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The role of the Josephson-Anderson equation in superfluid helium*

Richard E. Packard
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This article explains how a simple equation describing the time evolution of a superfluid’s quantum
phase can be used as a powerful tool to rapidly deduce exact magnitudes of physical observables in
situations involving very complex vortex motion. The equation has been used to simplify the
understanding of new phenomena, such as vortex precession. Applications of the equation have also
led to solutions of long-standing problems, such as the nucleation of vortices, and to new technology,
such as the superfluid gyroscope. The article begins by presenting some basic ideas of superfluidity.
This discussion leads to the concept of the quantum phase of the superfluid state and to the prediction
that vorticity is quantized. Next a discussion is presented of the phase evolution equation, introduced
by Josephson and developed further by Anderson. The utility of the equation is demonstrated by
making certain general predictions about the consequences of vortex motion. Two experiments, one
in 3He and another in 4He, are then described in the context of the phase evolution equation. In the
first, the precession frequency of a single vortex filament is easily explained in the context of the
equation. In the second, quantized dissipation processes are observed which give detailed information
about the creation of quantized vortices. The article concludes by showing how these latter
experiments have led to the development of a superfluid sensor of absolute rotation. Although the
article focuses on results emerging from the author’s own laboratory, the footnotes lead the reader to
some of the parallel ongoing projects, especially in the case of the 4He research at Orsay/Saclay in
France, the University of Minnesota, and the University of Trento, Italy. [S0034-6861(98)00702-8]
CONTENTS

I. Introduction 641
II. Vortex Precession: Demonstration of the Josephson

Frequency 644
III. Discrete Phase Slippage 647
IV. Summary and Recent Developments 650

Acknowledgments 651
References 651

I. INTRODUCTION

Superfluidity in 4He was discovered in the late 1930s
(Kapitza, 1938, Allen and Misener, 1939) when it was
observed that liquid 4He, cooled below 2.17 K, could
flow through exceedingly small passages without appre-
ciable driving pressures. These discoveries were fol-
lowed quickly by the theories of Tisza (1938) and Lan-
dau (1941), which quantified a two-fluid picture of the
superfluid state. The description modeled the system as
two interpenetrating fluids. The superfluid component is
characterized by zero entropy, zero viscosity, and strictly
potential flow. The normal component, consisting of the
elementary excitations of the system (phonons and ro-
tons), carries entropy and possesses viscosity. Landau
introduced a complete set of hydrodynamic equations
which blend together Euler and Navier-Stokes represen-
tations of the two components.

In a parallel development, Fritz London realized that
the concept of dissipation-free flow was similar to the

*This article is based on a colloquium that the author deliv-
ered at several universities in 1996.
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‘‘motion’’ of atomic electrons. He conjectured that su-
perfluidity might be a manifestation of quantum me-
chanics on a macroscopic scale (London, 1954). Super-
fluid 4He would be a quantum liquid.

A few years after the close of World War II another
important advance was made when Onsager (1949) at-
tempted to find the form of a macroscopic quantum
wave function appropriate for superfluids.1 He reached
two related conclusions: (1) Superfluid circulation k
must be quantized in integral multiples of Planck’s con-
stant divided by the mass of the helium atom:
ko5h/m4 . (2) Vorticity could exist in a superfluid in the
form of vortex lines with quantized circulation. These
ideas were independently discovered by Feynman
(1955). Their reasoning proceeds as follows.

The general form of the superfluid fraction’s wave
function is

c5ucueif~r !. (1)

Here the squared magnitude, ucu2, can be thought of as
being proportional to the superfluid density rs . If the
wave function is inserted into the standard quantum-
mechanical expression for current, and variations in the
wave-function magnitude are negligible, one obtains the
result

1It can be rigorously shown from microscopic many-particle
physics that simple superfluid systems can be described by a
function possessing amplitude and phase. That function satis-
fies a single-particle Schrödinger-like equation and the number
current can be computed by applying the usual single-particle
current operator to the function. The terms macroscopic wave
function and order parameter are used to describe the same
entity.
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JW s5ucu2
\
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By analogy with ordinary fluid flow, if rs is associated
with the square of the wave function’s amplitude, then
the superfluid velocity vs is equal to the phase gradient
term:

vW s5
\

m
¹W f . (3)

Thus the quantum-mechanical phase appears as a scaled
velocity potential. Since the wave function must be
single valued, we are led directly to the condition for
quantization of circulation,

k[ R vW s•d lW5
\

m R ¹W f•d lW5n
h

m
,

n50,61,62,63, . . . . (4)

The circulation is quantized in units of ko5h/m . The
mass here is the bare atomic mass of the entity, which is
the ‘‘fundamental superfluid particle’’ (Morrison and
Lindesay, 1977). For 4He, m5m4 . Superfluidity also ex-
ists in two different phases in the isotope 3He, below
231023 K. These states are believed to be superfluids
of Cooper-paired particles. Of the two phases, desig-
nated 3He-A and 3He-B, the latter has a macroscopic
wave function similar to that of 4He and it is therefore
expected that, when referring to 3He-B, the mass in Eq.
(4) and in the expression for ko would be 2m3 .

It is possible for vorticity to exist in a superfluid in the
form of vortex lines with quantized circulation. The
presence of quantized vortex lines in rotating superfluid
4He was first detected by Hall and Vinen (1956). A few
years later, Rayfield and Reif (1964) discovered super-
fluid quantized vortex rings in 4He. Subsequently, hun-
dreds of papers have been written about quantized vor-
tices in both 4He and 3He, revealing many facets of
these superfluid line defects.2 Included in this vast body
of research are experiments, performed at Berkeley,
which photograph the vortex positions in 4He (Yarm-
chuk et al., 1979).

A vortex consists of fluid flowing in concentric rings
around a central core, with a velocity that diminishes
inversely with distance from the vortex center. Superflu-
idity breaks down within the core, which is of atomic
dimension. Planes of constant phase, f, radiate from the
vortex core. The phase advances by precisely 2p as the
vortex is encircled.

In this article, we shall focus on phenomena related to
the passage of vortex lines between two separated refer-
ence points. Figure 1 shows the lines of constant phase
as a vortex line, perpendicular to the page, moves be-
tween two points lying on opposite sides of a flow pas-
sage bounded by plane parallel sides. It is apparent in

2A review of quantized vortices in 4He is presented in Don-
nelly (1991). A review of vortices in 3He is presented in Kru-
sius (1993).
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FIG. 1. A plot of lines of constant phase during the passage of
a quantized vortex line across a tube. The velocity through the
tube is proportional to the phase gradient. After the passage of
the vortex there are ten fewer lines of constant phase. Since
each line represents a phase difference of p/5, the ten missing
lines represent a 2p change.
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the figure that, as the vortex moves from the top to the
bottom, the phase difference between two points at op-
posite ends of the passage changes by 2p. Such a vortex
passage is referred to as a ‘‘2p phase slip,’’ a term that is
most descriptive if the vortex passage takes place on a
time scale that is short compared to some observation
time.

The equation that is the focus of this article can be
derived by several means. We shall outline here the ar-
gument of Anderson, which was described in more de-
tail in this same journal over thirty years ago (Anderson,
1966). The argument is made in the context of a second-
quantization description of condensed matter. Anderson
shows that the number operator N̂ is canonically conju-
gate to the phase operator f̂ which projects the phase of
the many-particle wave function. His proof involves con-
structing a wave packet for the eigenfunctions of N̂ in
terms of the eigenfunctions of f̂ .

Canonically conjugate variables, like position and mo-
mentum, have corresponding operators whose commu-
tator is purely imaginary. The commutation relation for
N̂ and f̂ is

@N̂ ,f̂#5i . (5)

For such canonically conjugate operators the equations
of motion of their expectation values are given by
Hamilton’s equations. Thus

\
]^N̂&

]t
5K ]Ĥ

]f L , (6)

\
]^f̂&

]t
52K ]Ĥ

]N L 52m , (7)

where the chemical potential m is defined as the increase
in internal energy when a single particle is added to the
system, keeping entropy and volume constant.

We consider two points in the fluid of density r, with
average phase f1 and f2 . If at these points the corre-
sponding chemical potential is m1 and m2 , then Eq. (7)
becomes

]~f22f1!

]t
52

~m22m1!

\
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\
.

(8)

In the last step we include the average kinetic energy of
the particles in the definition of the chemical potential.
For simplicity, we are focusing on situations in which the
temperature is constant, so that the chemical potential
difference is determined only by the pressure difference
and the kinetic-energy difference. The mass entering the
equation is the bare mass of the objects in the quantum
state: either the 4He atom or a 3He Cooper pair.

Equation (8) is the focus of this article. It is the equa-
tion of motion of the quantum phase difference between
two points in a superfluid. Because this equation was
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
first written in the context of superconductivity by Jo-
sephson (1962), it is often called the Josephson phase
evolution equation. Since Anderson derived the result in
the broader context of a more general quantum liquid,
we shall refer to it here as the Josephson-Anderson
equation or simply the JA equation. If both sides of Eq.
(8) are differentiated with respect to
position, and if Eq. (3) is used to substitute the velocity
for the phase gradient, then Eq. (8) becomes Euler’s

equation for a vorticity-free, perfect fluid, nẆ s5

2¹W P/r2¹W (ns
2/2), except for the important distinction

that the total mass density r appears in place of the
superfluid mass density rs . Landau derived this equa-
tion of motion for the superfluid component long before
the importance of the quantum phase was appreciated.

Since in Eq. (8) the time derivative of the phase dif-
ference is [from Eq. (3)] equivalent to the time deriva-
tive of velocity, and the chemical potential difference is
equivalent to a force, it would seem that this equation is
only equivalent to Newton’s second law. It seems to de-
scribe the accelerated flow of a perfect fluid. However,
the real utility arises because quantized vortices exist in
superfluids, and the motion of the vortices commonly
enters many interesting dynamic situations.

In this article we shall be interested in situations
where single quantized vortex lines pass periodically at
some frequency f between two points. For simplicity we
first consider two separated points where the flow veloc-
ity is essentially zero. Since the phase change per vortex
passage is 2p, the rate of change of phase is 2pf . For a
given pressure difference this frequency can be calcu-
lated from Eq. (8). Solving for the Josephson-Anderson
frequency fJA , one gets

fJA52
~m22m1!

h
52

m

rh
~P22P1!. (9)

The constants entering Eq. (9) imply that a 1-Pa pres-
sure head will cause 693103 phase slips per second for
4He and 1843103 per second for Cooper-paired 3He.
Note that the JA frequency is independent of the path
over which the vortices move as the tube is crossed,
however complex that motion might be. All the com-
plexity of the vortex dynamics is removed from the fre-
quency determination because the phase can change by
only 2p.

Another simple calculation leads to the energy change
in organized flow due to the passage of a single vortex
across a flow tube, e.g., Fig. 1. Such a process may occur
when a vortex is created by stochastic processes (e.g.,
thermal or quantum) near a wall, at a characteristic criti-
cal current Ic . Multiplying both sides of Eq. (8) by the
mass current Ic and integrating gives

IcE d~f22f1!5
2m

\ E IcdP

r
dt . (10)

The integrand on the right is the instantaneous power
extracted from the flow. The integration over a 2p phase
change gives, on the right-hand side, the energy re-
moved from the flow by a 2p phase slip. The left-hand
side is just 2pIc . Thus



644 Richard E. Packard: Josephson-Anderson equation in superfluid He
dE'2
hIc

m
52koIc . (11)

We have assumed here that the current change due to
the phase slip is small compared to the critical current,
an approximation that is not always true, especially near
the transition temperature. Like Eq. (9) for fJA , Eq.
(11) for the energy decrease is independent of the vor-
tex’s path and is therefore a beautiful simplification of a
complicated process. The energy-loss mechanism of
phase slippage is the fundamental process by which an
inviscid superfluid can lose energy. The kinetic energy
carried away by the vortex is presumably transformed to
heat when the vortex annihilates by collision with a wall.

If the flow tube has an effective length leff , Eq. (3)
gives the velocity decrement corresponding to the 2p
slip as

dvs5
h

mleff
5

ko

leff
. (12)

When quantized vortices are created in large flow
tubes, they dissipate energy continuously in a process
known as a vortex mill (Schwarz, 1990). By contrast,
discrete 2p phase slips are found (see below) to occur in
small apertures. We are concerned here with small flow
apertures whose effective lengths are on the order of
1026 m. For this situation, the velocity decrement, Eq.
(12), is about 0.1 m/s for a 2p slip, and the energy
decrement3 is of the order of 10217 J.

The remainder of this article describes two experi-
ments that are easily interpreted in the context of the
phase evolution equation. The first relies on the Joseph-
son frequency relation, Eq. (9), and the second involves
Eqs. (11) and (12) for dE and dvs .

II. VORTEX PRECESSION: DEMONSTRATION
OF THE JOSEPHSON FREQUENCY

For the first experiment, a digression is required be-
cause the observation of the Josephson frequency was a
serendipitous spinoff of another experiment. We begin
by briefly describing an experiment in superfluid 3He-B
designed to determine whether circulation is quantized
in that system (Davis et al., 1990). The goal is to answer
two questions: (1) Is circulation quantized in 3He? (2)
Does the quantum of circulation involve twice the
atomic mass of 3He? The latter is a necessary conse-
quence of the Cooper-pairing idea, which is invoked to
explain how a Fermi system can display superfluidity.

The experimental technique follows that of Vinen
(1961), invented to determine the circulation in super-
fluid 4He. One determines the plane of vibration of a
thin stretched wire surrounded by superfluid. If the cross
section of the wire is round, the vibration plane is sta-
tionary in the absence of circulation. If there is fluid

3The vortex carries away the energy from the tube flow. It is
not clear, however, how the vortex eventually transfers this
energy to heat.
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circulation k around the vibrating wire, then a sidewise
force exists. This effect is a result of Bernoulli’s prin-
ciple, the flow velocity is faster on one side of the wire
than on the other, and is often called the Magnus force.
The sidewise force causes the vibration plane to precess
at frequency fc proportional to the circulation. Specifi-
cally,

k5
2plfc

rs
(13)

where l is the wire’s lineal mass density.
Since the vibrating wire technique was successful in

demonstrating quantized circulation in 4He, it seemed
desirable to use the same idea in 3He. The main techni-
cal problem with applying the technique to 3He is that
at temperatures above T/Tc50.2 the normal-component
viscosity is so great that the wire’s vibration is damped
to zero in a time less than the expected precession pe-
riod. However, in the mid-1980s, cryogenic techniques
finally achieved the temperature range of interest
(Guénault et al., 1986). We then constructed a rotating
refrigerator that could cool superfluid to 165 mK (Close
et al., 1990). At these temperatures, our vibrating wire
exhibits a decay time of several seconds, which is ad-
equate for the circulation measurements.

Figure 2 shows a sketch of the vibrating wire appara-
tus. The 16-mm-diameter wire surrounded by superfluid

FIG. 2. A sketch of the vibrating wire apparatus to measure
superfluid circulation. A fluid circulation around the wire
causes a precession of the plane of vibration.
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3He exhibits a fundamental resonance at 347 Hz. A
magnetic field of 50 mT is applied perpendicular to the
wire. The wire is ‘‘plucked’’ by the magnetic force due to
a current pulse passed through the wire. During the sub-
sequent free-ringing decay, the voltage across the wire is
monitored. If the vibration plane is perpendicular to the
magnetic field, there is a maximum emf induced along
the wire. If the plane is parallel with the field, there is no
emf induced. The precession of the plane of vibration
should therefore produce a beat signal across the ends of
the wire.

Figure 3 shows some typical signals. The upper trace
is taken when the cryostat is not rotating and presum-
ably is the characteristic signal in the absence of fluid
circulation around the wire. The fact that there is any
precession at all is a consequence of the wire’s not hav-
ing a round cross section. The lower trace is the charac-
teristic signal when the cryostat is rotating. It is clear
that there is a difference in the precession rate of the
vibration plane. From the difference in the precession
rates, one can use a modified form (Whitmore and Zim-
mermann, 1968) of Eq. (13) to compute the fluid circu-
lation. The experiment consists of rotating the refrigera-
tor at increasing angular velocities and continuously
measuring the precession rate of the wire. The rotation
will cause circulation to form around the wire.

Figure 4 shows the observed circulation in units of
h/2m3 . The quantization of the values is clear, and the
quantum unit is seen to have the double Cooper-pair
mass as expected. This result confirms the idea that
3He-B is a phase-coherent quantum fluid and that Coo-
per pairing characterizes this state of matter.

The description of this experiment so far is a pre-
amble to the discussion of the utility of the JA phase
evolution equation. The phenomena relevant to this ar-

FIG. 3. The voltage induced across the ends of the vibrating
wire, showing the envelope of the fundamental resonance fre-
quency. The beat pattern is due both to circulation around the
wire and to the asymmetry of the wire cross section. Top trace:
voltage in the absence of rotation. Bottom trace: voltage in the
presence of rotation. The precession frequency is higher in the
bottom trace. The difference in decay time of the two traces is
due to a small temperature difference between the two trials.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
ticle arise from the observation of the signal when circu-
lation is trapped metastably on the wire. This trapping
results when the cryostat is first rotated at speeds that
stabilize a single quantum of circulation. A subsequent
slow deceleration of the cryostat to rest usually leaves
the circulation metastably trapped on the wire. In effect
there is a singly quantized vortex whose core is the solid
wire. The vortex terminates at the top and bottom of the
cylinder. Since there is zero dissipation in the superfluid,
the vortex flow can persist indefinitely.

On some occasions the trapped vorticity decays as
shown in Fig. 5. Presumably after several hours some
mechanical disturbance has broken one end of the vor-
tex free from the walls and let it become terminated on
the inside wall of the metal cylinder surrounding the
vibrating wire. The vortex then ‘‘unzips’’ itself from the
wire so that the system can approach the circulation-free

FIG. 4. The circulation around the wire as a function of the
highest rotation speed of the cryostat. The vertical axis is in
units of h/2m3 and contains no adjustable constants. The cir-
culation was unstable for the values of angular velocity be-
tween the two sets of arrows.

FIG. 5. The decay of circulation as a function of time. The
figure inset shows the oscillations due to vortex precession.
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ground state. Since the precession rate of the vibration
plane is determined by the average circulation along the
wire, a quantized vortex, partially attached to the wire,
results in a nonquantized apparent circulation.

The feature of interest here is the small oscillation in
the average circulation which accompanies the decay.
The inset to Fig. 5 displays the oscillation more clearly.
The question, of course, is, what is the physical mecha-
nism underlying this oscillation? Our model of the
physical process involved is shown in Fig. 6. Here we
assume that a quantized vortex is partially detached
from the wire and passes between the wire and the outer
cylinder. The detached filament may rotate around the
central wire, reminiscent of a one-bladed helicopter. The
existence of the observable signal, correlated with the
precession, is a consequence of the vibrating wire’s be-
ing located slightly off axis. In order to conserve energy,
as the vortex filament precesses around the off-axis wire,
the attachment point on the wire must oscillate along
the wire at the same frequency as the precession. This
will lead to an oscillation signal like that seen in the
figure (Zieve et al., 1992; Zieve, 1992).

There are several approaches that show that such mo-
tion will lead to the observed frequency. Perhaps the
most direct and complete approach is to perform a nu-
merical integration of the vortex equations of motion.
By making use of a sophisticated algorithm and substan-
tial computing power, Schwarz (1993a) and Sonin (1994)
obtained the helical path shown in Fig. 7. The numerical
simulation confirms the model of the vortex precession
and shows the delicate details of the motion. The rota-
tion frequency, which can be deduced from the shape of
the vortex line, agrees closely with that found in the
experiment (Zieve et al., 1992; Zieve, 1992). The agree-
ment obtained here between the numerical simulation
and the experiment is possibly the most stringent test of
the numerical methods for vortex dynamics. Classical

FIG. 6. A model of the vortex ‘‘unzipping’’ from the wire.
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vortices are not quantized, and the dynamics associated
with the gradual dissipation of classical vorticity makes
numerical simulation more difficult and comparison with
experiments harder than the superfluid situation consid-
ered here.

The precession frequency can also be derived by as-
suming that the Magnus ‘‘lift’’ on the rotating vortex
balances the tension in the still-trapped vortex section.
In this kinematic approach we assume that the vortex
helicopter model is correct and then proceed to balance
forces (Zieve et al., 1992; Zieve, 1992).

Still another approach is to use the idea that the rota-
tion frequency must be the same as that of the smallest
angular velocity of the container, which would favor the
formation of the circulation along the wire. If the cylin-
der rotates faster, the vortex will go up the wire; if it
rotates slower the point of attachment will move down-
ward. Finding this critical angular velocity leads to the
same formula as the force balance approach.

However, the approach relevant for our discussion is a
direct consequence of the Josephson phase evolution
equation (Misirpashaev and Volovik, 1992). As the end
of the vortex filament precesses around the cylinder, the
quantum phase difference between the ends of the cyl-
inder changes by 2p for each revolution. The frequency
of the precession is then just the Josephson-Anderson
frequency and must be determined by the chemical po-
tential difference across the two ends of the cylinder.
This is computed in the following way:

Let n be the integer value of the vortex quantization
on the lower part of the wire and n21 the quantization
integer on the top section. The chemical potential m is
constant across each end of the cylinder but differs be-
tween the top and bottom. From our definition of
chemical potential, the radial pressure dependence at
the top end is given by

FIG. 7. A numerical simulation of the vortex motion by K. W.
Schwarz (1993a).
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Pt~r !5rS m t2
vs

2

2 D 5rS m t2
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2~n21 !

8p2r2
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On the bottom surface the pressure distribution is

Pb~r !5rS mb2
ko

2n2

8p2r2D . (15)

The net force on the liquid is zero, so the force on the
top and bottom of the container is equal and opposite.
The force on each end is given by the area integral of
the pressure over the ends. Computing this integral and
equating the values on the top and bottom leads to the
chemical potential difference (mb2ma) and subse-
quently to the Josephson-Anderson frequency of the
filament’s precession:

fJA5
ko~2n21 !

4p2~rc
22rw

2 !
ln

rw

rc
. (16)

Here, rc is the radius of the cylinder, rw is the wire’s
radius, and ko is the circulation quantum. This formula
describes the situation in which the vortex unzipping
transforms the circulation around the wire from n
quanta to (n21).

For the parameters of the 3He experiment, n51 and
the formula predicts a Josephson frequency of
3.8731023 Hz. The measured value of the oscillation
frequency is 3.9060.0531023 Hz. We also searched our
data files collected during previous tests of the apparatus
in 4He. Here we discovered cases of oscillatory decay of
circulation (Zieve et al., 1993). In the case of 4He, the
circulation change was from n52 to n51. For this tran-
sition, using the circulation quantum for 4He, the for-
mula predicts a precession frequency of 17.431023 Hz.
The observed oscillations occurred at
17.260.331023 Hz.

It is interesting to point out that the chemical poten-
tial difference driving the precession is equivalent to a
pressure head on the order of 231027 Pa, comparable
to that of a hydrostatic head of 0.2 nm of liquid 3He. A
state-of-the-art mechanical pressure gauge could not de-
tect such a small difference. Yet this pressure difference
is responsible for the entire observable effect of the vor-
tex precession. The slow vortex precession frequency is
a sensitive pressure gauge indeed.

As mentioned earlier, there are other approaches that
will lead to Eq. (16). However, the phenomenon as in-
terpreted in terms of the JA equation is particularly
simple and elegant. The JA equation cannot tell us that
the precession motion occurs but, given the observation
that it does occur, the equation predicts the frequency of
the phenomenon.

III. DISCRETE PHASE SLIPPAGE

As our second illustration of the utility of the JA
equation, we focus on the concept of discrete phase
slippage4 mentioned above and described by Eqs. (11)

4A recent review is given by Zimmermann (1996).
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and (12). As shown by Eq. (11), the phase evolution
equation leads to the prediction that if a single vortex
crosses an aperture through which superfluid flows, a
complete traversal of the aperture will remove koIc of
energy from the flow.5 Ic represents the critical current
at which the vortex appears. It is believed that the vor-
tices are nucleated near the walls as small half rings
(Avenel et al., 1993; Shiflett and Hess, 1995), which can
enter the fluid by overcoming an energy barrier. As the
current increases, the barrier falls, until thermal or
quantum mechanisms permit vortex penetration into the
bulk fluid. This initiates the phase slip process, which
proceeds by some deterministic, but possibly complex,
path (Schwarz, 1993b; Burkhart et al., 1994).

A technique to detect these small dissipation events
was developed by Avenel and Varoquaux (1987) about
ten years ago. During the past decade their experiments
have led the way to a new understanding of the phase
slippage process in 4He and the vortex nucleation phe-
nomena which initiate the events. Figure 8 is a sketch of
the generic apparatus used now in several laboratories.
It is an oscillator that consists of two superfluid-filled
regions, divided by a wall containing a flexible plastic
partition and a submicron-sized aperture. In the experi-
ments of Avenel and Varoquaux (1987) there is an ad-
ditional low-flow-impedance path in parallel with the
small aperture. In other laboratories, including Berke-
ley, there is often only the single microaperture as the
path between the two volumes of superfluid. We fabri-
cate our apertures in a 100-nm-thick silicon nitride
‘‘wall’’ using electron-beam lithographic techniques
(Amar et al., 1993). The oscillation frequency of the de-
vice, typically 2–60 Hz, is determined by the exchange
between the potential energy stored in the displaced dia-
phragm and the kinetic energy stored in the flow
through the aperture (Avenel and Varoquaux, 1987).
Such a device is often referred to as a Helmholtz oscil-
lator, but perhaps a more descriptive term would be
diaphragm-aperture oscillator.

5This expression for the energy decrement describes the com-
mon situation in which the total flow energy is changed only
slightly by the phase slip. If the flow energy is comparable to
kIc , a more complex analysis is necessary.

FIG. 8. Sketch of the generic superfluid oscillator used to ob-
serve discrete phase slips.
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We coat the diaphragm on both sides with metal. A
niobium film on one surface faces a nearby flat coil,
which is the input coil of a SQUID-based displacement
detector of the variety developed for gravity wave detec-
tion (Paik, 1976). This sensitive device can detect dis-
placements of the diaphragm as small as 10215 m/Hz1/2.
The other side of the diaphragm is typically coated with
a normal metal (e.g., Au). An electric potential differ-
ence applied between this second surface and a nearby
solid-metal electrode creates a force to move the dia-
phragm. There are various types of experiments that can
be performed with this system. We focus here on experi-
ments in which an oscillatory force, matched to the reso-
nant frequency of the oscillator, is applied to the dia-
phragm.

Figure 9 shows the typical time evolution of the oscil-
lation amplitude for a fixed amplitude of drive. Al-
though the data shown here are from Berkeley (Amar
et al., 1992), very similar data in 4He are obtained at
both Saclay (Avenel and Varoquaux, 1987) and Minne-
sota (Lindensmith et al., 1996; Lindensmith, 1996). The
figure displays the time dependence of the magnitude of
every half cycle of oscillation. The amplitude can be
seen to increase in time until a sudden event occurs
which removes energy from the oscillator. The ampli-
tude then climbs again until another event occurs. These
sudden decrements in energy are caused when a micro-
scopic quantized vortex is stochastically created in the
aperture and subsequently moves across all the flow
lines through the hole. Some of the flow energy in the
oscillator is thereby transferred to the vortex flow and is
ultimately lost when the vortex moves away, presumably
annihilating at some distant wall.

Figure 10 is a distribution function showing the size of
the abrupt drops in fluid velocity in the aperture (Amar
et al., 1992). Using the equations of motion of a quan-
tized vortex in an inviscid fluid, it is possible to compute
the energy transfer and velocity drop that should accom-
pany the passage of a vortex across the hole (Huggins,

FIG. 9. The time evolution of a Hemholtz oscillator. Each
point is the amplitude of one half cycle. The sudden drops in
amplitude are the signature of the phase slips.
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1970; Zimmermann, 1993). The calculations are complex
and the result is not transparent at the outset. However,
according to the JA phase evolution equation, the drop
in energy due to a 2p phase slip is simply given by Eq.
(11), udEu5koIc . The ordinate in the figure is marked in
units of ko /leff , which is the expected velocity decre-
ment given in Eq. (12). The effective length here is de-
termined from a measurement of the Helmholtz oscilla-
tor frequency and other experimental observables.

It is clear from the histogram that the flow velocity
decrements are occurring in multiples of ko /leff . The
first peak must correspond to a 2p phase slip. The higher
peaks correspond to phase slips involving integral mul-
tiples of 2p. What is the origin of these higher multiples?
One explanation is that n individual vortices are created
in a cascade. We believe a more likely explanation is
that a single vortex is nucleated and proceeds to evolve
across the hole. During the evolution process, the vortex
filament may become unstable and twist off, thus pro-
ducing a vortex ring as well as the remainder of the
filament. The further evolution of the free ring will itself
produce a 2p phase change as it moves across all the
flow lines. The remnant filament will complete its tra-
versal of the aperture, giving another 2p. This process
may then be responsible for the peak corresponding to a
4p slip. If n twistoff events occur, the total phase slip
will be (n11)2p .

There is supporting evidence for this interpretation of
the existence of the peaks. We find that the peaks cor-
responding to higher-velocity decrements decrease in
amplitude when the holes are made smaller. This may
be because the smaller apertures permit vortex traversal
before instabilities occur. Also, the peaks at higher val-
ues of velocity decrease as the temperature increases.
This may be because at higher temperatures there is
more normal fluid present to damp out instabilities in
the vortex filament before they result in a twistoff event.
When the entire oscillator is made very small (by con-

FIG. 10. A histogram of the size of the phase slips. The hori-
zontal axis is drop in velocity amplitude in the aperture, dv .
The units of the horizontal axis are ko /leff .
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struction out of silicon using microfabrication tech-
niques), the higher peaks disappear. We believe this is
because the small oscillator6 is immune to acoustic dis-
turbances that may induce instability in the vortex dur-
ing its passage across the aperture. Figure 11 shows the
time evolution of the oscillator amplitude for a very
small oscillator constructed on a silicon wafer with mi-
crofabrication techniques. In this oscillator all the phase
slips are of the 2p variety, and the critical velocity is
insensitive to ambient vibration levels in the laboratory.

The apparent fluctuations in the critical oscillation
amplitude are due to the intrinsic stochastic processes
that mediate the vortex creation process. A statistical
analysis (Varoquaux et al., 1991) of these fluctuations in
the critical velocity has led to a determination of an en-
ergy barrier that must be overcome to nucleate a micro-
scopic vortex that initiates the phase slip. The data can
be reasonably well explained by a model that supposes
that the primordial vortex is in the form of a small half
ring attached to the surface. If the half ring is to grow,
the system must overcome an energy barrier whose
height decreases as velocity along the surface increases.
By assuming that the system obeys an Arrhenius law7 we
can determine the velocity dependence of
E* 5E2kBT ln G where E is the velocity-dependent
energy barrier, T is the temperature, and G is a dimen-
sionless attempt frequency in units of 1 Hz. Studies of
several different apertures (Steinhauer et al., 1995a,
1995b; Lindensmith, 1996) reveal that there is a univer-
sal function for E* (v ,T), which is displayed in Fig. 12.
This function is reasonably well fit by the vortex half-
ring model. Thus the study of phase slips, a phenomenon

6The internal volume of the oscillator is 0.43 mm3. For details
see Steinhauer et al. (1995a, 1995b).

7The Arrhenius law states that a system in thermal equilib-
rium at temperature T can pass over an energy barrier of
height E at the rate Ge2E/kbT where G is an attempt frequency.

FIG. 11. The time evolution of amplitude of a miniature
Helmholtz oscillation. The fluctuations in the critical oscilla-
tion amplitude are intrinsic and due to stochastic processes.
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suggested by Anderson as a model system for the JA
equation, has led to a solution of the problem of the
origin of vortices in superfluid 4He!

Another spinoff of the phase slip research is a dem-
onstration of a long held idea that superfluids can detect
absolute rotation. The idea is best explained by refer-
ence to Fig. 13. The figure displays a superfluid-filled
torus of radius R , which is interrupted by a septum con-
taining a microaperture. We assume that the fluid is in
the zero-circulation state and that the torus is slowly
rotating at angular velocity V, about an axis perpendicu-
lar to the toroidal plane. The septum forces the bulk of
the fluid to flow almost like a solid body, vs5VR , while

FIG. 12. The universal energy barrier E8 as a function of ve-
locity and temperature. The asterisks and associated straight
lines are taken from discrete phase slip experiments. The con-
tinuous curves with scatter are taken from DC flow experi-
ments. The dashed line is a best fit to a half-ring vortex model.
See Steinhauer et al. (1995a, 1995b) for a full description of the
experiment.

FIG. 13. A rotating torus showing the back flow induced in a
small aperture. The velocity in the aperture is greater than the
torus velocity, by the ratio of the torus circumference to the
length of the aperture.
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globally maintaining curl-free flow (Schwab, 1996).
However, if rvs•dl50, integrated around the torus, the
positive solid-body contribution from the bulk of the
torus must be canceled by a negative contribution from
the path within the aperture. Thus there must be a back
flow in the aperture of magnitude va given by,

va5VR
2pR

leff
. (17)

The magnitude of the solid-body flow velocity is ampli-
fied by the ratio of the toroid circumference to the ef-
fective length of the microaperture. This ratio can reach
106. So, if one can monitor the velocity in the aperture,
one can detect a small absolute rotation. The phase slip
critical velocity can serve as the ‘‘speedometer’’ for the
aperture flow.

The realization of this idea is accomplished through
the phase slippage phenomena described above. We
connect a torus (like that shown in Fig. 13) in parallel
with a flexible diaphragm, which is surrounded by the
usual displacement detector and electrostatic driver
(Schwab et al., 1997). This system again is a diaphragm-
aperture oscillator, but now the kinetic energy is con-
tained in flow through the entire torus, dividing between
a path through the aperture and a path through the rest
of the torus. Again, one can detect single 2p phase slips
and record the critical oscillation amplitude of the dia-
phragm. However, a rotation-induced flow in the aper-
ture [Eq. (15)] will shift the apparent critical oscillation
amplitude of the diaphragm. This shift is proportional8

to va .
Recently, two groups (Avenel and Varoquaux, 1997;

Schwab et al., 1997) demonstrated the principles de-
scribed above to detect the motion of the Earth. At Ber-
keley, the toroidal device is built on a 1-cm-square sili-
con chip. The Earth’s rotation rate is measured by re-
orienting the plane of the torus with respect to the
Earth’s rotation axis. This reorientation produces a shift
in the apparent critical velocity for phase slippage. Fig-
ure 14 shows the critical oscillation amplitude of the dia-
phragm as a function of the orientation of the toroidal
plane. The diaphragm amplitude, shown on the vertical
axis, should vary as the cosine of the orientation angle.
From the curve shown, we resolve the Earth’s rotation
rate to '1% in one hour. It should be possible to in-
crease the device’s sensitivity by several orders of mag-
nitude by adding multiple turns to the torus and increas-
ing the scale of the macroscopic dimensions. As shown
in Packard and Vitale (1992) and Avenel et al. (1994),
the minimum detectable rotation rate is given by

Vmin5
pr2

sR

Dvc

Afot
. (18)

Here r is the radius of the aperture, s is the cross-
section area of the torus, R is the torus’ radius, Dvc is

8The superfluid gyroscope is analyzed by Packard and Vitale
(1992). Similar ideas are described by Avenel et al. (1994).
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the stochastic width of the phase slip critical velocity, fo
is the frequency of the diaphragm-aperture oscillator,
and t is the measurement time. It remains to be seen
whether future development will attain the full theoret-
ical limit of sensitivity for multiturn, large-diameter su-
perfluid gyroscopes.

Sensitive rotation detectors are important to several
areas of science, including general relativity and geod-
esy. Perhaps the future will show that the interesting
physics which has emerged from the JA equation will
lead to unexpected new technology.

IV. SUMMARY AND RECENT DEVELOPMENTS

This article has reviewed some examples of the use of
the Josephson-Anderson phase evolution equation. We
have tried to show that the equation provides an elegant
short cut to certain predictions (such as the frequency of
the precessing vortex and the size of a phase slip) that
involve the complex motion of quantized vortices. These
same predictions by other methods require a detailed
knowledge of vortex motion and involve considerable
computational effort. The experiments that illustrate
this point have led to an enhanced understanding of vor-
tex phenomena, including the vortex helicopter and the
nucleation of vortices. It is satisfying that out of this
somewhat esoteric exercise a new technology of inertial
sensors may evolve.

Very recently the JA equation has found a new and
important role in the realm of superfluid physics. We
have discovered (Pereversev et al., 1997) that an array of
several thousand submicrometer-sized apertures be-
haves as a single coherent weak link between two reser-
voirs of superfluid 3He. In the experimental arrange-
ment one can simultaneously determine the mass
current I(t) through the weak links and the pressure
head DP(t) across them. We desired to determine the
relation between the current and the corresponding
phase difference f(t). This was accomplished by inte-
grating the JA equation:

FIG. 14. The critical oscillation amplitude of the diaphragm as
a function of orientation of the torus plane. The normal to the
torus plane points northward at 0 deg.
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Df~ t !52
2m3

r\ E
0

t
DP~ t !dt . (19)

Thus knowledge of the time evolution of the pressure
head yields the time dependence of f(t). Combining
this function with the measured current generates the
current phase relation I(f). The experiment showed
that the weak-link array behaves like an ideal Josephson
junction at high temperatures, i.e., I(f) is sinusoidal
(Backhaus et al., 1997). At lower temperatures the func-
tion continuously evolved toward that of an ordinary
tube connection.

The integral form of the JA equation provides an im-
portant measure of the quantum phase difference and
will undoubtedly play a significant role in future experi-
ments with 3He weak links.
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