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We show through numerical simulations that absolute quantum mechanical phase differences could be

observed using an asymmetric superfluid quantum interference grating. By balancing the dynamic

range and the degree of change required per period in an interference pattern, a device could be

optimized and used to probe heretofore inaccessible quantum subtleties. We make connections to

experimental results and discuss possible applications for such systems.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Superfluid matter-wave interferometers [1,2] have revealed
some fascinating physical phenomena that are accompanied by
quantum mechanical phase shifts. For example, phase shifts due
to absolute rotation (the Sagnac effect [3,4]) revealed the
connection of matter waves to a nonrotating inertial frame, and
the phase gradient associated with superfluid flow [5] demon-
strably linked the macroscopic wavefunction concept with the
two-fluid description of the Bose–Einstein condensate [6]. In
addition, there are predicted phase shifts arising from novel
interactions such as an Aharonov–Bohm phase shift in neutral
matter [7], which could suggest a more general interpretation of
Berry’s phase phenomena.

Superfluid interferometers provide us with a novel method to
probe aspects of fundamental physics by registering changes in
phase difference in response to an external influence. However, a
measurement of ‘‘absolute’’ phase differences has always
remained elusive. A double-path superfluid interferometer
(with two weak links configured as in a conventional super-
conducting quantum interference device (dc-SQUID [8,9])) cannot
determine the initial phase difference offset that may be present
when the device is first viewed. Such ‘‘phase biases’’ may be due
to external fields or trapped vortices and persistent current within
the superfluid. This initial offset, Df0, cannot be determined for it
is physically indistinguishable from Df072pn with an inter-
ference pattern that is 2p periodic in Df. Having a means to
measure absolute phase differences (i.e. without the modulo 2pn)
between two locations would be important in understanding the
ll rights reserved.
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nature of quantum phase and the quantum mechanics that
governs it. Here we show that this situation can be remedied and
absolute phase differences could be directly observed with an
asymmetric superfluid quantum interference grating. We report
the results of our numerical simulation and make a connection to
the first superfluid interference grating reported in Ref. [10].
2. Double-path superfluid interferometry

The superfluid state of 4He is described by a macroscopic order
parameter of the form c¼ jcjeif, where f is a quantum
mechanical phase [6]. A superfluid quantum interference device
consists of two ‘‘weak links’’ placed in a loop of superfluid 4He
analogous to a dc-SQUID. A weak link in this case is an array of
nanoscale apertures whose dimension is matched to the
temperature-dependent healing length (coherence length) of
superfluid 4He near the superfluid transition temperature Tl.
A typical weak link is a 100�100 array of nominally � 70 nm
apertures, constructed by e-beam lithography in a � 60 nm thick
silicon nitride membrane. These dimensions are selected to match
the superfluid healing length at Tl�T � 5 mK. An array of
apertures remains phase coherent and is used to increase the
total mass flow to a detectable level. One example of experi-
mental apparatus used as an interferometer is schematically
represented in Fig. 1. See Refs. [1,2,5] for other configurations
with various complexities. Nanofabrication processes for aperture
arrays are described in detail in Ref. [11].

Consider a tube filled with superfluid helium with a uniform
phase gradient (eg. due to flowing superfluid) along its axis
(depicted in Fig. 2a). To observe the phase drop due to this
gradient and investigate the nature of external phase shifting
influence, one can make use of a superfluid quantum interference
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Fig. 1. Typical experimental apparatus. Crosses indicate positions of weak links.

The inside is filled with superfluid 4He and the entire apparatus is immersed in a

temperature-regulated bath of liquid helium. A flexible diaphragm (D) and fixed

electrode (E) are used to apply DC pressure difference (and hence DC chemical

potential difference) across the weak links. The diaphragm also forms the input

element of a sensitive microphone based on superconducting electronics that are

not shown.

Fig. 2. (a) A tube filled with superfluid helium. A uniform phase gradient (due to

some external influence such as flow) exists along the axis. (b) The tube in (a) is

configured as part of a double-path interferometer to measure Df. (c) Simulated

interference pattern for identical weak link arrays.
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device. Fig. 2b shows how the tube in Fig. 2a can be included as
part of a double-path interferometer loop to monitor the phase
difference Df. Crosses indicate superfluid weak links, and Df1

and Df2 represent phase drops across the junctions. These phase
differences Df1 and Df2 evolve in response to a chemical
potential difference Dm applied across the junctions [6]. For
constant Dm, phase difference across a weak link evolves as
Df1 ¼ ðDm=‘Þt.

Well below Tl, superfluid within the aperture arrays is
characterized by a linear current-phase relation with discrete 2p
phase slips. Closer to Tl, it follows a sinelike dc-Josephson current
phase relation [12]. In both regimes, when a constant DC chemical
potential difference Dm is applied across the aperture arrays, fluid
within each array exhibits AC mass current oscillation [13–15] at
a Josephson frequency Dm=h. In experiments, we place a highly
sensitive displacement sensor [16] (not shown in Fig. 1) in the
vicinity of weak links to monitor the combined Josephson mass
current oscillation from multiple junctions.

For a double-path configuration depicted in Fig. 2b, the total
mass current oscillation (from two weak link arrays) is

I0 sinDf1þ I0 sinDf2, ð1Þ

assuming that the two junctions have the same oscillation
amplitude I0. We now impose a phase integral condition along a
closed loop of superfluid: DfþDf1�Df2 ¼ 0. Using this relation,
the total oscillation amplitude as a function of Df can be written
as [2]

2I0 cos
Df
2

�
�
�
�

�
�
�
�
: ð2Þ

For simulation purposes, we simply rewrite Eq. (1) as
I0sinð2pfJtÞþ I0sinð2pfJtþDfÞ. The expected amplitude of this
oscillation as a function of Df is plotted in Fig. 2c. The pattern
has been numerically generated by adding two sine waves with
the same frequency with a phase lag Df, taking a power spectrum
of the combined signal, and plotting the square root of the power
under the Josephson peak (in frequency space) as a function of
Df. The amplitude has been normalized. The modulation has the
form described by Eq. (2). Note the simple cyclic nature of the
interference pattern. Although this periodicity is very useful in
giving the interferometer a wide dynamic range, as described
earlier it gives no information about absolute phase differences.
The double-path quantum interference patterns observed in
superfluid experiments can be seen in Refs. [1,2,5]. In practice,
two weak links are not exactly identical due to the limitations of
nanofabrication technology. This results in different oscillation
amplitudes for two arrays, eliminating complete destructive
interference.
3. Symmetric grating superfluid interferometry

Since superfluid interferometry relies on measuring the change
in mass current oscillation amplitude as a function of Df, the
sensitivity of the device is proportional to the slope of
the interference pattern at its steepest point. The sensitivity can
be increased by placing more than two arrays in parallel thus
narrowing the peaks in the interference pattern. In the field of
superconducting devices, Feynman suggested [17] the importance



Fig. 3. (a) Symmetric three-slit grating structure and (b) simulated interference

pattern. Fig. 4. (a) Asymmetric three-slit grating structure and (b) simulated interference

pattern.
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of such a device as a magnetometer (referred to as a super-
conducting quantum interference grating (SQUIG)), and it was
first demonstrated experimentally with six point contacts in 1966
[18]. A similar configuration can be employed for a superfluid
interferometer. Fig. 3a shows three weak links spaced equally in a
multi-slit interference grating configuration. The expected
interference pattern for this particular structure (simulated as
described above for three sine waves) is shown in Fig. 3b. The
similarity to a three-slit optical interference pattern [19] can be
seen. The sensitivity of the device is increased due to the
narrowing of the peaks. If N identical weak links (each with
current amplitude I0) are used in the grating, the total oscillation
amplitude should modulate as [20,21]

I0
sinðNDf=2Þ

sinðDf=2Þ
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Note that the above relation reduces to Eq. (2) when N¼2.
Numerical analysis of Eq. (3) shows [21] that the slope at the
steepest part of the interference pattern jdI=dDfjmax from a
grating structure increases as pN2 where N42.

We note that the interference pattern shown in Fig. 3b still has
a period of 2p. Therefore, as in the double-path case, this
symmetric grating configuration only allows differential measure-
ments on quantum mechanical phase differences. A key to being
able to make absolute measurements hinges on somehow making
the period of interference pattern much longer than 2p. The first
multi-slit interference pattern observed in superfluid helium
(from four weak links) is reported in Ref. [10].
4. Asymmetric grating superfluid interferometry

One can control the periodicity of overall interference pattern
by introducing asymmetry into the system. Fig. 4a shows three
weak links in a grating structure (as in the case with the previous
section) but this time unequally spaced. Here p and q are defined
to be the distances between neighboring phase probing locations.
The simulated interference pattern is shown in Fig. 4b. For this
example, we have chosen q/p¼1.013. Notice that the pattern
slowly evolves as Df is increased. Unequal spacing in the grating
introduces asymmetry and breaks the simple 2p cyclic nature of
the interference pattern. It is now possible to tell the cycles apart,
making the detection of absolute phase differences feasible.

We have parameterized the evolution of interference pattern
by the ratio of adjacent peak heights b (ie. the height of the
second peak divided by that of the first peak, fourth divided by the
third, and so on) and plotted it as a function of Df for four
different values of q/p in Fig. 5. The solid line for q/p¼1 is what
one would expect for a symmetric grating configuration (as in
Fig. 3). Constant b means that one cannot tell the difference from
cycle to cycle in the interference pattern making it impossible to
detect absolute phase differences. In contrast, as one makes
q=pa1, the parameter b starts to change as a function of Df.

We point out that the interference pattern simulated in Fig. 4b
eventually repeats itself. This behavior is apparent in Fig. 5, which
clearly shows periodic modulation of b in Df. The period depends
on the value q/p, and it is � 800p for q/p¼1.005, and � 400p and
� 280p for q/p¼1.01 and 1.015, respectively. Periodicity of b in
Df determines the largest phase difference one can measure with



Fig. 5. Parameterization of evolving interference pattern for an asymmetric three-

junction system. Peak ratio b as a function of Df is shown for four different values

of q/p. The flat horizontal line is for the case q/p¼1.
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an asymmetric system as an absolute gauge. For example, if one
uses an asymmetric grating with q/p¼1.013 with an interference
pattern shown in Fig. 4b, one can obtain the absolute phase
difference by measuring the peak height ratio b as long as the
expected phase difference of interest is below � 300p. We point
out that these ranges can be made much longer by changing the
grating geometry and also by adding more weak links. In
principle, we want the interference pattern to never repeat itself
so that the measurement on absolute phase differences can be
done with a very wide dynamic range. However, we do not want
the pattern to evolve too slowly. We need the interference pattern
to change its shape sufficiently over a phase difference of 2p so
that it would be possible to distinguish Df0 from Df072p. Using
more weak links in a grating and spacing them all unequally can
increase the period of modulation dramatically and very quickly
(to a point where it almost never repeats itself). However, that
also increases the complexity of the interference pattern, making
it nontrivial to parameterize the pattern in a simple manner
(as we have done above) and use that to tell the current position
in the interference curve. Therefore, one needs to adjust the
degree of geometrical asymmetry and number of weak links to
make sure that the pattern evolves just enough (given the device’s
signal to noise ratio) while satisfying the dynamic range required
for particular experiments. Maintaining a simple interference
pattern also allows room for the application of flux-locking
technique using superfluid heat current [22].

With a superfluid 4He interferometer which operates mKs
below Tl, phase difference on the order of � 500p in a tube whose
length is � 2 cm and cross sectional area of � 0:04 cm2 corre-
sponds to superfluid velocity of � 1 mm=s, very close to the
extrinsic critical velocity [23]. Phase difference any larger than
that would drive quantum turbulence rendering the interferom-
eter useless. Therefore, the dynamic range of � 300p (as in the
example discussed above) might be sufficient for practical
purposes. For the pattern shown in Fig. 4, the peak ratio
parameter b changes most slowly near Df¼ 0, and the change
is � 0:3% comparing the ranges 0rDfr2p and 2prDfr4p. In
recent experiments, the smallest detectable current is on the
order of 0.1 pg/s (in 1 s measuring time) with a typical signal size
of 10 pg/s, which gives a S/N of about 100 in 1 Hz bandwidth. That
should allow one to distinguish the interference pattern of
0rDfr2p from that of 2prDfr4p by sweeping a few cycles
of the modulation curve while spending � 10 s=point for the
example shown in Fig. 4.

We point out that the effect of asymmetry simulated here is
seen in the superfluid quantum interference grating (with four
weak links) reported in Ref. [10]. The observed interference
pattern increases its complexity as Df is increased. In designing
that experiment, care was taken to minimize any geometrical
differences. However, the finite width of four phase probing pipes
introduced finite asymmetry, giving rise to the changing shape of
the modulation pattern. The simulation results reported here
show that instead of trying to minimize the asymmetry inherent
in the system, one can purposefully introduce it and take
advantage of it to optimize the device’s sensitivity to absolute
phase differences.
5. Possible applications

An asymmetric grating structure has been employed in
superconducting systems in an attempt to make absolute
measurements of magnetic field [24]. An equivalent device in
superfluid system should allow the direct observation of absolute
quantum mechanical phase differences, which would provide
insights to equilibrium state and nonequilibrium dynamics of
phase coherent quantum matter.

One interesting application of this asymmetric superfluid
quantum interference grating might be the investigation of the
initial phase offset that appears when the device is brought from
normal to superfluid state through the transition temperature.
When a device such as the one depicted in Fig. 3a goes through the
transition, fluid in segments above and below the junctions become
superfluid while the fluid within the junctions (nanoscale apertures)
remains normal due to the suppressed transition temperature in a
confined geometry. Then there are two quantum coherent regions
(above and below the junctions) with unique quantum mechanical
phases that are physically separated from each other. As the
temperature is lowered further the two regions connect coherently.
The phase difference that must have existed between the two
separate regions should be registered in the interferometer signal.
The statistical study of such phase differences could shed some light
on the physical processes that govern the assignment of quantum
phases to macroscopic coherent matter while giving insights to
researchers investigating Kibble–Zurek scenarios [25,26] of forma-
tion of topological defects.
6. Conclusion

Using numerical simulations we have shown that absolute
quantum mechanical phase differences could be observed with an
asymmetric superfluid quantum interference grating. By balan-
cing the dynamic range and the degree of change needed in
interference patterns, the device could be optimized and used to
probe some subtleties of the quantum world.
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