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New Flow Dissipation Mechanisms in Superfluid 3He
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We have studied the flow of superfluid 3He-B forced through small apertures. There are unexpectedly
large dissipative currents, which can be described by two independent processes. One process involves
the creation of quasiparticles within the aperture and their subsequent acceleration in the ambient pressure
gradient. The second process involves the dissipative precession of a texture in a geometry-induced
anisotropic order parameter. For both mechanisms we make a simple estimate of the relevant effect and
find these agree well with the data.

PACS numbers: 67.57.De, 67.57.Fg, 67.57.Hi, 74.50.+r
How can a flowing superfluid (charged or neutral) dis-
sipate kinetic energy without ordinary viscous processes?
This intriguing question has long been discussed and has
led to the idea of energy dissipation due to phase un-
winding or slippage, arising from the motion of quantized
vortices [1] or other textural singularities. Here we re-
port experimental evidence for two other sources of super-
fluid dissipation which occur when superfluid 3He is forced
through a small aperture. In particular, we suggest that
the usual phase slippage mechanisms are accompanied by
an additional new phenomenon associated with the cre-
ation of quasiparticles within the weak link and their sub-
sequent transport by a pressure gradient. Elements of
this phenomenological model are present in theories de-
scribing nonlinear currents in superconducting weak links
[2]. We find this model quantitatively describes dissipative
currents, proportional to the square root of the pressure
head, which seem to be a general feature of forced 3He
superflow.

Our experiment consists of determining the family of
characteristic mass current vs pressure (I-P) curves for a
superfluid 3He weak link [3,4] (a 65 3 65 array of nomi-
nally 100 nm diameter apertures placed in a nominally
50 nm thick membrane). Such curves are analogous to the
current-voltage (I-V ) curves for superconducting Joseph-
son weak links. To perform these measurements we use
a modified version of our flow cell described previously
[3,5]. We have developed an electromechanical feedback
technique, which permits us to drive mass current through
the weak link at constant pressure head [6] (i.e., pressure
biased). The pressure scale is determined from an in situ
calibration based on the Josephson frequency relation [3].
The mass current is determined by monitoring the motion
of a flexible diaphragm.

Figure 1 shows the family of I-P curves for various
temperatures. There are two families of curves because,
as predicted by theory [8] and seen experimentally [4],
the weak link array has the property of being able to exist
in two different configurations, each having a distinct
current-phase relation I�f�. We refer to the two con-
figurations as the H and L states, which have high and
low critical currents, respectively [IH
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�1 2 T�Tc�1.5160.04 ng�s, IL
c �T � � �57 6 4� �1 2 T�

Tc�1.8760.06 ng�s].
Consideration of a voltage biased superconducting weak

link would suggest that one might simply expect the su-
perfluid 3He I-P curves to be linear and extrapolating to
P � 0, with a slope determined by the normal fluid con-
ductance. However, we have directly measured the nor-
mal fluid currents just above Tc and find they are 3 orders
of magnitude smaller than the currents shown in Fig. 1.
In addition the measured curves below Tc are not linear,
showing obvious curvature, pronounced at low pressures.
Furthermore, as Fig. 1 shows, the currents increase as
the temperature decreases. Thus, it seems that these cur-
rents are associated with the increasing superfluid order
parameter.

We find that for both H and L states, the curves are well
fit to the functional form

I � I1 1 I2 � G1P 1 G2

p
P , (1)

where G1 and G2 are fit parameters. The solid lines drawn
through the data in Fig. 1 demonstrate the quality of the fit
(see, in particular, the L-state inset), which is good for all
the curves. From the form of (1), G1 and G2 can be con-
sidered as linear and nonlinear conductances, respectively.
These conductances effectively form two parallel shunts
across the ideal weak link. The shunts generate two types
of dc currents, I1 and I2, which we suggest arise from two
distinctly different mechanisms. As we show below, the
linear current I1 can be understood in terms of orbital dis-
sipation due to a precessing texture.

We focus first on a phenomenological model, depicted
in Fig. 2, which explains the origin of the nonlinear cur-
rent, I2, and quantitatively predicts the magnitude of G2.
The thread of the argument has several pieces: (i) Previous
experiments have shown that when a pressure head exists
across the aperture array there is an associated mass cur-
rent oscillating at the Josephson frequency [3]. (ii) For a
BCS-type superfluid, it is well known that rs decreases
with superfluid current [9–11]. Therefore the Joseph-
son current oscillations will give rise to a decremental
oscillation of rs. (iii) The decrease in rs is associated
with the creation of quasiparticles within the aperture [12].
© 2000 The American Physical Society
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FIG. 1. The measured dc current is plotted as a function of the pressure across the weak link for both H and L states and
critical currents below 25 ng�s. The gaps in the data are where the largest of the dc current enhancements (Fiske effect distortions
[7]) have been removed for clarity of fit (some small distortions are still visible at low temperatures). For critical currents above
�25 ng�s, the I-P distortions become broad and are continuous throughout the accessible pressure range making a meaningful fit
to (1) problematic. The solid line (for T�Tc � 0.697 in the H state) is an example of a fit to (1). The inset (for T�Tc � 0.695
in the L state) shows the

p
P character of the quasiparticle current, I2 (notice the small size of I2 for the L state so that the I-P

curves appear purely linear at first glance). To obtain this curve, a fit of the I-P curve was made to (1) producing G1 and G2. Then
the quasiparticle current is given by I 2 G1P and the solid line is given by I2 � G2

p
P.
(iv) Since, at mK temperatures, the quasiparticle mean free
path is very large compared to the dimensions of the aper-
ture, they will be ballistically swept away from the aper-
tures by the local pressure gradient [13]. The resultant
current is somewhat analogous to that in a photodiode
wherein photons create electrons in the junction which are
steadily removed by the electric field. (v) The average
drift velocity of the quasiparticles, �nn� �

p
2P�r, is de-

rived from energy considerations. This is the origin of
the

p
P dependence. The associated dissipative quasipar-

ticle current density is J2 � �drn� �nn�, where �drn� is
the time-averaged density of the quasiparticles created dur-
ing a Josephson period. For N apertures with individual
cross-sectional area s, the total current is then proportional
to

p
P with proportionality constant given by

G2 � �drn�Ns

s
2
r

. (2)

Since �drn� depends on the time variation of the su-
percurrent, the detailed shape of the current-phase relation
I�f� produces different values of G2 for the H and L states
[14]. Using existing predictions for the suppression of the

FIG. 2. Visualizing the creation of a quasiparticle current.
(a) Josephson current oscillations in time. (b) The dependence
of the superfluid density rs as a function of the current
density Js. (c) The resultant decremental oscillations of rs
and the associated incremental oscillations in rn. (d) Ballistic
quasiparticles being swept away from an aperture by the local
pressure gradient.
superfluid density with current density [9,10,15] and our
experimental determination [4] of I�f�, we can generate
[15] the values for �drn� and from (2) predict G2 as a func-
tion of temperature. The solid line in Fig. 3 shows our pre-
dictions for G2 based on a weak coupling BCS treatment
[10], valid for all temperatures. In Fig. 3 we also plot the
measured values of G2 for both H and L states (notice the
large difference between the values for G2 in each state).

These predicted curves are in remarkably good agree-
ment with the data. In (2) we have adjusted the aperture
area s to get the best agreement with both sets of data (H
and L). This gives a single value s � 1.4 3 10214 m2.
Using effusion data we independently determined the aper-
ture area to be s � 1.36 3 10214 m2. Although the good
quantitative agreement between our prediction and the ex-
perimental data is probably fortuitous, since we do not
know the precise details of the superfluid behavior in the
coherence length sized apertures, it does provide strong
support for the ideas involved in deriving (2).

Our inspection of the published literature describing
driven flow experiments shows

p
P features in the I-P

relation even when the dimensions of the orifices are large
compared to the coherence length j. The I-P curves ob-
tained for long narrow pores [16] show a current roughly
proportional to

p
P beyond a critical velocity. If the criti-

cal velocity for flow is determined by vortex line creation
within the pore, subsequent pressure-driven flow will be
associated with a saw-tooth oscillation of the superfluid
velocity resulting from the periodic passage of 2p vor-
tices across the pore. A dc current given by (2) will be
produced dependent on the amplitude of the velocity os-
cillation. Using a Landau-Ginzburg approximation [9] we
have predicted these currents for B-phase superfluid 3He at
0 bar and we find they agree with experiment [16] within
a factor of 2. We have also done a similar calculation for
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FIG. 3. The values for G2 are plotted for both the H state (up triangles) and L state (down triangles) as a function of �1 2 T�Tc�.
The dashed line shows our predictions for G2 using (2) based on a Landau-Ginzburg expansion of the free energy [9]. The solid
line shows our predictions for G2 using (2) based on a weak coupling BCS treatment [10], valid for all temperatures less than Tc.
micron size holes in a thin window and have found con-
sistent agreement with experiment [17].

We note that nonlinear I-V features, which increase at
lower temperature, have been observed in superconducting
weak links (microbridges) [18,19]. Some of these features
have been explained using dynamic models with assump-
tions somewhat similar to ours [12,20,21]. Microscopic
theories based on Josephson oscillations of the energy gap
have also been used to quantitatively describe nonlinear
features in I-V curves [22].

We now turn to the first term in (1). The existence
of the linear conductance term, G1, can be understood
based on preexisting models as follows. Although the
bulk fluid surrounding the weak link is 3He-B, within the
confined dimensions of a coherence length sized aperture
it is known from both theory [23] and experiments [24]
that the order parameter of the B phase must distort to that
of an anisotropic superfluid similar [25,26] to 3He-A.

An anisotropic superfluid is characterized by a unit vec-
tor field or �̂ texture, where �̂ points in the direction of the
Cooper-pair angular momentum. When a chemical poten-
tial difference exists between two points in the A phase,
if the superfluid is not accelerating, �̂ will exhibit preces-
sional motion at the Josephson frequency [27–29]. Thus
the entire texture within the aperture may be thought to pre-
cess at the Josephson frequency [30]. Because of the finite
relaxation time of quasiparticles, motion of the texture is
an inherently dissipative process with the orbital viscosity
m� as the relevant dissipative coefficient [31]. The power

dissipated per unit volume is given [32] by m�� �̂
��2.

We may estimate the dc current associated with or-
bital precession by equating the Ohmic power dissipation
(current 3 chemical potential difference) to the time aver-
aged energy lost due to the precessing �̂ vector [33]:

IP
r

�

ø
m�

Z
� �̂
��2 d3r

¿
� bm��vJ�2

Z
d3r

� bm�

µ
2m3P
rh̄

∂2

Veff . (3)
6064
Here the factor b, which is of order unity, represents an

average over the spatial orientations of � �̂
��2 and Veff is the

effective volume of the anisotropic phase region surround-
ing one aperture. Using the definition I1 � G1P and (3),
the conductance of N apertures is given by

G1 � bNVeff
m�

r

µ
2m3

h̄

∂2

. (4)

Notice that, in contrast to G2, this expression is inde-
pendent of the form of the current-phase relation of the
weak link array and the temperature dependence comes
from the orbital viscosity coefficient. (The effective size
of the A-phase region should not vary strongly with tem-
perature since the confining geometry alone stabilizes the
state.) For small dimension passages one finds a similar
expression [30] for G1 when starting with the superfluid
equation of motion.

Using an expression [31,34] for m��T � (which is valid
only near Tc) and taking b � 1, we can compare the linear
conductance given by (4) (near Tc) with G1 determined
by the fit of (1) to the data in Fig. 1. We can esti-
mate Veff in (4) to be given by the average aperture area
(1.36 3 10214 m2) times the sum of the membrane thick-
ness (50 nm) plus a zero temperature coherence length
(65 nm). This yields a volume of 1.6 3 10221 m3. Fig-
ure 4 shows good agreement between (4) and the data for
both H and L states, in the regime where m��T � is known,
if Veff � 1.4 3 10221 m3, rather close to our estimate.
This agreement strongly supports the idea that orbital dissi-
pation from precessing textures determines the linear con-
ductance. At lower temperatures our measured values of
G1 provide the first direct measure of m��T � in the regime
where a theoretical expression does not yet exist.

In summary, we have measured the current-pressure
characteristic for superfluid 3He forced through small aper-
tures. We find that there are dissipative currents much
larger than that due to the normal fluid background. We
have quantitatively accounted for two dissipative shunt
currents varying as

p
P and P. The

p
P term, which is



VOLUME 84, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 26 JUNE 2000
FIG. 4. The magnitude of G1 plotted as a function of �1 2
T�Tc� for both the H state (up triangles) and the L state (down
triangles). The dashed line was generated from (4) using the
theoretical expression [31,34] for m��T� (valid near Tc), tak-
ing b � 1, and the fit value Veff � 1.4 3 10221 m3. The data
agree very well with our prediction for both H and L states for
temperatures near Tc. At lower temperatures our measured val-
ues of G1 provide the first direct measure of m��T � in a regime
where a theoretical expression does not exist.

explained by a new theory involving flow induced creation
of quasiparticles has led us to an explanation of previ-
ously unexplained experimental results on the forced flow
of 3He through tubes and large apertures. The linear term
is consistent with orbital precession in a chemical potential
gradient.

It is a pleasure to acknowledge useful discussions
with G. Volovik, N. Kopnin, T. Ho, D-H. Lee, A. Fetter,
R. L. Kautz, and J. Hook. S. Pereversev, Yu. Mukharsky,
J. Steinhauer, A. Loshak, and S. Backhaus contributed to
the early stages of this work. This research was supported
in part by grants from NSF, NASA, ONR, and NEDO.

*Permanent address: Physics Department, University of
Trento, I-38050 Povo, Trento, Italy.

[1] P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).
[2] See, for example, Refs. [12,20,21].
[3] S. V. Pereverzev et al., Nature (London) 388, 449 (1997).
[4] A. Marchenkov et al., Phys. Rev. Lett. 83, 3860 (1999).
[5] S. Backhaus et al., Science 278, 1435 (1997).
[6] S. Backhaus and R. Packard, in Proceedings of the 21st

International Conference on Low Temperature Physics
[Czech. J. Phys. 46, 2743 (1996)].

[7] R. W. Simmonds et al., Phys. Rev. Lett. 81, 1247 (1998).
[8] J. K. Viljas and E. V. Thuneberg, Phys. Rev. Lett. 83, 3868

(1999).
[9] A. L. Fetter, in Quantum Statistics and the Many Body

Problem, edited by S. B. Trickey, W. P. Kirk, and J. W.
Duffy (Plenum Press, New York, 1975), p. 127.

[10] D. Vollhardt, K. Maki, and N. Schopohl, J. Low Temp.
Phys. 39, 79 (1980).

[11] H. Kleinert, J. Low Temp. Phys. 39, 451 (1980).
[12] B. S. Deaver, Jr., R. D. Sandell, and D. A. Vincent, Phys.
Lett. 46A, 411 (1974).

[13] P. G. de Gennes, Superconductivity of Metals and Alloys
(Addison-Wesley, Redwood City, CA, 1989).

[14] The time average of the quasiparticle density is
�drn� � rs�0, T � 2 �1�t�

Rt

0 rs	J�t�, T 
 dt, where J�t� �
I	f�t�
�Ns. The phase has a time dependence given by
the ac Josephson relation, f�t� � �2m3P�h̄r�t � vJt.
This allows us to perform the time average by aver-
aging over the quantum phase f, �drn� � rs�0, T� 2

�1�2p�
R2p

0 rs	I�f�,T 
 df. Using our measurements of
I�f� at a number of temperatures we numerically calculate
�drn�.

[15] To calculate �drn� it is necessary to have the relation be-
tween superfluid mass density and current density [i.e.,
rs�Js�]. In the Landau-Ginzburg limit [9] we could derive
an analytic form of this function. This result is valid only
near Tc. To obtain rs�Js, T� for all temperatures we took
theoretical curves [10] for rs�ns� and numerically gener-
ated curves for rs�Js� for all the predicted temperatures.
We can use predictions for the equilibrium state because
the Josephson period is much greater than the quasiparticle
collision time.

[16] M. T. Manninen and J. P. Pekola, J. Low Temp. Phys. 52,
497 (1983).

[17] J. Steinhauer et al., in Proceedings of the 20th International
Conference on Low Temperature Physics (North-Holland,
Eugene, OR, 1994), Vols. 194–196, p. 767.

[18] C. H. Arrington and B. S. Deaver, Jr., Appl. Phys. Lett. 26,
204 (1975).

[19] M. Octavio, W. J. Skocpol, and M. Tinkam, Phys. Rev. B
17, 159 (1978).

[20] B. S. Deaver, Jr., R. Rifkin, and R. D. Sandell, J. Low Temp.
Phys. 25, 409 (1976).

[21] B. S. Deaver, Jr., B. G. Boone, and R. Rifkin, Phys. Lett.
57A, 186 (1976).

[22] A. Schmid, G. Schön, and M. Tinkham, Phys. Rev. B 21,
5076 (1980).

[23] U. Ambegaokar, P. G. de Gennes, and D. Rainer, Phys.
Rev. A 9, 2676 (1974).

[24] M. R. Freeman et al., Phys. Rev. Lett. 60, 596 (1988).
[25] Y.-H. Li and T. L. Ho, Phys. Rev. B 38, 2362 (1988).
[26] A. L. Fetter and S. Ullah, J. Low Temp. Phys. 70, 515

(1988).
[27] H. E. Hall and J. R. Hook, J. Phys. C 10, L91 (1977).
[28] T. L. Ho, Phys. Rev. Lett. 41, 1473 (1978).
[29] G. E. Volovik, J. Exp. Theor. Phys. Lett. 27, 573 (1978).
[30] H. E. Hall and J. R. Hook, Hydrodynamics of Superfluid

3He (North-Holland, Amsterdam, 1986).
[31] M. C. Cross and P. W. Anderson, in Proceedings of the 14th

International Conference on Low Temperature Physics,
Ontaniemi, Finland, 1975, edited by M. Krusius and
M. Vuorio (North-Holland, Amsterdam, Oxford, 1975),
Vol. 1, p. 29.

[32] M. C. Cross, in Quantum Fluids and Solids, Sanibel Island,
FL, 1983, edited by E. Dwight Adams and G. G. Ihas
(American Institute of Physics, New York, 1983), Vol. 103,
p. 325.

[33] A. L. Fetter, J. Low Temp. Phys. 70, 499 (1988).
[34] C. J. Pethick and H. Smith, Phys. Rev. Lett. 37, 226 (1976).
6065


