basic and
applied sciences. More details on these experiments can be found in refs [4] and [6].
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Figure 3. a) SHeQUID output modulation from changes in the earth’s rotation flux.
b) Modulation compensated by injected heater current thus making the SHeQUID output
independent of the rotation flux. c) Feedback heater power needed for a given value of rotation
flux to maintain the SHeQUID output constant.
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