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A weakly driven pendulum cannot be strongly excited by a fixed frequency drive. The only way to
strongly excite the pendulum is to use a drive whose frequency decreases with time. Feedback is
often used to control the rate at which the frequency decreases. Feedback need not be employed,
however; the drive frequency can simply be swept downwards. With this method, the drive strength
must exceed a threshold proportional to the sweep rate raised to the 3/4 power. This threshold has
been discovered only recently, and holds for a very broad class of driven nonlinear oscillators. The
threshold may explain the abundance of 3:2 resonances and dearth of 2:1 resonances observed
between the orbital periods of Neptune and the Plutinos~Pluto and many of the Kuiper Belt objects!,
and has been extensively investigated in the Diocotron system in pure-electron plasmas. ©2001

American Association of Physics Teachers.
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I. INTRODUCTION

How can you excite a pendulum to high amplitude with
weak drive? The usual answer is to drive the pendulum a
linear resonant frequency,f 0. However, as the pendulum am
plitude increases, its oscillation frequency decreases and
pendulum goes out of phase with its drive. As shown in F
1, the amplitude only attains a modest value before bea
all the way back down to zero.1

It is not surprising that driving atf 0 will not strongly
excite the pendulum. As shown by the solutions of the p
dulum equation,

ü1~2p f 0!2 sin u5 ē cos~2p f t !, ~1!

graphed in Fig. 2,2–4 the equilibrium response of the pend
lum is large only when the drive frequencyf is lower than the
linear frequencyf 0. Even this is not sufficient, however, be
cause there exist two stable branches to the response
with a much higher amplitude than the other. Suddenly
plying a low frequency drive to an initially quiescent pend
lum results in oscillations around the low amplitude bran
not the high amplitude branch. Hereu is the angle of the
pendulum from vertical, andē is the drive strength.

The only way to strongly excite the pendulum from rest
to sweep the frequency downward and hope that the pe
lum’s response follows the response function’s upper bra
to high amplitude. Feedback can be used to appropria
sweep the frequency; this is how we excite a child’s swi
But there are circumstances in which using feedback is
practical or undesirable. For instance, you might not be a
to sense the phase of the pendulum well enough to a
feedback properly, or you might want to simultaneously e
cite several pendulums with the same drive. What can you
then? Simply starting the sweep at a frequency well ab
f 0, and sweeping downwards through the resonance at a
ficiently slow rate can strongly excite the pendulum.1 We call
this phenomenon autoresonance5 because, at each instant
time, the pendulum automatically adjusts its amplitude
that its instantaneous nonlinear frequency matches the d
1096 Am. J. Phys.69 ~10!, October 2001 http://ojps.aip.org
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frequency. Autoresonant effects were first observed in p
ticle accelerators,6 and have since been noted in atom
physics,5,7 fluid dynamics,8 plasmas,9,10 nonlinear waves,11,12

and planetary dynamics.13,14

Autoresonance in pendulums and other systems has
used implicitly in many papers.15–23 However, these paper
do not address a very important question: How fast can
frequency be swept and still strongly excite the pendulu
Specifically, given a pendulum described by

ü1v0
2 sin u5 ē cos~v0t2at2/2!, ~2!

how large can the sweep ratea be and still stay in autoreso
nance? Herev0/2p5 f 0 is the pendulum’s linear frequency
and the drive frequency isv02at.

Recently, we have addressed this problem in a serie
papers9,10,24–26focused on a similar nonlinear oscillator, th
Diocotron mode27 in non-neutral plasmas. Here we app
these results to the pendulum and find that there is a v
sharp threshold for autoresonance; if the drive amplitudē
exceeds a threshold proportional to the sweep ratea raised to
the three-quarters power, the pendulum will follow the dri
to high amplitude~see Figs. 1 and 3!. If the drive amplitude
is below this threshold, the pendulum amplitude will st
very low. Thisa3/4 scaling applies to a very broad class
nonlinear oscillators, not just to the pendulum and to
Diocotron. Moreover, the scaling can be extended to dri
at subharmonics off 0 ~Refs. 24 and 28! and survives in the
presence of damping.26

We begin this paper with the mathematical analysis of
threshold. Then we describe some of the Diocotron exp
ments in plasmas, and discuss how the threshold explains
Plutino resonances. We end with some concluding rema

II. ANALYSIS

The complete threshold analysis is given in Refs. 8 a
10, so we will only give a pre´cis here. The analysis divide
into three regimes: the linear, phase-trapping regime wh
the pendulum amplitude is so low that its frequency does
1096/ajp/ © 2001 American Association of Physics Teachers
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significantly deviate fromf 0, the weakly nonlinear regime
where we take only the lowest order amplitude correction
the frequency, and the strongly nonlinear regime where
must use the complete expression for the pendulum
quency. We will consider each regime in turn.

A. Linear, phase-trapping regime

The pendulum will be in the linear regime from the time
which the drive is first applied,t5ts,0, to near the time a
which the drive frequency crossesf 0, namelyt'0. Since the

Fig. 1. The response of a pendulum to a drive sweeping at ratea50.001 for
four different values of the drive strengthē ~solid lines! and to a fixed
frequency drive of strengthē50.1 ~dashed line!. The response to theē50.01
drive is very small, and the response to theē50.0459 drive is only some-
what greater. However, the response to theē50.0460 drive, which is only
0.2% gerater than theē50.0459 drive, is large and results in the pendulu
swinging over its top. The response to theē50.5 drive is qualitatively simi-
lar to the response to theē50.0460 drive. Clearly there is a sharp thresho
near ē50.0460. The oscillations in theē50.0460 curve are the manifesta
tions of the pseudoparticle oscillations in the pseudopotential wells. Th
curves come from numerically simulating Eq.~2! with v052p. For clarity,
the time scale for the fixed frequency curve~the dashed line! has been
expanded by a factor of 10.

Fig. 2. Equilibrium pendulum amplitude as a function of the drive f
quency detuningDv, defined byv5v01Dv where v is the drive fre-
quency.~For the swept drive used in this paper,Dv52at.! Only the first-
order correction to the frequency is retained in this graph, so the equil
come from solving for the steady amplitude solutions to the equatioü
1v0

2(u2u3/6)5 ē cos@(v01Dv)t#. The two solid lines are stable equilibria
and the dashed line is an unstable equilibrium. Far from resonance, the
amplitude solutions reduce to the standard solutions of the linearized
dulum equation,ü1v0

2u5 ē cos@(v01Dv)t#. The high amplitude solutions
comes from balancing the nonlinearities in the next order equation. Thu3

term introduces the possibility, realized for large negativeDv, of three equi-
libria at a given Dv. For this figure, the drive strength isē52 and
v052p.
1097 Am. J. Phys., Vol. 69, No. 10, October 2001
o
e

e-

t

system is effectively linear here, it reduces to a simple h
monic oscillator~SHO! subject to a swept frequency drive

ü1v0
2u5 ē cos~v0t2at2/2!. ~3!

This system was solved exactly in terms of complica
Fresnel sine and cosine functions by Lewis.29 However, the
behavior of the solution can be understood quite readily. L
any SHO, the sudden application of the drive excites a dri
mode at the drive frequency and an undriven, homogene
mode at the linear frequency. Assuming that the pendulum
initially quiescent, the two modes have equal and oppo
amplitude, are proportional to the drive, and inversely p
portional to the deviationDv(ts)5v(ts)2v052ats from
the linear resonant frequency. Thereafter, just as in a ste
state SHO, the amplitude of the driven mode continues to
approximately inversely proportional toDv(t). Conse-
quently, the driven mode grows in proportion to 1/t as t
→0. Remarkably, the homogeneous mode is not further
cited by the sweeping frequency.

The net motion of the pendulum is the sum of the pha
locked driven mode and the free-running homogene
mode. Initially, the net motion will not be phase locked b
cause the amplitudes of the two modes are comparable.
since the driven mode amplitude grows while the homo
neous mode amplitude is constant, the driven mode will s
dominate, and the net pendulum motion phase locks to
drive.

B. Weakly nonlinear regime

In the weakly nonlinear regime, we need to retain the lo
est order amplitude correction to the pendulum frequen
The set of weakly nonlinear equations describing our ad
batically driven pendulum can be derived as follows. W
begin by replacing sinu by its truncated expansion in Eq
~2!:

ü1v0
2S 12

u2

6 D u5 ē cos~c!5 ē Re~eic!, ~4!

where c5v0t2at2/2 is the driving phase. Then we see
solutions of Eq.~4! of the form

u5a cosw5Re~aeiw!, ~5!

se

ia

ow
n-

Fig. 3. The numerically determined critical drive strength as a function
the sweep ratea ~dots! and the theoretical scaling from Eq.~24! ~line! for
v052p. The numeric data are in excellent agreement with the theory.
periments~Refs. 9 and 10! with the Diocotron mode in non-neutral plasma
have verified this scaling law over five orders of magnitude ina.
1097J. Fajans and L. Frie´dland
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wherea(t) is the real amplitude, andw(t) is the phase of the
pendulum, and we have neglected higher harmonics~i.e., the
terms with e2iw, e3iw, etc.! By differentiating Eq.~5!, we
find

ü'Re@2i ẇȧ1 i ẅa2ẇ2a!eiw], ~6!

and by cubing Eq.~5!

u3'Re~ 3
4a

3eiw!, ~7!

where we have neglected theä term in Eq.~6! ~slow ampli-
tude assumption! and kept the first harmonic term only in Eq
~7!. With these approximation, Eq.~4! becomes

2i ẇȧ1 i ẅa2ẇ2a1v0
2~12 1

8a
2!a5 ēei ~c2w!. ~8!

On separating the real and imaginary parts in the last eq
tion, we obtain

d~a2ẇ !

dt
5a~2ẇȧ1ẅa!52 ēa sin F, ~9!

and

v0
22ẇ25v0

2 a2

8
1

ē

a
cosF, ~10!

where the phase mismatch is defined asF5w2c. Next we
assume that the system is nearly in resonance, i.e., tha
pendulum frequency is close to the linear frequency,ẇ'v0.
Then v0

22ẇ2'2v0(v02ẇ), and Eqs.~9! and ~10! can be
rewritten as:

ȧ52
ē

2v0
sin F, ~11!

Ḟ5v02
v0

16
a22ċ2

ē

2av0
cosF. ~12!

Finally we define the action variableI 5a2/2, and the weakly
nonlinear frequency of the pendulumV(I )5v02v0a2/16
5v0(12bI ), (b51/8) and substitute the driving fre
quencyċ5v02at, arriving at30

dI

dt
522eI 1/2 sin F, ~13!

dF

dt
5V~ I !2v01at2eI 21/2 cosF, ~14!

wheree5 ē/(A8v0) is the normalized drive strength.
It should be mentioned that the expressionI 5a2/2 is just

the small amplitude limit of the normalized action variab
frequently used in describing nonlinear oscillators. Mo
generally, the normalized action, in our case, is defined

I 5
1

2pv0
R u̇ du, ~15!

where the integration is over one period of oscillation of t
unperturbed pendulum. The actionI is a measure of the en
ergy in the system, and, in combination with another varia
called the ‘‘angle,’’Q, is used to replace the phase spa
variables (u,u̇) in studying nonlinear oscillators. The~I,Q!
representation is very convenient in studying weak pertur
tions of oscillators because the unperturbed motion in~I,Q!
variables is extremely simple, i.e.,I 5const andQ5V(I )t.
1098 Am. J. Phys., Vol. 69, No. 10, October 2001
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Furthermore, the structure of Eqs.~13! and ~14! is also pre-
served in a general nonlinear case, withF representing the
phase mismatchQ2c, and 2I 1/2 andI 21/2 in the interaction
terms in these equations replaced by some functionV(I ) and
dV/dI, respectively.

Equations~13! and~14! are easy to interpret. If the drive i
turned off ~e50!, the action will be constant, and the pha
mismatchF will advance appropriately. When the drive is o
~eÞ0!, the action will increase or decrease depending
whether or not the pendulum is in phase or out of phase w
the drive. The rate at which the action changes depend
the action itself, because the work done per cycle depend
the pendulum amplitude. Likewise the drive can ‘‘drag’’ th
phase mismatch. When the pendulum amplitude is large,
difficult for the drive to change the pendulum angle quick
but when the pendulum amplitude is small, the drive c
change the pendulum angle readily. Consequently, the ra
change of the phase mismatch is inversely proportiona
~the square root of! the action.

The pendulum enters the weakly nonlinear regime fr
the linear regime at aboutt50. From the results of Sec. II A
we know that the system is phase locked at this time, soF
starts out nearp. If the system is to stay in autoresonance
must stay phase locked andF must remain nearp. Other-
wise, the phase between the pendulum and its drive wo
stray and the drive would not be effectively coupled. IfF is
to stay nearp, the right-hand side of Eq.~14! must be close
to zero. This requirement will be met if

05at2bv0I 01
e

I 0
1/2, ~16!

where we have defined the action to be within a small dev
tion D of the equilibrium actionI 0 ,I 5I 02D. Note thatI 0 is
a slow function of time: The action grows as time increas
and the drive frequency gets further and further from
linear resonant frequency. This equation is identical to
standard equation used to find the nonlinear response
pendulum, and its solution is plotted in Fig. 2.

Since I 0 is a slow function of time, we can expand th
system@Eqs. ~13! and ~14!# around the instantaneous valu
of I 0, yielding two new equations:

Ḋ52eAI 0 sin F1
a

S
, ~17!

Ḟ5SD, ~18!

where S5bv01e/2I 0
3/2. Note thatS is a function of time

through I 0. Together, these two equations form a Ham
tonian system with

H~F,D!5SD2/21Vpseudo~F!, ~19!

where

Vpseudo~F!52eI 0
1/2 cosF2

a

S
F. ~20!

Thus, the system reduces to a pseudoparticle of slowly v
ing effective mass 1/S moving in a slowly varying pseudo
potential well.

The pseudopotential,Vpseudo, looks like a tilted series of
potential wells~see Fig. 4!. Near t50, we know that the
system is phase locked andF is nearp; for this to remain
true, the pseudoparticle must be trapped at the bottom of
of the potential wells. If the pseudopotential and the effect
mass change slowly, and the wells continue to exist,
1098J. Fajans and L. Frie´dland
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pseudoparticle will stay trapped at the bottom of the well
time advances. The phase mismatchF will stay near zero,
the equilibrium action will continue to satisfy Eq.~16!, and
the system will stay in autoresonance. However, the pseu
potential wells will only exist if the pseudopotential tilt i
less than the well depth, i.e., if

2eI 0
1/2.a/S. ~21!

If this condition is not met, the wells will disappear, th
pseudoparticle will escape, phase locking will be lost, a
the system will not stay in autoresonance.1 By differentiating
the quantitySI0

1/2 ~remember thatS is itself a function ofI 0!,
it is easy to show that there is a critical action at whi
condition ~21! is most difficult to satisfy and the wells ar
most likely to disappear,

I 0crt5~e/bv0!2/3. ~22!

If the system makes it past this critical action, the wells w
be retained effectively forever, and the system will grow
high amplitude. Thus, replacingI 0 with I 0crit in Eq. ~21!
yields the minimum drive amplitude for which the syste
stays in autoresonance:

ec5
1

Abv0

S a

3
D 3/4

~23!

or

ēc58Av0S a

3 D 3/4

. ~24!

This threshold has been verified numerically~see Figs. 1 and
3! and, for the non-neutral plasma Diocotron mod
experimentally.9,10

For most system parameters,I 0crit is quite small. Fore
near the critical value@Eq. ~23!#, I 0crit is approximately
(1/b)(3N)21/2, where N5v0

2/a measures the number o
cycles in the sweep, soI 0crit is indeed small for any reason
able sweep rate. Consequently, whether or not the sys
stays in autoresonance is determined at very low pendu
amplitude. Thus, the assumptions made at the beginnin
this section, that we need only take the first-order terms
the action-angle equations, and that only the first-order
rection to the linear frequency is important, are valid. Mo
importantly, we can generalize our results toanydriven non-

Fig. 4. Critical ~dashed line! and typical above-threshold~solid line! nor-
malized pseudopotentialsVpseudo/2eI 0

1/25cosF2gF as a function of the
phases-lipF, whereg5a/2eI 0

1/2S. The critical pseudopotential, defined b
Eq. ~21!, occurs wheng51.0.
1099 Am. J. Phys., Vol. 69, No. 10, October 2001
s

o-

d

l

,

m
m
of
in
r-

linear oscillator whose nonlinear frequency dependence
duces tov5v0(11bI ) for small I, i.e., when the equation
of motion reduces to

ü1v0
2~u1au21bu3!5 ē cos~v0t2at2/2!. ~25!

For the pendulum,b53b/425a2/6.31 If a50, Eq. ~25! is
called the Duffing equation, and is the low amplitude d
scription of many physical systems. Systems that reduc
the Duffing equation are very common because the ‘‘Du
ing’’ term, bv0

2u3, is the first symmetric nonlinearity. Thu
any system whose potential goes likeU(u)5āu21b̄u4

1•••, whereā and b̄ are constants, will reduce to a Duffin
oscillator at low amplitude. The pendulum, the Diocotr
~Sec. III!,27 many mechanical systems,16–20galvanometers,15

electronic oscillators,21 etc., all reduce appropriately. Som
two-dimensional systems, like the Neptune–Plutinos syste
~Sec. IV!, also reduce appropriately.

C. Strongly nonlinear regime

In the strongly nonlinear regime the action becomes lar
and the smallI assumption used to derive Eqs.~13! and~14!
is not strictly valid. Nonetheless, computer simulations of
original equation of motion@Eq. ~2!# and analysis of the
corresponding action-angle evolution equations32 confirm
that the phase locking in the system continues, and the
quency of the oscillator decreases~i.e., its oscillation ampli-
tude grows! to approximately match that of the drive, unt
the pendulum swings over the top. This usually happens
fore the drive frequency reaches zero, as the small osc
tions around the equilibrium action will be sufficient to driv
the pendulum over.

Intuition might lead one to believe that the drive amplitu
would have to increase eventually to excite the pendulum
very high amplitude; perhaps the most remarkable aspec
the strongly nonlinear regime is that the drive amplitude c
be decreasedwhen the pendulum amplitude is large. Th
follows from the decreasing pseudopotential tilt once p
the critical action, which makes the wells effectively deep
Thus the drive can be decreased while still maintaining
wells.

III. AUTORESONANCE IN THE DIOCOTRON
MODE IN PURE-ELECTRON PLASMAS

Consider a column of electrons that is aligned along
strong magnetic fieldB, and confined within a conducting
cylindrical wall. If the column is displaced from the cylin
drical wall axis, it will orbit around the axis. This oscillatio
is called the Diocotron mode,27 and is found in electron
beams in accelerators and in ‘‘pure-electron plasmas’’ c
fined in Malmberg–Penning traps~Fig. 5!. Understanding
the Diocotron has been crucial to understanding char
plasmas, and dozens of papers have been published o
subject. The Diocotron oscillation comes about because o
interaction between the electron column and its image.
any given instant, the electron columnEÃB drifts azimuth-
ally in the electric fieldE of the image.~See Fig. 6. An
electron subjected to crossedE andB fields will move per-
pendicular to both fields, hence the nameEÃB drift. The
physics of the drift is simple: The electron is accelera
antiparallel toE, but the Lorentz force fromB pushes the
electron sideways. The net motion is a cycloid whose cen
moves at velocityEÃB.! The image moves with the column
1099J. Fajans and L. Frie´dland
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so the net column motion is to orbit around the wall ax
The distance off axis is a measure of the amplitude of
oscillation. The image electric field gets stronger nonlinea
as the column approaches the wall, so the oscillation
quency increases with amplitude, following the equation

v5
v0

12r 2 , ~26!

wherev0 is the linear frequency of the mode, andr is the
suitably normalized oscillation amplitude. The oscillation
very robust, and very lightly damped; the column can or
the trap hundreds of thousands of times.

At low amplitude ~r small! the Diocotron reduces to
Duffing oscillator. It is easy to drive the Diocotron by im
pressing an oscillating voltage on an azimuthal section of
wall. By starting at a frequency below the linear frequen
and sweeping the frequency upwards, the Diocotron can
grown autoresonantly9,10,24–26to so large an amplitude tha
the electron column hits the wall. As shown in Fig. 7, t
system obeys the sweep rate threshold scaling law Eq.~24!
over five orders of magnitude. Many other aspects of
autoresonant theory presented here have been tested wi
Diocotron, including the behavior in the linear regime, t
existence of the pseudopotential wells, and the possibility
lowering the drive strength once in the strongly nonline
regime.

Fig. 5. Malmberg–Penning trap geometry. Electrons are confined axiall
negatively biasing the end cylinders, and radially by a strong axial magn
field. The electrons are emitted from the filament, and loaded into the
by temporarily grounding the left cylinder. Details of the trap operation c
be found in Ref. 37.

Fig. 6. End view of the Malmberg–Penning trap showing the confining w
at R, the electron column a distancer from the trap center, the electro
column image, the image electric fieldE, and the Diocotron drift at fre-
quency f. The mode is detected by monitoring the image charge on
pickup sectorVu and driven by applying a voltage to the drive sectorVD .
Further details are given in Ref. 10.
1100 Am. J. Phys., Vol. 69, No. 10, October 2001
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IV. THE PROBLEM OF PLUTINOS

The autoresonance phenomenon and the threshold for
ture into resonance described in Sec. II B can be found
more complicated dynamical systems. One of the most
markable examples is found in Nature in relation to ea
evolution of the trans-Neptunian region33 of the solar system.
In contrast to the nonlinear pendulum, the Keplerian tw
body ~Sun–planet! problem has two degrees of freedom a
yields elliptical orbits in a plane, given, in polar coordinat
(r ,w), by the equationa/r 511e cosw, wheree is the ec-
centricity of the orbit. It is well known that most planets
the solar system move roughly in one plane~the ecliptic! on
nearly circular orbits with eccentricitiese,0.09. A notable
exception is Pluto, the most distant planet in the solar s
tem, which has a very eccentric orbit~e50.25) and a semi-
major axis of about 39 AU. Furthermore, Pluto is observed
be in a 3:2 resonance with Neptune, i.e., Pluto completes
rotations around the Sun during the time Neptune comple
three rotations. According to present understanding, this
culiar synchronization has existed since the planetary for
tion several billion years ago.

Pluto is not the only trans-Neptunian body in the so
system. There exist a large number of smaller masses~esti-
mated number of;100,000! which comprise the Kuiper
Belt, a disk-shaped region at distances roughly between
and 100 AU from the Sun~1 AU is the distance between th
Earth and the Sun!. Remarkably, about one-third of present
observed Kuiper Belt objects~KBOs! are also engaged in th
3:2 resonance with Neptune~these objects resemble Plu
and, thus, are called Plutinos! and also have very eccentri
orbits 0.1,e,0.35.34 How one can explain this anomaly
What is the origin of orbital eccentricity of the resona
trans-Neptunian objects?

It is now widely accepted that the resonances in the P
tino orbits are the result of Neptune’s orbit migration duri
the last stage of planetary formation. Neptune’s radiusr N
experienced a slow increase~by roughly 30% during some
time! due to some migration mechanism, and its orbital f
quency decreased concomitantly. The force exerted by
orbiting Neptune acted as a quasi-periodic drive on the P
tinos, passing through, and capturing many of them
resonance,35 just as the pendulum phase locks to its drive
described in Sec. II A. Beyond the trapping stage, as N
tune’s radius continued to increase, the Plutinos entered

y
ic
p

n

ll

e

Fig. 7. Critical Diocotron drive amplitude vs sweep ratea/2p. Measured
results~d!, and theoretical prediction from Eq.~24! ~solid line!. For more
information, see Ref. 10.
1100J. Fajans and L. Frie´dland
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toresonance and their initially circular orbits develop
growing radial oscillations, i.e., became increasingly ecc
tric ~see the orbit equation above!.

The theory of migrating planets explained a number
important features observed today, such as the distributio
eccentricities of Plutinos in the Kuiper belt, for examp
Nevertheless, the early theory36 could not explain the dearth
of KBOs in the similar, 2:1 resonance with Neptune. The
early calculations yielded similar populations of 3:2 and 2
resonances. Astronomical observations, on the other h
showed almost no 2:1 resonant KBOs. The dearth of
resonant KBOs was one of the main remaining question
the resonant KBO capture theory, with a possible explana
given only recently.14 The explanation is related to the issu
of threshold for capture into resonance. We have shown
the governing equations describing orbital evolution of
KBO in the field of slowly migrating Neptune can be d
scribed by the reduced system of evolution equations ide
cal to Eqs.~13! and~14!, whereI is replaced bye2, while F
represents the phase mismatch between the rotating Nep
and the KBO. In the (j 11): j autoresonance, (j 11)V
' j vN(t), whereV is the Keplerian frequency of the trappe
KBO andvN(t) is the slowly varying frequency of migratin
Neptune. Each resonance has a different coupling constae
@see Eqs.~3! and ~4!# and, thus, yields different Neptun
migration time scaletmig5r N(drN /dt)21 thresholds for trap-
ping into resonance. We have calculated these thresho14

and found thatt th
mig523106 and 23107 yr for capturing into

3:2 and 2:1 resonances, respectively. The order of magni
difference between the thresholds is due to the Sun’s rota
around the Sun–Neptune center of mass. Inclusion of
rotation required analysis of the associated three-body p
lem, but affected the time scale for capture into 2:1 re
nanceonly, lowering the corresponding value ofe signifi-
cantly, thus increasing the threshold time scale by one o
of magnitude. Therefore, if the actual migration time scale
Neptune is between 23106 and 23107 yr, a large fraction of
the KBOs would be captured into 3:2 resonance and n
into 2:1 resonance, as observed in present solar sys
Thus, these arguments allow us to find accurate bound
the time scales involved in the early stage of the evolution
the solar system on the bases of present astronomical o
vations, and to discard slower Neptune migration models

V. CONCLUSIONS

We have shown that a swept-frequency drive can stron
excite a pendulum. The initial drive frequency must be abo
the pendulum’s linear frequency. The pendulum will pha
lock to the drive while the drive frequency is still above t
linear frequency. If the pendulum remains locked to the dr
past a critical drive frequency, the pendulum will be strong
excited as the drive continues to sweep downwards. In
circumstance, the pendulum’s amplitude will automatica
adjust itself so that the pendulum’s nonlinear frequency w
match the drive frequency: hence the name autoresona
The pendulum will remain locked to the drive only if th
drive strength exceeds a threshold proportional to the sw
rate a raised to the 3/4 power@Eq. ~23!#. The critical point
occurs at a frequency which is only slightly lower than t
linear frequency, where the pendulum amplitude is still qu
low. Because the critical point occurs at such a low am
tude, only the lowest order corrections to the frequency
relevant, and the pendulum can be considered to be a Du
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oscillator @Eq. ~25!#. Many if not most nonlinear oscillators
reduce to the Duffing oscillator at low amplitude, so t
analysis presented here is very general, and the samea3/4

drive strength scaling applies to all these systems.
In this paper we assumed that the oscillator is ligh

damped, but recent calculations and experiments26 show that
the results still apply in the presence of appreciable damp
We demonstrated elsewhere24,28 that a very similar scaling
law holds if a system is driven near a subharmonicv0 /n. In
this case, the scaling law becomesa3/4n. Furthermore, au-
toresonance phenomena occur whenany sufficiently slow
change is made to the system.9 Here we have only discusse
sweeping the drive frequency, but a pendulum can be
toresonantly excited by a fixed frequency drive if the pend
lum bob length is continuously shortened such that the p
dulum’s linear resonant frequency passes through the d
frequency.1 A similar scaling law will apply.10
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Autoresonance.htm. The movies show:~1! a pendulum driven at its linear
resonant frequency,~2! an autoresonant pendulum driven by a swept f
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THE SECOND LAW

Dispersal into disorder creates because it need not be uniformly smooth. A flood of chaos there
may result in a surge of order here. The purposeless increase in disorder of the world is not a
smoothly descending river of energy, but a choppy rapid, that may throw up a structured foam and
an elaborate wave as it plunges down. That order may take the form of a protein formed by an
enzyme driven ultimately by the energy of the Sun, or the construction of a strip of DNA. It may
power the jaws of a cheetah and the emergence on its coat of the stripes of a zebra. Thus the
Second Law may erupt into evolution, and stronger cheetahs and better camouflaged zebras may
emerge, transitorily, as the universe globally spreads in disorder. Thus the ‘Creation’—
everything—emerges as chaos spreads.
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