
Autoresonant control of a pre-excited diocotron mode
V. V. Gorgadze
Physics Department, University of California, Berkeley, California 94720, USA

L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

J. S. Wurtele
Physics Department, University of California, Berkeley, California 94720, USA

�Received 30 March 2007; accepted 29 June 2007; published online 29 August 2007�

A new method for the manipulation of a pre-excited l=1 diocotron mode in a pure electron plasma
in a Malmberg-Penning trap is proposed and analyzed. The plasma is passively coupled to an
external oscillatory circuit with slowly varying parameters. A threshold on the coupling strength is
derived beyond which the plasma is continuously self-phase-locked to the external circuit. In the
case of a linearly chirped circuit frequency, this autoresonant plasma can be driven to the wall, and
in the case of a chirped sinusoidal variation of the circuit frequency, the plasma can be driven to the
center of the trap. Derived thresholds on the coupling strength are in good agreement with
simulations. Unlike conventional feedback mechanisms, autoresonant phase locking is a
consequence of the nonlinearity of the system. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2762131�

I. INTRODUCTION

Autoresonance in systems of coupled nonlinear waves
and oscillations with slowly varying parameters has been
recently investigated in a series of papers by Friedland and
collaborators. �for recent developments in extended autoreso-
nant systems, see Ref. 1; a review of autoresonance in sys-
tems with a finite number of degrees of freedom can be
found in Ref. 2�.

Generally, attempts to excite nonlinear systems by reso-
nant, constant frequency perturbations are not efficient be-
cause the system saturates due to nonlinear dephasing. Nev-
ertheless, under certain conditions, one can continuously
exchange energy between different degrees of freedom in a
nonlinear system by using varying frequency perturbations
and slow passage through resonance, followed by a persis-
tent nonlinear phase locking in the system, despite variation
of the driving frequency. This phase locking results in a con-
tinuing excitation and comprises the essence of the autoreso-
nance phenomenon. The phenomenon of autoresonance
�termed “phase stability”� was introduced by McMillan and
Veksler.3 Autoresonance is a widely applicable nonlinear
phenomenon, appearing in relativistic particle accelerators,4

atomic and molecular physics,5 nonlinear dynamics,6 and so-
lar system dynamics.7

In this paper, we present and analyze a novel autoreso-
nant scheme for controlling a pre-excited l=1 diocotron
mode8–10 in a Malmberg-Penning trap11 by passive coupling
to an external electric circuit with slowly varying parameters.
In earlier studies,12 the diocotron mode was autoresonantly
controlled by applying an external oscillating perturbation of
constant amplitude and slowly varying frequency. This
method of excitation requires an initially zero amplitude
mode, i.e., the plasma column must initially be at the center
of the trap. Here, we demonstrate that a pre-excited dio-

cotron mode can be controlled by a different implementation
of the autoresonant concept. This is achieved by coupling to
a circuit, with its own time-varying resonant frequency,
rather than to a chirped frequency drive. In the case that the
circuit resonant frequency is varied linearly in time, we find
that autoresonant coupling allows for the control of an ex-
cited diocotron mode. This does not work when the coupling
is to the chirped external drive �since there is no route to
adiabatically phase locking the drive and the diocotron
mode�. Here, the resonant circuit is initially unexcited, so
that its phase can lock to that of the diocotron and the au-
toresonant coupling can then move the mode towards the
wall. Finally, we present and analyze another variant of the
autoresonant coupling scheme that involves an external cir-
cuit with a chirped, periodically modulated frequency. This
application is related to resonant three-wave interactions and
allows for manipulating the pre-excited plasma column to
the center of the trap. This paper represents the first study of
autoresonant coupling to an initially excited nonlinear sys-
tem. As envisioned here, it is both a new method for the
control of non-neutral plasmas and an example of how it can
be used, potentially, to conduct experiments in nonlinear dy-
namics. To date, this method of control has not been used in
non-neutral plasma experiments. Furthermore, the applica-
tion here is autoresonant coupling to an initially excited dy-
namical system. Possible extensions can be envisioned to
control pre-existing nonlinear waves, such as solitons and
Bernstein-Green-Kruskal �BGK� modes.

This paper is organized as follows. Section II describes
the autoresonant control of the diocotron mode via coupling
to an external circuit with slowly varying parameters. We
present our model and analyze the stages of resonant trap-
ping and autoresonance synchronization. In particular, we
derive the threshold for capture into autoresonance and study
the subsequent dynamics. Section III extends the idea of con-
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trol via coupling to a passive �without amplified feedback�
external circuit by analyzing the use of chirped oscillating
modulations of the external circuit. We present our conclu-
sions in Sec. IV.

II. CONTROL OF THE DIOCOTRON MODE BY
VARYING EXTERNAL CIRCUIT PARAMETERS

A. The model and dimensionless equations

Consider a magnetized plasma column in a cylindrical
trap, as shown in Fig. 1. The dynamics of the column are
assumed to be governed by the drift motion in the axial
magnetic and radial electric fields. The latter is generated by
image charges in the grounded conducting wall and the
charges on the sector of the wall connected to the external
LC circuit. This approach ignores end-field effects and the
rotation of the column around its own axis. We treat the
plasma as an axially infinite line of charge, and use polar
coordinates �D ,�� for the center-of-charge motion. The im-
age line charge in an infinite grounded cylindrical wall has
the opposite charge density and is located in the plane pass-
ing through the plasma column and the center of the trap.
The image is located at the distance Rw

2 /D from the center of
the trap, where Rw is the wall radius. The resulting electric
field inside the cylinder is discussed in the Appendix. The
potential on the isolated driving sector will be determined
later via Kirchoff equations.

Using Eq. �A6� for the electric field created by an exter-
nal potential V�t� and radial field from the image charge, one
can write equations for the E�B drift motion of the plasma
column,

dD

dt
=

E�

B
= − � 1

Br

��

��
�

r=D,�=�

=
2V�t�
�BD

�
k=1

� � D

Rw
�k

sin�k���sin�k�� , �1�

d�

dt
= − � Er

Br
=

1

Br

��

�r
�

r=D,�=�

= −
	

2�
0B�Rw
2 − D2�

+
2V�t�

�BDRw
�
k=1

� � D

Rw
�k−1

sin�k���cos�k�� .

�2�

Here ��D ,� , t� is the total electric potential at the po-
sition of the plasma and V�t� is the potential on the driving
sector. These variables were used in previous models for
autoresonant diocotron excitation.12 As noted above, in the
present work the plasma is coupled to an external circuit,
thereby allowing autoresonant control of an initially excited
mode. The circuit is connected to an azimuthal sector of the
wall, as seen in Fig. 1. The charge on this sector couples to
and drives the diocotron mode. Depending on the details of
the circuit, we will see that the diocotron mode can be driven
either towards the center of the cylinder or towards the wall.

Let Q be the charge on the driving sector, J2 represent
the current through the inductance L and resistor R, and
Q2=	J2dt. Then, the charge and the voltage on the circuit
capacitor are QC=Q−Q2 and V�t�=−QC /C�t�. Kirchoff’s
second law leads to

R
dQ2

dt
+ L

d2Q2

dt2 = V�t� =
Q2 − Q

C�t�
. �3�

The charge on the driving sector can be written as
Q=Q	+CeffV�t� �see Eq. �A5��, where Q	 is given by Eq.
�A4�. This allows us to express the voltage on the sector as

V�t� =
Q2 − Q	

C�t� + Ceff
. �4�

Substitution of Eq. �4� into Eq. �3� yields an equation for
Q2,

�L
d2

dt2 + R
d

dt
+

1

C�t� + Ceff
�Q2 =

Q	

C�t� + Ceff
. �5�

A closed set of equations describing the system is
reached by substituting Eq. �4� �for the potential on the sec-
tor� and Eq. �A4� into Eqs. �1� and �2�,

�L
d2

dt2 + R
d

dt
+

1

C�t� + Ceff
�Q2

= −
l	

��C�t� + Ceff�

���� + �
k=1

� � D

Rw
�k2 cos�k��sin�k���

k
� , �6�

FIG. 1. Schematic of the system with an isolated sector on the trap wall
connected to an external circuit. The circuit capacitance can be varied in
time.
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=
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�
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Here 2�� is the angular width of the driving sector. In
studying autoresonance at the fundamental frequency, we ig-
nore all nonresonant terms, referring to the resonance condi-
tion, Eq. �12�, below. Thus, keeping k=1 terms only, we have

�L
d2

dt2 + R
d

dt
+

1

C�t� + Ceff
�Q2

= −
l	

��C�t� + Ceff�
2D

Rw
sin����cos � , �9�

dD

dt
=

Q2

�BD�C�t� + Ceff�
2D

Rw
sin����sin � , �10�

d�

dt
= −

	

2�
0B�Rw
2 − D2�

+
2Q2 sin����cos �

�BDRw�C�t� + Ceff�
. �11�

The initial stage of autoresonance involves passage
through resonance by slow variation of the frequency of the
LC circuit. We chirp through the diocotron frequency at the
initial position D0 of the column and assuming, for simplic-
ity, a linear frequency chirp,

1
�L�C�t� + Ceff�

= −
	

2�
0B�Rw
2 − D0

2�
+ At , �12�

where A is the chirp rate. We change to the normalized
action I1�D2 /Rw

2 , and define I10=D0
2 /Rw

2 . We define
the dimensionless time �=�dt, frequency ��t�
=�1/ �L�C�t�+Ceff�� /�d, chirp rate 
=A /�d

2, circuit
dissipation �= �4�
0BRw

2 /2 �	 �L�R, and charge

q=Q2
�L /2�
0B2lRw

4 . The diocotron frequency
�d��	� /2�
0BRw

2 . We introduce the dimensionless coupling
parameter as


 =�2	2Ll sin2����
�3
0B2Rw

4 . �13�

In these dimensionless variables, Eqs. �9�–�11� become

� d2

d�2 + �
d

d�
+ �2����q = 
�2����I1 cos � , �14�

dI1

d�
= 2
�2����I1q sin � , �15�

d�

d�
=

1

1 − I1
+ 


�2���q cos �

�I1

, �16�

where the chirped circuit frequency can be expressed as, us-
ing Eq. �12�,

���� =
1

1 − I10
+ 
� ,

passing through resonance at �=0. We solve this system sub-
ject to the initial conditions

I1�� → − � � = I10, �17�

q�� → − � � = 0, �18�

dq

d�
�� → − � � = 0. �19�

B. Autoresonant evolution

The coupled nonlinear system of Eqs. �14�–�16� permits
different classes of solutions. The analysis proceeds by ex-
tending the analysis of autoresonance in Ref. 12 to include
coupling to an external circuit. The analysis is simplified by
assuming that the circuit has a high-quality factor and ne-
glecting the dissipation �R=0�. This assumption is discussed
at the end of this section. Next, we use a two-scale represen-
tation of the solution

q��� = a���ei�2��� + c.c.,

where the amplitude is assumed to be a slow variable, while

phase �2 is fast, but frequency �̇2 is a slow variable. We
substitute this representation into Eq. �14�, yielding

�2iȧ�̇2 + i�̈2a − �̇2
2a + �2a�ei�2��� = �
/2��2����I1ei����.

�20�

Then, separating the real and imaginary parts, we obtain

2ȧ�̇2 + �̈2a =



2
�2����I1 sin�� − �2� , �21�

��2 − �̇2
2�a =




2
�2����I1 cos�� − �2� . �22�

We shall see later that, in autoresonance, phase mis-
match �=�−�2 in the last equations performs slow, small
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amplitude oscillations around a slowly varying average. In

other words, �̇��̇2��. A new action variable, I2=a2�̇2,
simplifies the system to

İ2 =



2
�3/2����I1I2 sin � , �23�

�̇2 = � −



4
�3/2����I1

I2
sin � . �24�

The equations of motion of the plasma column, Eqs. �15�
and �16�, should be simplified as well. We substitute
q=2a cos �2 and eliminate all nonresonant terms on the
right-hand side �RHS� of Eqs. �15� and �16� leaving only
terms varying as �ei�,

İ1 = 2
�3/2����I1I2 sin � , �25�

�̇ =
1

1 − I1
+ 
�3/2����I2

I1
cos � . �26�

Equations �23� and �25� satisfy the conservation law

I1 − 4I2 = I10.

Note that both actions are positive. Therefore, starting
with an initially unexcited circuit, which is necessary for
capturing all initial phases in resonance, a current is induced
in the circuit and both actions I1 and I2 increase. Thus, this
approach does not allow driving of the mode towards the
center of the trap �i.e., the decrease of action I1�. This will be
further discussed in Sec. III. The conservation of I1−4I2

yields the desired reduced system for the action I2 and the
phase mismatch �,

İ2 =



2
�3/2�����I10 + 4I2�I2 sin � , �27�

�̇ =
1

1 − I10 − 4I2
− � + 
�3/2���

��1

4
�I10 + 4I2

I2
+� I2

I10 + 4I2
�cos � . �28�

At the initial stage of evolution, I2 remains small com-
pared to the excited action I1, so one can neglect I2 in the
RHS of Eqs. �27� and �28� at this stage, yielding

İ2 =

�3/2����I10

2
�I2 sin � , �29�

�̇ =
1

1 − I10 − 4I2
−

1

1 − I10
− 
�

+

�3/2����I10

4

1
�I2

cos � . �30�

We linearize the first term in Eq. �30�, define new cou-
pling and nonlinear frequency shift parameters


̃ =

�3/2����I10

4
, �31�

� =
4

�1 − I10�2 , �32�

and rewrite Eqs. �29� and �30� in the simplified form

İ2 = 2
̃�I2 sin � , �33�

�̇ = �I2 − 
� +

̃

�I2

cos � . �34�

With the exception of slow time dependence of 
̃, we have
reduced our system to one that is similar to that studied in
Ref. 12. This time dependence of 
̃ is shown below not to
effect autoresonant phase locking.

Further analysis is required to arrive at a threshold for
autoresonance. We set I2= I2

�0�+�, where I2
�0���� is a slow,

monotonically varying function of time and ���� is a small

oscillation, and seek a phase-locked solution, i.e., �=�+�̃,

where ��̃ � ��. With these substitutions, linearizing Eq. �34�
yields

�̃
˙

= �� +

̃

2�I2
�0��3/2�� − 
t + �I2

�0� −

̃

�I2
�0� cos �̃ . �35�

Now define the slow function I2
�0���� that satisfies

− 
� + �I2
�0���� −


̃���
�I2

�0����
� 0. �36�

The phase evolution becomes

�̃
˙

= S� , �37�

where S��+ �
̃ /2��I2
�0��−3/2 is slowly varying. The differen-

tiation of Eq. �36� yields

İ2
�0� =




S �1 +
3
̃

2��I2
�0�� . �38�

Note that the second term in the bracket in Eq. �38�
enters due to the time dependence of 
̃, in contrast to the case
considered in Ref. 12, where the coupling parameter 
 was
time independent. Finally, we find the lowest-order equation

for �̇,

�̇ = I2̇ − İ2
�0� = − 2
̃I2

�0�1/2 sin �̃ −



S �1 +
3
̃

2��I2
�0�� . �39�

Equations �37� and �39� comprise a Hamiltonian system
with Hamiltonian

H��̃,�� =
S�2

2
+ Veff��̃� ,

and effective tilted cosine potential

Veff��̃� = − 2
̃I2
�0�1/2 cos �̃ + �̃




S �1 +
3
̃

2��I2
�0�� .

The problem thus reduces to that of a pseudoparticle of
slowly varying mass S−1 moving in a slowly varying Veff. A
pseudoparticle remains trapped, under adiabatic conditions,
as long as potential wells exist in Veff. Whenever
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dVeff

d�̃
� 0,

for all �̃, or,


 �
2
̃�I2

�0�S

1 +
3
̃

2��I2
�0�

, �40�

potential wells cease to exist. The RHS of Eq. �40� depends
on I2

�0� both directly and through the “mass” S. A phase-
locked solution requires that the chirp rate 
 does not exceed
the minimum value of the RHS of Eq. �40�. We differentiate
the RHS of Eq. �40� to find the value of the action at the
minimum. Neglecting the second term in the denominator
�this term scales as 
̃2/3�1; see below�, the minimum action
I2,min

�0� = �
̃ /��2/3� 
̃2/3. Then, the coupling parameter must
satisfy


̃ � �
/3�3/4�−1/2. �41�

Thus, to lowest order in the small parameter 
̃, the ne-
glected term in the denominator of the RHS of Eq. �40�
scales as 
̃2/3�1. Recall that this term in the denominator is
a consequence of time dependence of the driving parameter

̃. Consequently, this slow time dependence can be ignored.
Conditions in Eq. �41� should be expressed in terms of our
original parameters, yielding an autoresonance threshold
condition on the coupling parameter,


 � 
th =
2

33/4 �1 − I10�5/2I10
−1/2
3/4. �42�

We test these results by solving the system of Eqs.
�14�–�16� numerically. We proceed by neglecting dissipation
in these calculations. We start with an unexcited circuit with
a chirped frequency �initially below the diocotron resonance�
and an excited diocotron mode at I10=0.4. We slowly chirp
through the resonance, at the chirp rate 
=2.5�10−4. Figure
2 shows simulation results for 
=6.5�10−4, i.e., below
threshold �
th=7.7�10−4�. Rapid dephasing occurs after pas-
sage through resonance, resulting in very small perturbations
of the diocotron mode and induced charge on the capacitor.

The behavior of the solution changes dramatically when
the coupling parameter is increased above the threshold. This
is demonstrated in Fig. 3, which shows the numerical solu-
tion of Eqs. �14�–�16� for identical initial conditions and pa-
rameters as in Fig. 2, except that now 
=8.0�10−4. As ex-
pected, the phase mismatch � locks near �, the system
remains in autoresonance, and the continuing weak coupling
to the circuit produces a large change in the diocotron mode,
driving it towards the wall. The range of validity of our
analytical expression for the threshold is illustrated in Fig. 4,
where we plot theoretical estimates and simulation results for
the coupling parameter threshold as a function of the chirp
rate 
.

Finally, we include dissipation. The quality factor of the
circuit is related to dimensionless resistance � by

Q =
�circuitL

R
�

1

��1 − I10�
.

We numerically found a linear dependence of 
th on �.
This is consistent with earlier results on dissipation in exter-

FIG. 2. The numerical solution of Eqs. �14�–�16� for coupling parameter 
 below the threshold. The diocotron mode action increases by just 2% as the system
passes through resonance.
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nally driven diocotron modes �see Eq. �15� in Ref. 13�.
Simulations show that a change in the threshold of 10% re-
quires a quality factor Q�200. For larger Q, the dissipation
has a smaller effect on the threshold, and, hence, the assump-
tion of �=0 in the theory remains very good for a wide range
of realizable electrical circuits.

III. AUTORESONANCE WITH AN OSCILLATING
MODULATION OF AN EXTERNAL CIRCUIT

Our method for control of the diocotron mode with a
linearly chirped frequency in the external circuit, as given in
Eq. �12�, can be used to drive a pre-excited diocotron mode

towards the wall. It cannot drive the mode to the axis. We
show here that a chirped sinusoidal frequency modulation of
the external circuit inductance can autoresonantly drive the
plasma to the center of the trap. Let

L�t� = L0�1 + � cos ��t�� ,

where ��1 and rate of change of ��t� is chirped through a
frequency ��

0 �to be defined later�,

d��t�
dt

= ���t� = ��
0 + At .

The time dependence of the inductance L�t� leads to a
modification of Kirchoff’s equation through the replacement
L�d2Q2 /dt2�→ �d /dt��L�t��d /dt�Q2�, and the evolution of the
charge Q2 �compare with Eq. �5�� is governed by

�L
d2

dt2 +
dL�t�

dt

d

dt
+ R

d

dt
+

1

C + Ceff
�Q2 =

Q	

C + Ceff
. �43�

Following the development in Sec. II A, we expand Q	

on the RHS of Eq. �43� and keep the resonant terms in Eq.
�43� and in the drift equations. This yields

dD

dt
=

Q2

�BD�C + Ceff�
2D

Rw
sin����sin��� , �44�

d�

dt
= −

2	

4�
0B�Rw
2 − D2�

+
2Q2 sin����cos���
�BDRw�C + Ceff�

, �45�

FIG. 3. The numerical solution of Eqs. �14�–�16� when the coupling parameter 
 is just above 
th. The diocotron mode action increases continuously. The
frequency of the diocotron mode, on average, follows the chirped frequency of the circuit.

FIG. 4. Comparison of the theoretical estimate of the coupling parameter 
th
threshold from Eq. �42� �dot-dashed line� and simulation results �straight
line� for the threshold for various chirp rates 
.
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�L
d2

dt2 +
dL�t�

dt

d

dt
+ R

d

dt
+

1

C + Ceff
�Q2

= −
l	

��C + Ceff�
2D

Rw
sin����cos��� , �46�

dL�t�
dt

= − L0����
0 + At�sin ��t� . �47�

Next, define the dimensionless modulation frequency
��=�d

−1��, while other dimensionless parameters are the
same as have been introduced in Sec. II A. Then, Eqs.
�44�–�46� become

��1 + � cos ��
d2

d�2 − ��� sin �
d

d�
+ �

d

d�
+ �c

2�q

= 
̃�I1 cos � , �48�

dI1

d�
= 2
̃�I1q sin � , �49�

d�

d�
=

1

1 − I1
+ 
̃

q cos �

�I1

, �50�

where 
̃=�c
2
 and

d�

d�
= ����� = ��

0 + 
� .

The initial conditions here are as in Eqs. �17� and �18�
above, and we take �=0. There exist three slowly varying
frequencies in the system: the diocotron mode frequency, the
circuit resonant frequency, and the frequency of modulation
of the inductance. We seek three-wave resonances that meet
the condition �we keep both signs for now; later we will
consider them separately�

�̇ − �̇ � � �̇c.

Our analysis proceeds by assuming small 
̃�1 and
��1. In the limit �= 
̃=0, q�t� oscillates with frequency �c.
Terms with � cos ��t� or � sin ��t� lead to aperiodic solutions
containing linear combinations of the two main frequencies,
�c and ��. We avoid additional resonances by assuming that
these frequencies are not commensurate.

We seek solutions of form

q��� = a���ei�c��� + b���ei��c��������� + c���ei���� + c.c.,

substitute q��� into Eq. �48�, and separate terms correspond-
ing to different frequencies. We neglect time derivatives of
the slowly varying �small� nonresonant envelopes b��� and
c���.

Both the RHS and left-hand side �LHS� of Eq. �48� have
terms oscillating as ei����, yielding

c =

̃

2��c
2 − �̇2�

�I1.

Next, consider the nonresonant terms varying as
ei��c���������. The RHS of Eq. �48� yields zero, and the LHS
yields

�− ��̇c � �̇�2 + �c
2�bei��c���������

+
�

2

d

d�
�ia�̇ce

i��c���������� + c.c. = 0. �51�

Solving for b���, we obtain �−��̇c��̇�2+�c
2�b

= �� /2�a�̇c��̇c��̇� or

b = �
�c

1/2��̇c � �̇�

2��c
2 − ��̇c � �̇�2�

�I2, �52�

where I2=a2�̇c, and we used �̇c��c, as justified by Eq.
�57� below. Finally, we focus on the main oscillation, having
phase factor ei�c���,

�2iȧ�̇c + ia�̈c − a�̇c
2 + a�c

2�ei�c���

+
�

2

d

dt
�ic�̇ei�����−������ + c.c. = 0. �53�

Assuming that, in autoresonance, the phase mismatch

���� = ���� − ���� ± �c���

varies slowly with respect to the fast phases,

��̇ � ��̇ ,�̇ ,�̇c, we rewrite Eq. �53� as

�2iȧ�̇c + ia�̈c − a�̇c
2 + a�c

2� = �
�

2
c�̇�̇ce

�i�.

This, after separating real and imaginary parts, yields

2ȧ�̇c + a�̈c =
�

2
c�̇�̇c sin � , �54�

��c
2 − �̇c

2�a = �
�

2
c�̇�̇c cos � . �55�

Using I2=a2�̇c and �̇c��c gives

dI2

d�
=


̃�

4

�̇�I1�c

��c
2 − �̇2�

�I2 sin � , �56�

d�c

d�
= �c ±


̃�

4

�̇�I1�c

��c
2 − �̇2�

cos �

2�I2

. �57�

Finally, we substitute the ansatz for q��� into Eqs. �49�
and �50�. Only the resonant terms �such as bei��c���

=be±i��−�� and cei�� are retained, resulting in

dI1

d�
= 2
̃I1

1/2b sin �

= 
̃�
�I1�c��̇c � �̇�

�c
2 − ��̇c � �̇�2

�I2 sin �

� � 
̃�
�̇�I1�c

�c
2 − �̇2

I2
1/2 sin � , �58�
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d�

d�
=

1

1 − I1
+


̃�c + b cos ��
�I1

=
1

1 − I1
+


̃

�I1
� 
̃

�I1

2��c
2 − �̇2�

+
���c��̇c � �̇��I2

2��c
2 − ��̇c � �̇�2�

cos �� . �59�

Equations �56� and �58� yield the conservation law

I1 ± 4I2 = I0. �60�

Thus, in the case I1−4I2= I0, autoresonance in the sys-
tem excites the diocotron mode and moves the plasma to-
wards the wall. However, when I1+4I2= I0, the mode can be
autoresonantly de-excited, and the plasma moves towards the
axis of the trap. This is made clear in the following analysis.

By combining Eqs. �57� and �59�, we find

�̇ = �̇ − �̇ ± �̇c

= � 1

1 − I1
+


̃2

2��c
2 − �̇2�

± �c − ��
0 � − 
�

+

̃�

4

�c
1/2�̇

��c
2 − �̇2�

�1

2
�I1

I2
± 2�I2

I1
�cos � . �61�

The analogy with the case studied in Sec. II A �compare
with Eq. �34�� is made clear if we choose ��

0 so that the term
in parentheses in the first line of Eq. �61� vanishes at �=0,

��
0 =

1

1 − I10
+


̃2�1 − I10�2

��c
2�1 − I10�2 − 1�

± �c.

Next, we linearize 1/ �1− I1�, use Eq. �60�, and assume

I2� I1 �valid at the initial excitation stage� and �̇�1/ �1
− I10�. This yields

�̇ = � �I2 − 
� + �
cos �

�I2

, �62�

where � is defined in Eq. �32� and

� =

̃�

8

�I10�c�1 − I10�
��c

2�1 − I10�2 − 1�
.

We rewrite Eq. �56� using this definition of �,

I2̇ = 2��I2 sin � . �63�

Equations �62� and �63� are characteristic equations of
autoresonance, as described in Sec. II A. The lower sign in
Eqs. �60� and �62� corresponds to the case analyzed in Sec.
II B. The chirp rate threshold is again found from the au-
toresonance condition �� ��
 � /3�3/4 /��; converting into the
parameters used in Eqs. �48�–�50� yields

�
�3/4 � 
�
33/4�c

5/2I10
1/2

4��c
2�1 − I10�2 − 1�

. �64�

We have tested these results by solving Eqs. �48�–�50�
numerically. As an example, we take �c=3.2, 
=−10−4, and

initial excitation I10=0.4 �the circuit is not excited initially�.
From Eq. �64�, we expect the threshold value of the product
�
��th=4·10−4; this is in good agreement with the numerical
result �
��num=4.4·10−4. A modulation parameter �=0.09
was used for this numerical analysis. The diocotron mode
action and the frequency mismatch from the autoresonant

condition �̇−�̇�−�̇c are plotted as a function of normal-
ized time, with a negative chirp just above threshold, in Fig.
5. As expected, the mode action decreases and the plasma is
driven towards the axis.

Now we apply a positive chirp rate using the same pa-
rameters as in the previous example. In this case, the system
passes through resonance corresponding to the lower sign in
Eq. �62�. The numerical threshold for 
=10−4, �c=3.2,
�=0.04, and I10=0.4 appeared to be 
num=0.0105, which is
close to the theoretical prediction, 
th=0.011. Figure 6 shows
the evolution of the system just above this threshold and, as
expected, the diocotron mode is driven towards the wall of
the trap. However, the evolution becomes unstable prior to
reaching the wall. We have identified this effect as a
Mathieu-like instability. It occurs when the coefficient
� cos � in Eq. �48� is modulated at twice the resonance fre-
quency, ��=2�c. In this case, the diocotron frequency
reaches the value

�̇ � �� + �c = 3�c.

However, from the limitation ��
0 �0 and Eq. �61�, we

find that �c�1/ �1− I10�. Therefore, due to the instability,
one cannot exceed

�̇max �
�d

1 − Imax
�

3�d

1 − I10
.

The corresponding maximum value of the action of the
diocotron mode is Imax� �2/3�+ �I10/3� �Imax=0.8 for the pa-
rameters used in Fig. 6�. In summary, a chirped modulation

FIG. 5. Three-wave-type autoresonance for a negatively chirped frequency
modulation and parameters above threshold. The diocotron mode is driven
to the center of the trap. The frequency mismatch shows that the autoreso-
nantly driven diocotron mode tracks, on average, the circuit frequency.
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of the circuit can de-excite the diocotron mode, driving the
plasma towards the center of the trap, but is limited in its
ability to drive the plasma to the wall.

IV. CONCLUSIONS

We have analyzed two new methods for the control of a
diocotron mode. The autoresonant control methods exploit
coupling with an external circuit. The external circuit is ini-
tially unexcited, but must have time-dependent parameters. A
pre-excited diocotron mode can be readily manipulated,
moving it towards the wall of the trap or towards the axis
without feedback. An LC circuit with a swept resonant fre-
quency drives the plasma towards the wall. Coupling to an
LC circuit with a sinusoidal, chirped frequency modulation
leads to a three-wave-type autoresonance and can be used to
manipulate the plasma towards the center of the trap. An
expression for the maximum radius that can be reached if
one tries to move the plasma towards the wall via three-wave
autoresonance was derived. Analytical expressions for the
threshold coupling parameter required for these autoreso-
nance schemes are found to be in good agreement with simu-
lations. Finally, these new autoresonant control concepts may
have applications to other dynamical and extended systems.
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APPENDIX: THE DRIVING POTENTIAL

Consider an infinite line of charge parallel to the axis of
a grounded perfectly conducting cylinder of radius Rw and
located �D ,��. D=0 is the center of the cylinder. From the

method of images, the potential in the cylinder from the line
charge is given by

�	�r,�� =
	

2�
0
ln�

�D2 + r2 − 2Dr cos�� − ��

�Rw
2 +

r2D2

Rw
2 − 2rD cos�� − ��� ,

�A1�

where 	 is the charge per unit length. We are interested in the
coupling to a sector patch of axial length l�Rw, so that end
effects can be ignored. A schematic is in Fig. 7. The normal
component of the electric field determines the total charge on
the sector, located in the angular ��� range of �−�� ,���,

Q	 = − �
0lRw�
−��

��

d�
��	�r,��

�r �
r=Rw

. �A2�

With �=�−�,

Q	 =
	l�Rw

2 − D2�
4�RwD

�
�+��

�−��

d�
1

Rw
2 + D2

2RwD
− cos���

. �A3�

This integral can be easily calculated by substituting
u=tan�� /2�,

Q	 = � l	

�
arctan�1 + D/Rw

1 − D/Rw
tan��/2���

�+��

�−��

.

As expected, the total charge on the wall is
lim��→�Q	=−l	.

Studying possible resonant effects requires a decompo-
sition of the image charge into a Fourier series in terms of
the angular position, �, of the column. A simple mathemati-
cal relation,

FIG. 6. Three-wave-type autoresonance for a modulation with a positively
chirped frequency and parameters above threshold. The diocotron mode is
driven towards the wall. A Mathieu-type instability destroys autoresonance
prior to the plasma reaching the wall and the frequency tracking breaks
down

FIG. 7. A schematic of the isolated sector on the trap wall. The angular
width of the sector is −�������, the gaps are −��−d���−�� and
�������+d, and the length of the sector is l. In the text, it is assumed
that d��. A precise calculation of the electric field near the sector should
include the gap effects.
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1 − x2

1 + x2 − 2x cos���
= 1 + 2�

k=1

�

xk cos�k�� ,

allows us to make this decomposition more obvious. We find

Q	 = −
l	

�
��� + �

k=1

� � D

Rw
�k�

−��

��

d� cos k�� − ���
= −

l	

�
��� + �

k=1

� � D

Rw
�k2 cos�k��sin�k���

k � . �A4�

The total charge on sector patch is the sum of the charge
induced from the line charge �for a grounded sector� and that
induced by any external voltage, V�t�,

Qsector = Q	 + CeffV�t� , �A5�

where we introduce an effective capacitance, Ceff. A precise
calculation of this capacitance is not needed here and re-
quires a detailed specification of the gap between the sector
and the surrounding conducting wall.

The potential �V�r ,�� inside the cylinder and felt by the
plasma, induced by the sector voltage V�t�, is not influenced
by a small gap between the sector and the rest of the
grounded wall �so long as the gap is very small compared to
the sector size �2Rw��� and the plasma does not approach

very near the wall�. In this case, for negligible gap size, a
Fourier expansion solution of the Laplace equation gives

�V�r,�� =
V

�
��� + �

k=1

� � r

Rw
�k2 sin�k���

k
cos�k��� .

�A6�
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