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Observation of the Josephson plasma mode for a superfluid3He weak link

A. Marchenkov, R. W. Simmonds, J. C. Davis, and R. E. Packard
Department of Physics, University of California, Berkeley, California 94720

~Received 10 September 1999!

The quantum phase difference across a superfluid Josephson-like weak link may exhibit periodic motion
describable by a nonlinear equation identical to that of a rigid pendulum. We have directly observed this mode
and find that the phase oscillation frequency decreases toward zero as the phase amplitude increases towardp.
We also find that the low amplitude frequency is a direct measure of the weak link’s critical current in
quantitative agreement with theory.
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One of the first published analyses of dynamical effe
associated with a superfluid3He Josephson-like weak link
predicted1 unusual nonlinear periodic motion of a couple
flexible membrane which is used to drive and detect m
current through the link. As we show below, a simple theo
implies that this system will behave as a rigid pendulum w
the quantum phase differencef playing the role of the pen
dulum’s displacement angle. For instance, the freque
should depend on the oscillation amplitudefmax approaching
zero whenfmax→p, while at low oscillation amplitudes the
frequency of free-ringing motion is proportional toAI c,
whereI c is the weak link’s critical current. In this paper w
report the first direct observations of these nonlinear dyna
cal effects and the predictedI c dependence of the frequenc
The latter result demonstrates that the low amplitude
quency of the free oscillations is a convenient measure of
critical current of the weak link. This is of interest to th
operation of a superfluid analog to a dc SQUID~supercon-
ducting quantum interference device! using two weak links.2

Our weak link is a square array of 4 225 apertures of 1
nm diameter, etched in a 50 nm thick SiN membrane. Si
each aperture’s diameter is on the order of the temperat
dependent coherence length3 j, they are expected to act a
weak links.4,5 Our experiments have shown6 that the entire
aperture array behaves coherently as a single weak
analogous to a superconducting microbridge. The array
hibits a sinelike current phase relation7,8 especially for tem-
peraturesT.0.75Tc .

The basic apparatus is shown in Fig. 1 and is similar
that used in our previous studies of the aperture array.6,7,8,9,10

The apparatus includes a cylindrical inner cell bounded
the top by a flexible membraneM1 with stiffness constantk1
~force/displacement! and on the bottom by a stiffer mem
braneM2 with stiffness constantk2 . The areasA of both
membranes are the same. The weak link array is mou
near the center ofM2 . The metallized plastic membraneM1
is used both to induce the flow of the fluid through the a
erture array, and to measure the amount of fluid motion.
fluid is pumped through the array by applying a voltage
the electrode, located next toM1 ; a superconducting quan
tum interference device~SQUID! based position transducer11

is used to measure the average membrane displacement
the equilibrium position and thus determine the flow.

In what follows we first ignore damping. The system
governing equations include the Josephson-like cur
phase relation:
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I 5I c sinf, ~1!

the Josephson-Anderson phase evolution equation:

df

dt
52

2m3P

\r
, ~2!

the force balance equation for the membranes:

P5
k1x1

A
5

k2x2

A
, ~3!

and the mass conservation equation:

I ~ t !5br ẋ1~ t !A. ~4!

In the equations above,f is the quantum phase differenc
across the weak link,r is the liquid density, 2m3 is the mass
of a 3He Cooper pair,P is the pressure difference across t
weak link,x1 andx2 are the average displacements from t

FIG. 1. A schematic description of the experimental cell. T
weak link element is shown as an3 in the lower membraneM2 . A
mass current flowing into the cell through the weak link forces
membranes to move apart as shown. Metallized plastic memb
M1 is used both to induce the flow of the fluid through the apert
array, and to measure the amount of fluid motion. The fluid
pumped through the array by applying a voltage to the electro
located next toM1 . A SQUID based position sensor is used
measure the membrane displacement and thus determine the
4196 ©2000 The American Physical Society
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FIG. 2. The position of membraneM1 following the application of an impulse. During the first several oscillation cycles the syste
in the Josephson oscillation regime and the average position~and hence average pressure difference across the weak link! is nonzero. At
t;1.05 s the system becomes trapped in the bounded pendulum state. When the oscillation amplitude is large, the anharmonic m
^x1&50 is characteristic of the rigid pendulum. The frequency can be seen to be increasing as the amplitude decays. This particula
was observed atT/Tc50.85, where the decay time is rather long andI 5I c sinf.
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equilibrium positions of the top and the bottom membran
respectively, andb[11k1 /k2 .

Differentiating Eq.~2! and combining terms yields

f̈52vp
2 sinf, ~5a!

which implies that the equation governing the quant
phase differencef is identical to the equation of arigid
pendulum. The small amplitude oscillation frequency
given by12

vp
25

2m3k1

b\r2A2 I c . ~5b!

We have written Eq.~5b! in terms of the parameters o
membraneM1 since that is the membrane that we moni
with the SQUID displacement transducer. Equation~5b! dis-
plays the important relationship between critical current a
frequency of the low amplitude pendulumlike oscillations:
vp}AI c.

An impulsive force delivered to a rigid pendulum caus
qualitatively different motion depending on the amplitude
the impulse.1,13 ~i! A small impulse excites simple harmon
motion at frequencyvp . ~ii ! A larger impulse can excite
anharmonic periodic motion. The amplitude dependent
quency decreases toward zero at a critical impulse that
responds to the limiting oscillation amplitudefmax5p. For
this special situation the restoring force approaches z
when the rigid pendulum moves toward the inverted po
tion. ~iii ! A still greater impulse causes the pendulum to
tate continuously in complete circles with circular frequen
proportional to the impulse. Following a very large impuls
it is this latter type of motion which produces the previous
reported6 mass-current oscillations at the Josephson
quency ~i.e., ‘‘Josephson oscillations’’!. By contrast, the
small amplitude harmonic motion is analogous to the
called plasma oscillation14,15 that occurs due to the self
capacitance and intrinsic inductance of a superconducting
sephson weak link.
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Since the membrane positionx1 is proportional toḟ @Eqs.
~2! and ~3!#, these three qualitative features should be
rectly reflected inx1(t). In the present experiment we focu
on smaller applied impulses than that required to send
system into the high-frequency Josephson oscillation regi
We apply an impulse to the system by the application o
step voltage between the metallized membraneM1 and the
adjacent rigid electrode. The electrostatic attraction betw
the two electrodes creates a pressure step which excite
phase oscillation. Figure 2 shows a typical transient respo
of our experimental cell to an impulse. Here we have ma
the impulse sufficiently large so that the system has b
pushed initially into the unbounded Josephson oscillation
gime; i.e., the pendulum is rotating through angles grea
than 2p and the average displacement,^x1&}^P&Þ0. As the
energy dissipates, the system reaches a point~near t
'1.05 s!, where thef oscillation amplitude is just belowp
and the motion becomes bounded as the pendulum osc
tions commence, witĥx1&50. For the first few cycles, the
phase oscillation amplitude is large and the frequency16 is
small but, after a few cycles, as the amplitude decreases
frequency increases, reaching an almost amplitude inde
dent limit.

Since it is the equation forf that represents pendulum
motion, andx1}ḟ, the expected characteristic slowing
the ‘‘pendulum’’ nearf5p translates into a decrease in th
slope of x1(t) near ^x1&50. This slope change is clearl
visible in Fig. 2 in the first few cycles after the system fa
into the pendulum mode. From large-amplitude phase os
lations such as shown in Fig. 2, we have previously de
mined the current-phase relationI (f) of the array weak
link.7,8 In this paper, we analyze the dynamics of the tra
sient response of the cell containing this weak link.

Figure 3 shows the pendulum frequency as a function
phase oscillation amplitude. The data shown are produce
averaging approximately 50 ring down events at the sa
temperature. The expected decrease in frequency with
creasing amplitude is clear. The smooth curve superimpo
on the data is the analytic prediction13 for a rigid pendulum
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without damping. By combining Eqs.~2! and~3!, it is appar-
ent thatf(t) can be found by integratingx1(t). There is a
small error inf due to neglecting damping. For more exa
predictions we need to augment Eqs.~1!–~5! by including an
appropriate damping term. Using numerical methods we
that the damping is sufficiently small that the simple int
pretation thatx1}ḟ is negligibly changed. That is why th
predicted amplitude dependent frequency for the undam
pendulum agrees so well with the data, as seen in Fig. 3

Equation~5b! predicts that the low amplitude oscillatio
frequency,vp

2}I c . In a previous paper7 we have described
how we determine the current-phase relation@by integration
and differentiation ofx1(t)# and thereby findI c . Using that
method in this experiment we determineI c so that we can
test Eq.~5b!. The correlation betweenvp andI c is shown in
Fig. 4. We see clearly the predicted proportionality betwe
vp

2 andI c . In this figure we also plot Eq.~5b!, which has no
adjustable parameters, and find it agrees very well with the
data. The data shown are for the temperature regime w
I}sinf, i.e.,T>0.75Tc . We have shown in previous work8

that as the temperature decreases, the current-phase re
eventually becomes distorted from a simple sine functi
Thus, whenT,0.75Tc , as might be expected we find E
~5b! is no longer quantitatively correct.17

Due to the excellent quantitative agreement between
~5b! and the data in Fig. 4, it appears that a direct meas
ment of the low amplitude oscillation frequency is a conv
nient method for determiningI c in the Josephson regime. I
the future it may be possible to make an analog of a
SQUID by placing aperture arrays in opposite arms of a

FIG. 3. A plot of the oscillator frequency~Ref. 16! as a function
of phase angle. An ideal rigid pendulum~without damping! would
follow the smooth curve drawn as a solid line~Ref. 13!. The data
are the average of approximately 50 transient ring downs.
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perfluid quantum interferometer. Such a system should h
an overall current-phase relation that is sinelike, with t
maximum current being modulated by rotation flux throu
the arms of the device. Since the weak links described h
are in the weakly damped regime, the traditional method
reading out a dc SQUID~by applying a current larger thanI c

and detecting the chemical potential difference! may not be
practical. However, from the results of the present exp
ment it would seem that the pendulum frequency of a sup
fluid dc SQUID would also be modulated by the rotatio
flux2 and thus provide a convenient readout technique for
SQUID.

In conclusion, we have shown that a superfluid oscilla
containing a Josephson-like weak link as the inertial elem
displays periodic motion similar to a weakly damped rig
pendulum. This is directly analogous to the Joseph
plasma mode in superconducting weak links. The freque
is amplitude dependent in accord with simple theory. F
thermore, the quantitative connection betweenvp andI c per-
mits a simple measure of the weak link critical current.

We wish to thank S. Pereversev who assembled the
perimental cell, A. Loshak who made the aperture array
Backhaus and K. Shokhirev who performed analysis in
earlier version of this experiment, and Professor S. Vit
who has contributed many helpful suggestions. This resea
is sponsored by the NSF, NASA, NEDO, and the ONR.

FIG. 4. A plot of the dependence of the low amplitude~pendu-
lum! frequency on the critical current.I c was determined by mea
suring the complete current phase relation in the temperature
gime above 0.75Tc , whereI (f) is sinelike. The straight line drawn
is a plot of Eq.~5b! which has no adjustable parameters. At low
temperatures, whenI (f) is no longer a simple sine function, th
frequencies drop below the line. Different symbols correspond
different cooldowns belowTc .
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