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We report a new kind of experiment in which we generate a known superfluid velocity in a straight tube
and directly determine the phase difference across the tube’s ends using a superfluid matter wave
interferometer. By so doing, we quantitatively verify the relation between the superfluid velocity and
the phase gradient of the condensate macroscopic wave function. Within the systematic error of the
measurement (� 10%) we find �s � @=m4r�.
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The modern description of superfluidity is a melding of
two conceptual frameworks [1]. The first concept, due to
Landau [2], envisions a two-component system. An invis-
cid ‘‘super’’ component carries zero internal entropy and is
described by density �s and velocity �s. A normal compo-
nent carries the entire liquid’s entropy, and is described by
density �n and velocity vn. This theory successfully de-
scribes many thermohydrodynamic situations. The second
concept, introduced by London [3] and expanded by
Onsager, Feynman [4], and Anderson [5], relates the con-
cept of superfluidity with the existence of a condensate in
the many-body system described by a wave function � �
j�jei�. The connection between the two approaches is
made through the statement that the superfluid velocity
�s is proportional to the wave function’s phase gradient
r�. More precisely,

 �s � �@=m4�r�; (1)

where @ is Planck’s constant (h) divided by 2� and m4 is
the 4He atomic mass. The main physical consequence of
this connection is the quantization of superfluid circula-
tion, which is involved in interpreting and understanding
many experiments dealing with rotating helium [6], turbu-
lence [7], and the temperature dependence of superfluid
persistent currents [8,9]. However, a direct measurement
relating quantum phase difference and flow velocity has
remained elusive for the lack of a phase measuring device.
Using a superfluid 4He interferometer, we have now inde-
pendently determined both �s and r� and quantitatively
confirmed their relationship.

Our apparatus is schematically shown in Fig. 1(a). The
topmost tube [of interior length ‘ � 2:5� 0:05 cm and
cross-sectional area � � �3:78� 0:04� � 10�2 cm2] con-
tains a heater at one end. The opposite end of the tube
terminates with a thin roughened copper sheet whose
Kapitza boundary resistance dominates the thermal contact
between the entire inner flow region and the surrounding
superfluid helium bath. The apparatus is immersed in this
bath whose temperature is maintained at a few millikelvins
below the superfluid transition. We create uniform �s along
the top tube and use a superfluid helium quantum interfer-

ence device (SHeQUID) [10] to directly measure the cor-
responding phase difference ��.

In the two fluid description [1], heat is carried by the
normal component which flows away from the heater with
velocity vn while the super component flows towards the
heater with velocity vs. Since there is no associated net
mass current, it follows that vs � ��nvn=�s. The heat
current _Q is carried by the specific entropy (per unit mass)
s, which resides entirely within the normal component.
Thus _Q=� � �vnTs and

 jvsj �
�n

��sTs�
_Q: (2)

 

FIG. 1 (color online). (a) Experimental apparatus. The inside
is filled with superfluid 4He and the entire apparatus is immersed
in a bath of liquid helium. A resistive heater (R) and a thin Cu
sheet (S) serve as a heat source and a temperature sink, respec-
tively. The top tube and the two connecting arms are made of
Stycast 1266 (insulating) to minimize the heat loss through the
walls. Crosses indicate the aperture arrays. Each array consists of
100� 100 30 nm apertures spaced on a 3 �m square lattice in a
60 nm thick silicon nitride window. Flexible diaphragm (D) and
electrode (E) form an electrostatic pressure pump. The dia-
phragm also forms the input element of a sensitive microphone
based on superconducting electronics that are not shown.
(b) Equivalent SQUID circuit.
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Here T is the temperature and � is the total density. From
Eqs. (1) and (2), the phase gradient in the top tube should
be

 r�heat �
m4

@

�n
��sTs�

_Q: (3)

As shown in Fig. 1(a) the top tube forms one arm of a
superfluid interferometer, which contains two arrays of
nanometer-sized apertures. Well below T� the aperture
arrays are characterized by a linear current-phase relation
with discrete 2� phase slips. Closer to T� they are de-
scribed by a sinelike dc-Josephson current-phase relation
[11–13]. In operation we apply a chemical potential dif-
ference �� (combining pressure and temperature differ-
ences) across this pair of aperture arrays. In response (in
both the phase slip regime and the Josephson regime) each
array exhibits mass current oscillations at a Josephson
frequency fJ � ��=h that are detected by the microphone
placed nearby.

We maintain the mass current oscillation frequency fJ
constant (typically near 700 Hz) by a feedback technique.
The combined oscillation amplitude It from two arrays
exhibits interference depending on the relative phase dif-
ferences ��1 � ��2 that exists between them. For the
SHeQUID the combined amplitude can be written as It /
j cos����1 � ��2�=2	j for arrays with equal oscillation
amplitudes, and this quantum interference has been dem-
onstrated [10] not only in the weakly coupled Josephson
regime but also well into the strongly coupled phase slip
regime.

When no currents flow in the interferometer there are no
phase gradients and

H ~r� 
 d~l � 0, where the phase inte-
gral goes around the interferometer loop. For sufficiently
low flow velocities (i.e., below the velocity to create quan-
tum vortices) this phase integral condition is maintained
even though a finite _Q induces vs in the top tube. We can
then write ��heat � ��1 ���2 � 0 [see Fig. 1(b)] since
the phase differences across the remaining segments of the
loop are all negligible. Using this relation, the oscillation
amplitude detected can be written as

 It /
��������cos

�
��heat

2

���������: (4)

We can combine Eqs. (3) and (4) by writing the phase
gradient in terms of the phase difference: ��heat �
‘r�heat. (We note that the length ‘ here is uncertain by
the diameter (d � 2:2 mm) of the tubes connecting the
heat flow pipe with the aperture arrays.) This gives

 It /
��������cos

�
�
m4

h

�
‘
�

�n
��sTs

�
_Q
���������: (5)

Thus the existence of a uniform phase gradient associ-
ated with superfluid flow implies that the amplitude of the
SHeQUID microphone should vary cosinusoidally with the
heat input and, if Eq. (1) is quantitatively correct, the

periodicity of the pattern is determined by known or mea-
surable parameters.

The apertures in the two arrays are not identical due to
the limitations of nanofabrication technology. Therefore
the arrays have different oscillation amplitudes I0;1 and
I0;2. For this case a more general [than Eq. (4)] total
mass current oscillation amplitude is It�cos2���heat=2� �
�2sin2���heat=2�	1=2, where the asymmetry parameter
[14] � � �I0;1 � I0;2�=�I0;1 � I0;2�. Then, even for destruc-
tive interference, the amplitude does not go to zero, which
is useful for our feedback circuit that maintains the mass
current oscillation frequency constant.

Figure 2 is an example of a plot (at fixed temperature) of
microphone amplitude as a function of heat input in the
tube. The solid line is a fit using the general function above
for two arrays with unequal critical currents. The excellent
fit strikingly demonstrates that there is indeed a phase
gradient across the tube that is linear in the heat-induced
superfluid velocity: r� / vs. To demonstrate Eq. (1)
quantitatively we need to determine the proportionality
constant between r� and vs.

The heat current that leads to a 2� phase change across
the tube can be seen from Eq. (5) to be

 

_Q 2� �
h
m4

	�T�; (6)

where	�T�  ��=l����sTs=�n�. Here, _Q2� is the distance
on the horizontal axis of Fig. 2 between two adjacent
maxima or minima. We display the measured _Q2� as a
function of T� � T in Fig. 3. With published data [15] on
�s, �n, �, and s, and the design values of tube length and
cross section we have computed 	�T�. We plot this func-
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FIG. 2. Measured current oscillation amplitude as a function of
power put into the top tube. The solid line is a fit. These data are
taken at T� � T � 16 mK. We have oriented our cryostat to
catch just the right amount of rotation flux from the Earth in the
interferometer loop so that the mass current oscillation ampli-
tude is at maximum with zero power injected into the top tube
[10]. A similar interference due to electron drift velocity has
been seen in superconducting Josephson systems [17].
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tion and multiply it by a constant to fit the data in Fig. 3.
The best-fit multiplication factor is �9:1� 0:9� �
10�8 m2= sec, which agrees with the expected value
[from Eq. (6)] of h=m4 � 9:97� 10�8 m2= sec within
the systematic uncertainty (which is dominated by the
effective length of the heat flow tube as described earlier).

Figures 2 and 3 are the essential results of our experi-
ment that directly demonstrates the fundamental relation
linking quantum physics and the two fluid description of
superfluid helium. It is clear that this superfluid paradigm
is more than an idealist construct.

In this experiment we have also shown a method to
electrically ‘‘inject’’ phase variations into a SHeQUID.
This is a crucial element to develop a flux locked
SHeQUID, analogous to techniques used for several dec-
ades in superconducting SQUIDs [16]. This important
technical advance will permit the linearization of the in-
trinsically nonlinear interference relation underlying all
interferometers.
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FIG. 3. Power needed to cause the oscillation amplitude to
move from one maximum to the next.
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