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We report on observations of the onset of  dissipation in superfluid 3He flowing 
through a single cylindrical channel of diameter d = O. 71xm and length L = 
6.0 #m. We propose a model in which thermally activated phase slips in the 
order parameter can account for the observed onset of dissipation. 

1. INTRODUCTION 

The mechanism for the onset of dissipation in quantum fluids (i.e., 
superfluids and superconductors) is a problem of fundamental interest. It 
is believed that thermal fluctuations are responsible for the onset of  flow 
dissipation in both superfluid 4He ( H e l l )  L2 and in superconducting 
microbridges. 3-8 In both cases, near To, the dissipation is caused by thermal 
activation of  phase slips in the order parameter of the quantum fluid. 

This paper reports on measurements of the onset of flow dissipation 
in superfluid 3He flowing in a cylindrical channel of diameter d = 0.7 # m  
and length L = 6.0/~m. This is the first investigation to study such effects 
using a single well-characterized channel. 9 The small diameter prevents 
quantized vortex creation from masking pair-breaking phenomena. Also, 
in restricted volumes of  3He such as this one, thermal fluctuation effects 
are predicted to play a significant role. t~ This system is very similar to a 
superconducting microbridge. 

Several experiments to investigate the flow of superfluid 3He have 
shown dissipation, which seems not to be consistent with the simplest 
pair-breaking mechanism. These include measurements of both ac and dc 
flows through a rectangular cross-section superleak, H'~2 of ac flow through 
multiple micropores at very high-pressure resolution, 13 and, more recently, 
measurements of  flow in thin superfluid films.14'15 
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2. EXPERIMENT AND DATA 

The microchannel used in this experiment is formed by etching away 
the radiation-damaged track produced by the passage of a single 252Cf 
fission fragment through a 6-ftm polycarbonate film. ~6 This film, containing 
the channel, is glued to a brass ring and is mounted in the wall separating 
two chambers containing 3He as shown in Fig. 1. Also contained in this 
wall is a 10-pro-thick, flexible diaphragm, which is metallized on both sides. 
Fixed metal plates positioned 20 ftm away are used to apply electrostatic 
forces to this diaphragm and also to measure the resulting motion by 
capacitive methods. The capacitance bridge can detect average motion in 
the diaphragm of 10 -12 m, which translates to a pressure sensitivity of 
10 -4 Pa. 

This cell is cooled by a conventional nuclear demagnetization cryostat. 
Thermometry is performed using pulsed NMR on 19Spt powder. The cell is 
filled through two capillary tubes, which join at a small reservoir mounted 
on the mixing chamber of a dilution refrigerator. Because of the large 
viscosity of the normal 3He in these tubes (which are about 3 m long in 
total and have an inner diameter of 100 tzm), the current through this flow 
path (which is in parallel to the microchannel) is negligible in comparison 

3 He fill lines 
To 195pt NMR and cryovalve 
thermometer 

~ / 1000 gold foil electrodes 

0.7 k'm hole ~ silver heat exchanger 
/ /! I 

/ 3He - - / ~  . . . . . . . . .  3 

/ ,-, . . . . . . . . .  I 

10 pm polycarbonate foil ~ silver heat 
exchanger 

copper finger 
to nuclear stage 

Fig. 1. The experimental cell used in this study. 
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to the supercurrents measured. This means that any pressure difference 
between the two chambers relaxes by superflow through the microchannel. 

The principle of the measurement technique is as follows. When the 
diaphragm is at rest in equilibrium and when T <  T~, a voltage is applied 
between one of the fixed electrodes and one side of the diaphragm. Under 
the influence of the resultant electrostatic force the diaphragm moves at a 
rate )( toward its new equilibrium position at Xo, which is the position 
where the electrostatic force is balanced by the elastic restoring, force of 
the flexible diaphragm. The supercurrent density J~ is related to X through 
mass conservation 

J~ =p(A/a)X (1) 

where A is the effective diaphragm area, a is the cross-sectional area of the 
microchannel, and p is the density of the fluid. The pressure difference Ap 
between chambers is directly related to the distance of the diaphragm from 
its equilibrium position X -X0  through the measured spring constant ,~ of 
the diaphragm 

A p =  - A ( X -  Xo) (2) 

A measurement of this form yields the diaphragm position X as a 
function of time t. The raw data are smoothed by a fifth-order polynomial 
fit to X(t) and differentiation with respect to time yields the function .~'(t). 
Thus, from Eqs. (1) and (2), and knowing Xo, the supercurrent density Js 
as a function of the pressure difference Ap can be found, yielding the 
function Js(AP), which is of central interest. 

Shown in Fig. 2 are examples of Js(AP) curves measured using the 
above method at three different temperatures. The significant features of 
these cures are: 

1. At pressures AP-> 5 mPa the supercurrent is independent of press- 
ure. We identify this saturation of Js as the Ginzburg-Landau (GL) depairing 
critical current J~. The magnitude and temperature dependence of this 
saturation current agree well with GL model calculations for a polar phase 
of superfluid 3He in a microchannel of this size with diffuse scattering 
boundary conditions. ~7 

2. At pressures below AP = 5 mPa the supercurrent Js falls as a function 
of Ap to reach a value Js(0) at the point of minimum pressure resolution 
when AP--0.1 mPa. In this experiment, Js(0) is the current density at the 
onset of observable dissipation. 

3. The ratio of J~(0) to the saturation current density J7 at a given 
temperature falls as temperature increases. This enhanced suppression of 
the current density with increasing temperatures (after the temperature 



144 J . P .  Pekola ,  J .  C. Davis, and R. E. Packard 

? 
E 

0.08 I L I I 

0.06 
�9 0 � 9  � 9  

- o � 9  �9 

0.04 -- �9 m,~ �9 

~imi �9 

0.02 ~ A  AA A 

0.00 

�9 �9 �9 �9 0 0  �9 �9 O 0 �9 �9 

T/Tc p = 0.88 
APc = 96 Pa 

�9 �9 ilnl nln a l l  n i l  nU luu  

T/Tc p = 0.92 
APc = 64 Pa 

&& 
& k  & 

& A  

T/Tc p = 0.94 
APc = 36 Pa 

I I I I 
1 2 3 4 

P (mPa) 

Fig. 2. The supercurrent density Js as a function of the pressure difference 
Ap between the two chambers containing 3He. The Js(AP) is shown at 
three different temperature below the transition temperature T p inside 
the microchannel. 

dependence of the superfluid density has been factored out) suggests that 
the dissipation process is thermally activated. 

4. The pressures at which these effects are observed are at least three 
orders of  magnitude below the pressure Ap~ that would be measured if 
normal currents of  the same magnitude were flowing through the microchan- 
nel.* The minimum length of a normal region inside the microchannel must 
be of  the order of the coherence length ~(T) and the minimum Ap that 
would be measured under conditions of  a static normal region is Ap = 
APc(~( T)/ L), which is of  the order of 1 Pa. Since the measured Ap values 
are still far below this, an analysis of  the data should consider a dynamical 
process. 

3. ANALYSIS 

Since in 4He and in superconductors the mechanism for the onset of  
flow dissipation is thought to be thermal activation of phase slips, it is 
natural to ask if any similar analysis will explain the observed onset of 
dissipation in superfluid 3He. First it is necessary to establish the nature of  
the superfluid state in the microchannel. We model this system in the 

*The AP, is ca lcu la ted  us ing Rice 's  fo rmula  for col l i s ionless  Fermi l iqu id  flow, Is Ap,  = 
J~pvL/m3d. Here  m 3 is the mass  of  the 3He a tom and  PF is the Fermi m o m e n t u m .  This  gives 
va lues  for Ap,. in the range 30-100 Pa. 
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Ginzburg-Landau formalism, taking a simple diagonal order parameter of 
the form 

I ] A = A• e iqz 

Air 
(3) 

Here Al is the energy gap of the superfluid perpendicular to the flow axis 
and Air is the gap parallel to it. If one assumes diffuse scattering boundary 
conditions, it is found upon numerical calculation ~7 of the free energy 
involved that the state in the microchannel at T~ Tc > 0.6 and at zero pressure 
is the polar state, i.e., the only term in A not equal to zero is Alle iq~. The 
state is also predicted to be the polar state close to Tc by Barton and Moore ~9 
and Jacobsen and Smith. 2~ 

A phase slip may occur in a region where a local fluctuation permits 
the otherwise smoothly varying quantum phase abruptly to change its value 
by 27r, when the order parameter collapses to zero along a length of the 
microchannel of order ~ ( T ) = ~ : o / ( 1 - T / T c )  I/2. For the case of diffuse 
boundary scattering, the order parameter falls to zero at the walls in a length 
again of  order so(T). This implies that the effective diameter over which the 
superfluid has its bulk value is d '  ~ d - 2sr Our experiments are carried 
out at zero pressure, where sr A. Thus, d ' =  ( (T )  at a temperature 
T/T~ =0.9, since d =0.7/zm.  In this temperature region thermal fluctu- 
ations, sufficient to cause the order parameter to collapse in a volume of 
order ~(T) 3, c a n  result in the complete absence of  superfluid from a region 
of the microchannel of  length ~:(T) and diameter d, thus causing dissipation 
due to the normal current flowing through this region. 

The thermal fluctuations determine the frequency f of these phase slip 
events. Following Little 3 (superconductors) and Langer and Fisher ~ (He II), 
we assume that f is proportional to the Boltzmann factor, i.e., 

f = fo e x p ( - A E / k D  T) (4) 

Here AE is the energy barrier that must be surpassed if the fluid in a volume 
V= a~(T) is to go from the superfluid to the normal state. This barrier 
separates two macroscopic flow states of  phase difference 2~r, and fo is an 
intrinsic attempt frequency. We use the Legendre transformed free energy 
functional G in the Ginzburg-Landau theory: G = G(ps, Js), where ps is 
the superfluid density and J, is the supercurrent density (see Fig. 3). To 
find G, we use a trial polar phase order parameter, whose value falls to 
zero at the walls over length sO(T), in a variational calculation. The stable 
superfluid state at the local minimum of G is separated from the normal 
state by a barrier AG, which is the difference between the maximum and 
the local minimum of  G. The value of AG depends on J, and on T as 
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Fig. 3. The dimensionless free energy G at different current densities j 
as a function of the dimensionless superfluid density x. The critical current 
Jc, at which the minimum of G vanishes, is Jc = (2/3) 3/2~0.54. Here 
G = - x ( 2 - x ) - f l / x .  The dimensionally correct free energy is obtained 
by multiplying G by 3a2/20/3, where t~ ands/3 are the well-known 
Ginzburg-Landau parameters: a = ~N(0)(1 - T~ To) and fl = 
7~(3)/2401r2]N(O)/kaTc. See text for further definitions. 

(1-Js /J~)3/2(1-T/T~)  2 near  T~, where T~ and J~ are the critical tem- 
perature and  G L  critical current density inside the channel,  both  o f  which 
are reduced f rom their bulk  values by restricted geometry  effects. 17"2~ The 
energy difference between these two states in a volume ~(T)a is A E =  
AG(~(T)a) .  This includes only the difference in the condensa t ion  energy; 
however,  taking the bending  energy into account  changes AE only slightly. 
We have found  f rom numerical  calculations using the polar  phase  order  
parameter  that  

AE/kBT ~ R[4~r2N(O)kBTd7~(3)] 

x (a~o)(1 - T~ Tp)3/2(1 -Js/JCs) 3/2 (5) 

In  this expression N ( 0 )  is the density o f  states for one spin direction at the 
Fermi surface, ks is the Bol tzmann constant ,  and ~ is the Riemann  zeta 
function.  The factor  R accounts  for the reduct ion in the condensa t ion  energy 
density inside the channel  compared  to its bulk value. This reduct ion results 
because (1) the z componen t  o f  the order  parameter  is the only nonzero  
componen t  (i.e., the polar  phase),  and (2) the order  parameter  falls to zero 
at the walls over a distance o f  order  ~(T) which is o f  the same magni tude  
as the channel  radius. The value o f  R is found  f rom numerical  calculations 
to be R =0.14.  
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Equation (5) shows that the energy barrier for phase slip events is 
lowest in narrow channels and close to the critical temperature and critical 
current. 

Besides Js, the other experimental observable is Ap, the pressure drop 
across the microchannel. In the absence of thermal gradients and magnetic 
fields one can express the potential difference A~ across the microchannel 
as 2m3AP/p. If the phase of the order parameter undergoes 2~- slips at a 
frequency f ' ,  then Atz is given by the relation 21 

At.~ = 2rrf'h = (2m3/p) AP. (6) 

Setting f '  from Eq. (6) equal to the frequency f in Eq. (4), one finds that 
the fluctuation-induced AP is 

A p = ( rrhp / m3)fo exp(-AE/kB T) (7) 

Combining Eqs. (5) and (7) gives 

�9 Is ( 1 - T ) - l [ r ~ ( 3 ) l n ( T r h p f o / m a A P ) 7 2 / 3  
1-j--~= ~ [ ~ j (8) 

This allows us to compare how much the supercurrent density is reduced 
from its critical value due to thermal fluctuations at the minimum pressure 
resolvable, i.e., at the onset of observed dissipation. 

In Fig. 4 we show the measured temperature dependence of 1 -Js(O)/J~. 
Also shown is a plot of this function calculated from Eq. (8) using Ap = 
10 -4 Pa and fo = ~'oLa, where Uo = n3/ 'r .  4 Here n 3 is the number density of 
aHe atoms and ~" is the inelastic scattering time of quasiparticles. The 
calculated function 1 -Js(O)/J~ is insensitive to changes of many orders of 
magnitude in fo. A second curve shows the results using a bulk B-phase 
3He order parameter in the calculation. Note that since it is the ratio Js(O)/J~ 
that is calculated and measured, the normal (1 -T/Tc)  3/2 dependence of 
the critical current has been removed from these plots and the remaining 
temperature dependence is ascribed to thermal activation. 

The reasonable agreement between the polar phase calculation and the 
data suggests that a thermal activation process may indeed explain the 
observed onset of dissipation. However, the model does not reproduce the 
entire observed Js(Ap) curve currectly, possibly because it does not take 
into consideration the interaction of phase slip regions in the microchannel. 

To summarize, we have measured the current at which detectable 
dissipation in the dc flow of superfluid 3He in a very narrow channel first 
appears. The magnitude and the temperature dependence of this current 
Js(0) suggest that the dissipation is thermally activated in the vicinity of 
the reduced superfluid transition temperature T~. 
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Fig. 4. The temperature dependence of the function 1-J , (0)/J~:  
(0) as measured (solid circles), (--) as calculated from the bulk 
B-phase order parameter setting Tc butk= TP~, and (--) as calculated 
using the polar phase order parameter in the restricted geometry, 
where the (1 - T~ Tf) factor appears naturally from the calculation. 
Note that the measured effect turns on in a temperature region well 
below T bulk, indicating that the dissipation is due to a process inside 
the microchannel. 
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