Autoresonant (nonstationary ) excitation of pendulums, Plutinos, plasmas,
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A weakly driven pendulum cannot be strongly excited by a fixed frequency drive. The only way to
strongly excite the pendulum is to use a drive whose frequency decreases with time. Feedback is
often used to control the rate at which the frequency decreases. Feedback need not be employed,
however; the drive frequency can simply be swept downwards. With this method, the drive strength
must exceed a threshold proportional to the sweep rate raised to the 3/4 power. This threshold has
been discovered only recently, and holds for a very broad class of driven nonlinear oscillators. The
threshold may explain the abundance of 3:2 resonances and dearth of 2:1 resonances observed
between the orbital periods of Neptune and the Plutifsto and many of the Kuiper Belt objegts

and has been extensively investigated in the Diocotron system in pure-electron plasmzmel ©
American Association of Physics Teachers.
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[. INTRODUCTION frequency. Autoresonant effects were first observed in par-
ticle accelerator,and have since been noted in atomic
How can you excite a pendulum to high amplitude with aphysics>’ fluid dynamics® plasmas:*° nonlinear waves!*?
weak drive? The usual answer is to drive the pendulum at itand planetary dynamics:**
linear resonant frequenci,. However, as the pendulum am-  Autoresonance in pendulums and other systems has been
plitude increases, its oscillation frequency decreases and thesed implicitly in many paperS.2However, these papers
pendulum goes out of phase with its drive. As shown in Fig.do not address a very important question: How fast can the
1, the amplitude only attains a modest value before beatinffequency be swept and still strongly excite the pendulum?
all the way back down to zerb. Specifically, given a pendulum described by
It is not surprising that driving af, will not strongly - > . — 2
excite the pendulum. As shown by the solutions of the pen- ¢ @0 Sin 6= € COS ot — at™/2), 2
dulum equation, how large can the sweep ratebe and still stay in autoreso-
- 5 — nance? Herevwy/27m=f is the pendulum’s linear frequency,
0+ (2mfo)” sin 6=e cog2mft), @) and the drive frequency isy— at.

graphed in Fig. Z,*the equilibrium response of the pendu- Receﬂ)t%, we have addressed this problem in a series of
lum is large only when the drive frequentis lower than the ~ Papers*®*- focused on a similar nonlinear oscillator, the
linear frequencyf,. Even this is not sufficient, however, be- Diocotron mod&’ in non-neutral plasmas. Here we apply
cause there exist two stable branches to the response, ofl§Se results to the pendulum and find that there is a very

with a much higher amplitude than the other. Suddenly ap_sharp threshold for autoresonance; if the drive amplitude
plying a low frequency drive to an initially quiescent pendu- €xc€€ds a threshold proportional to the sweep#atgsed to

lum results in oscillations around the low amplitude branch (€ three-quarters power, the pendulum will follow the drive

not the high amplitude branch. Hereis the angle of the t© high amplitude(see Figs. 1 and)3If the drive amplitude
pendulum from vertical, and is the drive strength. is below thls_ thggsholq, the pt_andulum amplitude will stay
The only way to strongly excite the pendulum from rest isVery low. This «™™ scaling applies to a very broad class of
to sweep the frequency downward and hope that the pend@gnlmear oscillators, not just to the pendulum and to the
lum’s response follows the response function’s upper branckiocotron. Moreover, the scaling can be extended to drives
to high amplitude. Feedback can be used to appropriatel§t subharmonics of, (Refs. 24 and 2Band survives in the
sweep the frequency; this is how we excite a child’s swingpresence of damping.
But there are circumstances in which using feedback is im- We begin this paper with the mathematical analysis of the
practical or undesirable. For instance, you might not be ablgreshold. Then we describe some of the Diocotron experi-
to sense the phase of the pendulum well enough to applipents in plasmas, and discuss how the threshold explains the
feedback properly, or you might want to simultaneously ex-Plutino resonances. We end with some concluding remarks.
cite several pendulums with the same drive. What can you do
then? Simply _starting the sweep at a frequency well abovg AnALYSIS
fy, and sweeping downwards through the resonance at a suf-
ficiently slow rate can strongly excite the pendullive call The complete threshold analysis is given in Refs. 8 and
this phenomenon autoresonahbecause, at each instant in 10, so we will only give a preis here. The analysis divides
time, the pendulum automatically adjusts its amplitude santo three regimes: the linear, phase-trapping regime where
that its instantaneous nonlinear frequency matches the driihe pendulum amplitude is so low that its frequency does not
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Fig. 3. The numerically determined critical drive strength as a function of
Fig. 1. The response of a pendulum to a drive sweeping ara®001 for  the sweep rater (dot9 and the theoretical scaling from E4) (line) for
four different values of the drive strength(solid lineg and to a fixed  ,=2. The numeric data are in excellent agreement with the theory. Ex-
frequency drive of strengté=0.1 (dashed ling The response to the=0.01  periments(Refs. 9 and 1pwith the Diocotron mode in non-neutral plasmas
drive is very small, and the response to #w0.0459 drive is only some-  have verified this scaling law over five orders of magnitudexin
what greater. However, the response to &.0460 drive, which is only
0.2% gerater than the=0.0459 drive, is large and results in the pendulum
swinging over its top. The response to #=0.5 drive is qualitatively simi-

lar to the response to the=0.0460 drive. Clearly there is a sharp threshold system is effectively linear here, it reduces to a simple har-

neare=0.0460. The oscillations in the=0.0460 curve are the manifesta- - . . .
tions of the pseudoparticle oscillations in the pseudopotential wells. ThesgnonIC oscillator(SHO) subject to a swept frequency drive,

curves come from numerically simulating H) with wy,= 2. For clarity, y: 20— 42
the time scale for the fixed frequency curithe dashed linehas been 0+w00 € COg wol —at 12). )
expanded by a factor of 10. This system was solved exactly in terms of complicated

Fresnel sine and cosine functions by Le@iddowever, the

behavior of the solution can be understood quite readily. Like
significantly deviate fromf,, the weakly nonlinear regime any SHO, the sudden application of the drive excites a driven
where we take only the lowest order amplitude correction tanode at the drive frequency and an undriven, homogeneous
the frequency, and the strongly nonlinear regime where wenode at the linear frequency. Assuming that the pendulum is
must use the complete expression for the pendulum fremitially quiescent, the two modes have equal and opposite

guency. We will consider each regime in turn. amplitude, are proportional to the drive, and inversely pro-
A Linear. phase-trapping redime porti_onal to the deviatiold w(ts) = w(ts) — wo=—ats from
- L P pping regi the linear resonant frequency. Thereafter, just as in a steady

The pendulum will be in the linear regime from the time at State SHO, the amplitude of the driven mode continues to be
which the drive is first applied,=t;<0, to near the time at approximately inversely proportional td w(t). Conse-
which the drive frequency crosség namelyt~0. Since the ~quently, the driven mode grows in proportion tat Hs t

—0. Remarkably, the homogeneous mode is not further ex-

cited by the sweeping frequency.
. . . . r The net motion of the pendulum is the sum of the phase-
locked driven mode and the free-running homogeneous
mode. Initially, the net motion will not be phase locked be-
cause the amplitudes of the two modes are comparable. But
since the driven mode amplitude grows while the homoge-
neous mode amplitude is constant, the driven mode will soon
dominate, and the net pendulum motion phase locks to the
drive.

N w

Amplitude (rad)

4 3 -2 A 0 1 2 B. Weakly nonlinear regime

Aw (rad/sec
( ) In the weakly nonlinear regime, we need to retain the low-

Fig. 2. Equilibrium pendulum amplitude as a function of the drive fre- €St order amplitude correction to the pendulum frequency.
quency detuningAw, defined byw=w,+Aw where o is the drive fre-  The set of weakly nonlinear equations describing our adia-
quency.(For the swept drive used in this papar = —at.) Only the first-  batically driven pendulum can be derived as follows. We
order correction to the frequency is retained in this graph, so the eq__uilibriebegin by replacing si by its truncated expansion in Eq.
come from solving for the steady amplitude solutions to the equation (2)-
+ w3(6— 6%6)="¢ cog(wy+Aw)t]. The two solid lines are stable equilibria,

and the dashed line is an unstable equilibrium. Far from resonance, the low 2 = = iy

amplitude solutions reduce to the standard solutions of the linearized pen- 6+ wg| 1— 5 0= € cog ) =€ Re€'’), (4)
dulum equation f+ w36= € cog(wy+Aw)t]. The high amplitude solutions

comes from balancing the nonlinearities in the next order equationsThe where U= wot— at?l2 is the driving phase. Then we seek

term introduces the possibility, realized for large negativg of three equi-  gg|utions of Eq.(4) of the form
libria at a given Aw. For this figure, the drive strength ie=2 and .
wo=21. f=a cosp=Reae'?), (5)

2
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wherea(t) is the real amplitude, ang(t) is the phase of the Furthermore, the structure of Eq4.3) and(14) is also pre-
pendulum, and we have neglected higher harmofiies the  served in a general nonlinear case, withrepresenting the
terms withe?®¢, e3¢, etc) By differentiating Eq.(5), we  phase mismatch — ¢, and 22 andl ~*2in the interaction
find terms in these equations replaced by some funadfidn and

dVv/dl, respectively.

0~Re2ipatipa—g*a)e’, ©) Equationg(13) and(14) are easy to interpret. If the drive is
and by cubing Eq(5) turned off (e=0), the action will be constant, and the phase
, mismatchd will advance appropriately. When the drive is on
g°~Re 3a%e'?), (7)  (e#0), the action will increase or decrease depending on

whether or not the pendulum is in phase or out of phase with
the drive. The rate at which the action changes depends on
the action itself, because the work done per cycle depends on
the pendulum amplitude. Likewise the drive can “drag” the
2ipa+ipa—¢’a+ w%(l— ta?)a=ee'(V ¥, (8) phase mismatch. When the pendulum amplitude is large, it is
. ) ) . difficult for the drive to change the pendulum angle quickly,
On separating the real and imaginary parts in the last equasy; when the pendulum amplitude is small, the drive can

where we have neglected thgerm in Eq.(6) (slow ampli-
tude assumptiorand kept the first harmonic term only in Eq.
(7). With these approximation, E¢4) becomes

tion, we obtain change the pendulum angle readily. Consequently, the rate of
d(a2p L o change of the phase mismatch is inversely proportional to
——=a(2¢a+pa)=—e€a sind, 9 (the square root ¢fthe action.
dt The pendulum enters the weakly nonlinear regime from
and the linear regime at abotit=0. From the results of Sec. Il A,
2 € we know that the system is phase Iock_ed at this time(I)so'
wi— = w2+~ cos®, (10) starts out nearr. If the system is to stay in autoresonance, it
8 a must stay phase locked ardel must remain neatr. Other-

wise, the phase between the pendulum and its drive would

where the phase m|smatgh IS defm_edIas e Ngxt we stray and the drive would not be effectively coupled®lis
assume that the system is nearly in resonance, i.e., that tl?g stay nearr, the right-hand side of Eq14) must be close
pendulum frequency is close to the linear frequerey, . '

> o . to zero. This requirement will be met if
Then wi— ¢“~2wo(we— ¢), and Egs.(9) and (10) can be

. . €
rewritten as: 0= at=Bwolot 12, (16)
—_ 0
. € . . L .
a=— 2—sin D, (11)  where we have defined the action to be within a small devia-
@o tion A of the equilibrium actiorly,l =17—A. Note thatl ; is
€ a slow function of time: The action grows as time increases

cosd. (12 and the drive frequency gets further and further from the

linear resonant frequency. This equation is identical to the
Finally we define the action variable=a?/2, and the weakly ~standard equation used to find the nonlinear response of a
nonlinear frequency of the pendulufd(1)=w,— wya%16  Pendulum, and its solution is plotted in Fig. 2.

—wo(1— 1), (B=1/8) and substitute the driving fre- Sincel, is a slow function of time, we can expand the
quencyz;z/—w — at, arriving af® system[Egs. (13) and (14)] around the instantaneous value
=w, ,

of |y, yielding two new equations:

by Pa
“0~ 162 ¥ Zaw,

s 13 ; “«
gt~ 2€l7Tsin@, (13 A=2e\lgsin®+ 3, (17)
do b=
d—ZQ(I)—wo-i-at—fl71/2 cosd, (14 d=8A, (18)
t where S=Bw,+ €/21 3%, Note thatSis a function of time
wheree= €/(1/8w) is the normalized drive strength. through Io. Together, these two equations form a Hamil-
It should be mentioned that the expressiena?/2 is just ~ tonian system with
the small amplitude limit of the normalized action variable  H(®,A)=SA%/2+V ge a6 P), (19
frequently used in describing nonlinear oscillators. MoreWhere
generally, the normalized action, in our case, is defined as
o
: Vpseudb @) =2¢€l§? cos® — <. (20)
1= ﬁg 0 do, (15 pocudh ° S
27w

Thus, the system reduces to a pseudoparticle of slowly vary-
where the integration is over one period of oscillation of theing effective mass & moving in a slowly varying pseudo-
unperturbed pendulum. The actibris a measure of the en- potential well.

ergy in the system, ano!, in combination with another variable The pseudopotential psedo 100ks like a tilted series of
called the “angle,”®, is used to replace the phase spacepotential wells(see Fig. 4 Neart=0, we know that the
variables @, 6) in studying nonlinear oscillators. Thg,®) system is phase locked adel is nears; for this to remain
representation is very convenient in studying weak perturbatrue, the pseudoparticle must be trapped at the bottom of one
tions of oscillators because the unperturbed motiofi,i)  of the potential wells. If the pseudopotential and the effective
variables is extremely simple, i.d.=const and® = (1)t. mass change slowly, and the wells continue to exist, the
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L L linear oscillator whose nonlinear frequency dependence re-
] duces tow= wq(1+ Bl) for smalll, i.e., when the equation
of motion reduces to

0+ w3(0+af>+b6%) =e cog wot— at?/2). (25)

=10\ For the pendulump=3b/4—5a2%/63 If a=0, Eq.(25) is
N\ ] called the Duffing equation, and is the low amplitude de-
L N i scription of many physical systems. Systems that reduce to
AN the Duffing equation are very common because the “Duff-
' ' : ing” term, bw§03, is the first symmetric nonlinearity. Thus
D any system whose potential goes liké(6)=a6’+bo*
Fig. 4. Critical (dashed ling and typical above-threshol@olid line) nor- + o wherea andb ar? constants, will reduce to a I.:)Uffmg
malized pseudopotentiaMpseungEI%’chosd)fyd) as a function of the oscnlator27at low amphtude. The pengglum, the Dlocostron
phases-lipb, wherey= a/2€13?S. The critical pseudopotential, defined by (Sec. 11),“" many mechanical system®; galvanometeré,
Eq. (21), occurs wheny=1.0. electronic oscillatoré! etc., all reduce appropriately. Some
two-dimensional systems, like the Neptune—Plutinos systems
(Sec. IV), also reduce appropriately.

12
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pseudoparticle will stay trapped at the bottom of the well aC. Strongly nonlinear regime

time advances. The phase mismatkhwill stay near zero, ) ) )

the equilibrium action will continue to satisfy E¢L6), and In the strongly nonlinear regime the action becomes large,
the system will stay in autoresonance. However, the pseud@nd the small assumption used to derive Eq$3) and(14)
potential wells will only exist if the pseudopotential tilt is is not strictly valid. Nonetheless, computer simulations of the

less than the well depth, i.e., if original equation of motiofEq. (2)] and analysis of the
" corresponding action-angle evolution equatiénsonfirm
2ely>alS. (21)  that the phase locking in the system continues, and the fre-

qguency of the oscillator decreasge., its oscillation ampli-
ude grows$ to approximately match that of the drive, until

. . X e he pendulum swings over the top. This usually happens be-
the system will not stay in autoresonaridey differentiating forepthe drive frequgency reachespzero as theysmglﬁ) oscilla-

the quantityS lg”* (remember thaSis itself a function oflo), ~ tjons around the equilibrium action will be sufficient to drive
it is easy to ghow thatl t_here is a _crltlcal action at whichipe pendulum over.
condition (21) is most difficult to satisfy and the wells are |yyition might lead one to believe that the drive amplitude
most likely to disappear, would have to increase eventually to excite the pendulum to
loor= (€l Bwg) . (22 very high amplitqde; perh_aps _the most remarkable.aspect of
the strongly nonlinear regime is that the drive amplitude can
If the system makes it past this critical action, the wells will be decreasedvhen the pendulum amplitude is large. This
be retained effectively forever, and the system will grow tofollows from the decreasing pseudopotential tilt once past
high amplitude. Thus, replacint, with I in Eq. (21) the critical action, which makes the wells effectively deeper.
yields the minimum drive amplitude for which the system Thus the drive can be decreased while still maintaining the

If this condition is not met, the wells will disappear, the
pseudoparticle will escape, phase locking will be lost, an

stays in autoresonance: wells.
1 @ 3/4
€= (_) (23 . AUTORESONANCE IN THE DIOCOTRON
VBwy \ 3 MODE IN PURE-ELECTRON PLASMAS
or Consider a column of electrons that is aligned along a
3/4 strong magnetic field, and confined within a conducting
?:8\/0)—(2 (24) cylindrical wall. If the column is displaced from the cylin-
¢ o3 drical wall axis, it will orbit around the axis. This oscillation

is called the Diocotron mod€, and is found in electron
beams in accelerators and in “pure-electron plasmas” con-
fined in Malmberg—Penning trap$ig. 5. Understanding

This threshold has been verified numericdige Figs. 1 and
3) and, for the non-neutral plasma Diocotron mode,

; ,10
experimentally. . . the Diocotron has been crucial to understanding charged
For most .s.ystem parametegy Is qylte small: Fore plasmas, and dozens of papers have been published on the

near the critical valudEq. (23)], loci is approximately — ghiect. The Diocotron oscillation comes about because of an
(1/B)(3N) 2, where N=w§/a measures the number of interaction between the electron column and its image. At
cycles in the sweep, Sg; is indeed small for any reason- any given instant, the electron colur¥XB drifts azimuth-
able sweep rate. Consequently, whether or not the systeally in the electric fieldE of the image.(See Fig. 6. An
stays in autoresonance is determined at very low penduluralectron subjected to crossé&dandB fields will move per-
amplitude. Thus, the assumptions made at the beginning gfendicular to both fields, hence the nafXB drift. The

this section, that we need only take the first-order terms irphysics of the drift is simple: The electron is accelerated
the action-angle equations, and that only the first-order corantiparallel toE, but the Lorentz force fronB pushes the
rection to the linear frequency is important, are valid. Moreelectron sideways. The net motion is a cycloid whose center
importantly, we can generalize our resultsatyy driven non-  moves at velocitfEXB.) The image moves with the column,
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be found in Ref. 37.
Fig. 7. Critical Diocotron drive amplitude vs sweep rat=. Measured

results(®), and theoretical prediction from E4) (solid line). For more
information, see Ref. 10.

so the net column motion is to orbit around the wall axis.

The distance off axis is a measure of the amplitude of the

oscillation. The image electric field gets stronger nonlinearly

as the column approaCheS the wall, so the oscillation frervl THE PROBLEM OF PLUTINOS

guency increases with amplitude, following the equation

wo The autoresonance phenomenon and the threshold for cap-
=1-,2 (26) ture into resonance described in Sec. || B can be found in
more complicated dynamical systems. One of the most re-
where w is the linear frequency of the mode, ands the  markable examples is found in Nature in relation to early
suitably normalized oscillation amplitude. The oscillation is evolution of the trans-Neptunian regirof the solar system.
very robust, and very lightly damped; the column can orbitln contrast to the nonlinear pendulum, the Keplerian two-
the trap hundreds of thousands of times. body (Sun—planetproblem has two degrees of freedom and
At low amplitude (r small the Diocotron reduces to a Yields elliptical orbits in a plane, given, in polar coordinates
Duffing oscillator. It is easy to drive the Diocotron by im- (r,¢), by the equatiora/r =1+e cose¢, wheree is the ec-
pressing an oscillating voltage on an azimuthal section of theentricity of the orbit. It is well known that most planets in
wall. By starting at a frequency below the linear frequency,the solar system move roughly in one plditee ecliptig on
and sweeping the frequency upwards, the Diocotron can beearly circular orbits with eccentricities<0.09. A notable
grown autoresonantly’?*?°to so large an amplitude that exception is Pluto, the most distant planet in the solar sys-
the electron column hits the wall. As shown in Fig. 7, thetem, which has a very eccentric origé=0.25) and a semi-
system obeys the sweep rate threshold scaling lamMZEl.  major axis of about 39 AU. Furthermore, Pluto is observed to
over five orders of magnitude. Many other aspects of theye in a 3:2 resonance with Neptune, i.e., Pluto completes two
autoresonant theory presented here have been tested with thgations around the Sun during the time Neptune completes
Diocotron, including the behavior in the linear regime, thethree rotations. According to present understanding, this pe-
existence of the pseudopotential wells, and the possibility ofyliar synchronization has existed since the planetary forma-
lowering the drive strength once in the strongly nonlineartion several billion years ago.
regime. Pluto is not the only trans-Neptunian body in the solar
system. There exist a large number of smaller magssts
mated number of~100,000 which comprise the Kuiper
Belt, a disk-shaped region at distances roughly between 35

©B and 100 AU from the Suiil AU is the distance between the
Earth and the SunRemarkably, about one-third of presently
observed Kuiper Belt object&BOs) are also engaged in the

f K 3:2 resonance with Neptunghese objects resemble Pluto
Column and, thus, are called Plutinoand also have very eccentric
R orbits 0.1<e<0.353* How one can explain this anomaly?
7 9 What is the origin of orbital eccentricity of the resonant
4 B trans-Neptunian objects?
It is now widely accepted that the resonances in the Plu-

tino orbits are the result of Neptune’s orbit migration during

the last stage of planetary formation. Neptune’s radiys
experienced a slow increasky roughly 30% during some
time) due to some migration mechanism, and its orbital fre-

_ _ ) _ o quency decreased concomitantly. The force exerted by the
Fig. 6. End view of the Malmberg—Penning trap showing the confining Wa”orbiting Neptune acted as a quasi-periodic drive on the Plu-
at R, the electron column a distaneefrom the trap center, the electron . . . .
column image, the image electric fiel, and the Diocotron drift at fre- tinos, pag;?'.”g thrOUgh’ and capturing many (.)f th?m In
quencyf. The mode is detected by monitoring the image charge on thd€SONaNce; just as the pendulum phase locks to its drive as

pickup sectoi, and driven by applying a voltage to the drive sedigy. described .in SeC-. A Be)(ond the trapping Stage, as Nep-
Further details are given in Ref. 10. tune’s radius continued to increase, the Plutinos entered au-

S/

D
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toresonance and their initially circular orbits developedoscillator[Eq. (25)]. Many if not most nonlinear oscillators
growing radial oscillations, i.e., became increasingly eccenreduce to the Duffing oscillator at low amplitude, so the
tric (see the orbit equation abgve analysis presented here is very general, and the saifie
The theory of migrating planets explained a number ofdrive strength scaling applies to all these systems.
important features observed today, such as the distribution of In this paper we assumed that the oscillator is lightly
eccentricities of Plutinos in the Kuiper belt, for example. damped, but recent calculations and experinf8istsow that
Nevertheless, the early thedfycould not explain the dearth the results still apply in the presence of appreciable damping.
of KBOs in the similar, 2:1 resonance with Neptune. ThesenNe demonstrated elsewh&té® that a very similar scaling
early calculations yielded similar populations of 3:2 and 2:1jaw holds if a system is driven near a subharmanign. In
resonances. Astronomical observations, on the other hanghis case, the scaling law become¥*. Furthermore, au-
showed almost no 2:1 resonant KBOs. The dearth of 2:}gresonance phenomena occur wheny sufficiently slow
resonant KBOs was one of the main remaining questions gihange is made to the systérhlere we have only discussed
the resonant KBO CAapture theory, with a possible explanatiogyeeping the drive frequency, but a pendulum can be au-
given only recently: The explanation is related to the issue ygresonantly excited by a fixed frequency drive if the pendu-
of threshold for capture into resonance. We have shown thafim pob length is continuously shortened such that the pen-
the governing equations describing orbital evolution of aqyjum's linear resonant frequency passes through the drive
KBO in the field of slowly migrating Neptune can be de- frequency! A similar scaling law will apply°
scribed by the reduced system of evolution equations identi-
cal to Eqs.(13) and(14), wherel is replaced bye?, while ®  ACKNOWLEDGMENTS

represents the phase mismatch between the rotating Neptune ]
and the KBO. In the j+1):j autoresonance,j§1)Q This research was funded by the Office of Naval Research

~jwy(t), whereQ is the Keplerian frequency of the trapped and the Binational U.S.—Israel Science Foundation.
KBO andwy(t) is the slowly varying frequency of migrating

Neptune. Each resonance has a different coupling constanta,Electronic mail: joel @physics berkeley.edu
[Sge E_qs'(,?’) and (4?T]“gand’ thus, y'?llds different Neptune 'Four movies illustrating the phenomena described in this paper can
mlgratlon time scale¢™ =ry(dry/dt)” " thresholds fortrap-  he found at http:/isocrates.berkeley.edfajans/Autoresonance/
ping into resonance. We have calculated these threstiolds Autoresonance.htm. The movies shai a pendulum driven at its linear
and found thattmh'g= 2% 10° and 2x 10’ yr for capturing into resonant f_requency2) an autoreslonar_u pendulurln driv_eE ?1y a swept fre-
3:2 and 2:1 resonances, respectively. The order of magnitude“"Y d(rj"’e(s) an f‘“tofsona”ty d”"eg ple”d“ ‘.’?: with the Cor:rfaskpond'
difference between the thresholds is due to the Sun’s rotation:ng ?,f'zu- OpOt?m'? V\éefs’ anah) a pendulum with an ever shrinking
. “"length driven at a fixed frequency.

arou_nd the Sun—Neptune center of mass. Inclusion of thisy, A, mitropolski, Nonstationary Processes in Nonlinear Oscillatory Sys-
rotation required analysis of the associated three-body prob-tems(izd-vo AN, Kiev, USSR, 195f in Russian.
lem, but affected the time scale for capture into 2:1 reso-°L. D.Landau and E. M. Lifshitz)MechanicsPergamon, New York, 1969
nanceonly, lowering the corresponding value efsignifi- PP 87-93. _ _ _
cantly, thus increasing the threshold time scale by one 0fderfgﬁf,i?,‘é?fl‘ifﬁ?ﬁ”‘fﬁ;ﬁf‘i@ﬂg@m'“ of Particles and Systems
of magmt_Ude' Therefore, if the actu?I migration tlme_ scale of B. Meerson and L. Friedland, “Strong autoresonance excitation of Ryd-
Neptune is between210° and 2>< 10 yr, a large fraction of berg atoms: The Rydberg accelerator,” Phys. Rev4h 5233-5236
the KBOs would be captured into 3:2 resonance and none(1990.
into 2:1 resonance, as observed in present solar Systerﬁl_\/l. S. Livingston, High-energy Particle Accelerator@interscience, New
Thus, these arguments allow us to find accurate bounds opw{l" L1_95‘g- W and 3. M. Yuan. “Nonfinear dvnamics of chired oul
the time scales involved in the early stage of the evolution of % =Y = d‘fj'. and J. M. ‘]fag." °.”'”eﬁr ylnan’jlgsho CR"peL_l;” se
the solar system on the bases of present astronomical obser?z(g;atf;g;qggéssoc'anon of diatomic molecules,” Phys. Rev. LY.
vations, and to discard slower Neptune migration models. &_ Friedland, “Control of Kirchhoff vortices by a resonant strain,” Phys.

Rev. E59, 4106-4111(1999.
V. CONCLUSIONS gJ_. ngans, E. G_ilson, and L. I_:riedland, “Autoresonéminstationary ex-

citation of the dioctron mode in non-neutral plasmas,” Phys. Rev. B&it.

We have shown that a swept-frequency drive can strongl¥044é47444é(199?- 4 L Friediand. “A _
excite a pendulum. The initial drive frequency must be above 7; F3ans, E. Gilson, and L. Friedland, “Autoresoneminstationary ex-
the pendulum's linear frequency The pendulum will phase citgg;n of a collective nonlinear mode,” Phys. Plasn&s4497-4503
|F—’Ck to the drive while the drive freque.ncy is still above the 1] Aranson, B. Meerson, and T. Tajima, “Excitation of solitons by an
linear frequency. If the pendulum remains locked to the drive external resonant wave with a slowly varying phase velocity,” Phys. Rev.
past a critical drive frequency, the pendulum will be strongly A 45, 7500-75101992.
excited as the drive continues to sweep downwards. In th|lSZL Friedland and A" G. Shagalov, “Excitationof solitons by adiabatic mul-
circumstance, the pendulum’s amplitude will automaticalIy13ge,f,,°£ﬁgttr;°rf,{;‘ig'rag:gsblEfgt'sl‘,,e Stscli' iﬁ;gf(%?qslgfzé(lggg
ﬁ]dz;‘?csfg Ittﬁglf dsrl?léh?rte;[:]hueer?(e:;dﬁleunrges t?}%”gg?ﬁé f;i?ggg%%;\’rﬂ;él; Friedland, “Migration time scale thresholds for resonant capture in the
h -y - > lutino problem,” Astrophys. JB47, L75-L79(2001).

The pendulum will remain locked to the drive only if the 5 v. Appelton, “On the anomalous behavior of a vibrating galvanometer,”
drive strength exceeds a threshold proportional to the sweepPhilos. Mag.47, 609-619(1924).
rate « raised to the 3/4 powdiEq. (23)]. The critical point 1%C. A queke, “An exp_erimental i_nvestigation of forced vibrations in a
occurs at a frequency which is only slightly lower than the g“OeSChgg;i'gzgtem having a non-linear restoring force,” J. Appl. P1gs.
:mearBfrequen?r/]’ Wh.et.re tlhe petndUIum arpp“tuﬁe IIS still qUI;[§17D_ P. Stockard, T. Johnson, and F. W. Sears, “Study of amplitude jumps,”
ow. Because the critical point occurs at such a low ampli- oy, '3 phys3s, 961-963(1967.
tude, only the lowest order corrections to the frequency ares). N. Fox and J. J. Arlotto, “Demonstration experiment using a dissectable
relevant, and the pendulum can be considered to be a Duffinganharmonic oscillator,” Am. J. Phy&6, 326—-330(1968.

1101 Am. J. Phys., Vol. 69, No. 10, October 2001 J. Fajans and | dreniel 1101



19T, W. Arnold and W. Case, “Nonlinear effects in a simple mechanical °F. M. Lewis, “Vibration during acceleration through a critical speed,”
system,” Am. J. Phys50, 220—224(1982. Trans. ASME54, 253(1932.

204, J. Janssen, R. Serneels, L. Beerden, and E. L. M. Flerackers, “Expertog_ 7. Sagdeev, D. A. Uskiov, and G. M. Zaslavskyonlinear Physics:
mental demonstration of the resonance of an anharmonic oscillator,” AM. £.om the Pendulum to Turbulence and Chatarwood, New York,
J. Phys51, 655—-658(1983. 1989, pp. 13-23.

21, “ :
H. J. Jannson, L. Beerden, and E. L. M. Flerackers, “An experimental ook, o .
at the resonant behavior of a nonlinear LC circuit,” Eur. J. Plsy€4— Il; 57 Landau and E. M. Lifshitz2Mechanicq(Pergamon, New York, 1960

100 (1984).
32 : w . . . . .
22\, Alessi, C. W. Fischer, and C. G. Gray, “Measurements of amplitude L. Friedland, “Autoresonant excitation and evolution of nonlinear waves:

jumps and hysteresis in a driven inverted pendulum,” Am. J. PBgs. The variational approach,” Phys. Rev.55, 1929-19391997).

755—756(1992. 3%R. Gomes, “On the edge of the Solar System,” Scie@66, 14871488
ZR. D. Peters, “Resonance response of a moderately driven rigid planar (1999.

pendulum,” Am. J. Phys64, 170-173(1996. 34D. Jewitt and J. Luu, ifProtostars and Planets IVArizona U.P., Tucson,
4. Friedland, J. Fajans, and E. Gilson, “Subharmonic autoresonance of the 2000, pp. 1201-1229.
25d|ocoFron mode,” Phys. Plasmas 1712—17182000. ) 3%R. Malhotra, “The origin of Pluto’s peculiar orbit,” Naturé_ondon 365,

J. Fajans, E. Gilson, and L. Friedland, “Second harmonic autoresonant 819-821(1993.

control of thel =1 diocotron mode in pure-electron plasmas,” Phys. Rev. 36R. Malhotra, “The origin of Pluto’s orbit: Implications for the solar system

E 62, 4131-41362000. "
28], Fajans, E. Gilson, and L. Friedland, “The effect of damping on au_37beyond l\lle;k))tune, Astron.. ‘Mﬁ' 420_42k9(1995' | .
toresonantnon-stationaryexcitation,” Phys. Plasmag, 423—427(2001). ‘]'_ H. Malmberg, C. F. Driscoll, B. Bec“, D. L Egg est.on, J. Fajans, K.
2R, C. DavidsonPhysics of Nonneutral Plasmagddison-Wesley, Red-  Finé, X. P. Huang, and A. W. Hyatt, “Experiments with pure electron

wood City, 1990, pp. 289—-344. plasmas,” inNonneutral Plasma Physicedited by C. Roberson and C.
28, Friedland, “Subharmonic autoresonance,” Phys. Re61E3732-3735 Driscoll (American Institute of Physics, New York, 1988Vol. 175,
(2000. pp. 28—69.

THE SECOND LAW

Dispersal into disorder creates because it need not be uniformly smooth. A flood of chaos there
may result in a surge of order here. The purposeless increase in disorder of the world is not a
smoothly descending river of energy, but a choppy rapid, that may throw up a structured foam and
an elaborate wave as it plunges down. That order may take the form of a protein formed |by an
enzyme driven ultimately by the energy of the Sun, or the construction of a strip of DNA. It may
power the jaws of a cheetah and the emergence on its coat of the stripes of a zebra. Thus the
Second Law may erupt into evolution, and stronger cheetahs and better camouflaged zebras may
emerge, transitorily, as the universe globally spreads in disorder. Thus the ‘Creatipn’'—
everything—emerges as chaos spreads.

P. W. Atkins, “The Limitless Power of Science,” iMature’s Imagination—The Frontiers of Scientific Visi@dited by
John Cornwell(Oxford University Press, New York, 1985
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