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‘ Mart)ﬂ

“Shut up and calculate”

— Marty Halpern Pc{ul Dirac
— Richard Feynman

— David Mermin

If there ever was someone to attribute this to, it is Marty.

This is a gift: A basic way to think about theoretical physics.

Whatever success I’ve had stems from this gift from Marty.

“Blue collar theoretical physics”: roll up your sleeves and calculate

Newport

Only tools Marty
needed




“Calculate!”

Word of wisdom has guided me for the
past 30 years.

Some ideas:
* Duality between color and kinematics and double copy.
* Double copy as a means for understanding gravity.

What is behind these ideas? How does it relate to standard
approaches to gravity?

“Shut up and calculate”

1. Applications of double copy to problem of UV divergence
in quantum gravity.
2. Applications to LIGO physics.



‘ Some Basic Ideas About Gravity ‘




| Gravity Three Vertices |

° 2 b
Standard Feynman diagram approach. 1/:; 0
Three-gluon vertex: 1a ¢

1}
V3a/{)5/o — _gfabc(mu/(kl—k2)p‘|‘771/p(k1—k2)u+77pu(kl—kQ)V)

Three-graviton vertex: ki = BEf — EzQ 7 0
Gauavp.oy(ki, ka, ka) =
sym[ = 5Ps(ky - kauanivanoy) — 5Ps(kivkigmuanon) + 5Pa(ky - kanuwnastor)
+ Fs(k1 - Eanpuanuensy) + 2Ps(k1ukiynuanse) — Pa(k1sk2umavn o)
+ P3(kiskaonuwnag) + Ps(kiokivnuwnas) + 2FPs(kiv ko800 ) % B
+ 2P3(k1vkoumnganye) — 2P3(k1 - koo gonyu) ]

About 100 terms in three vertex
Naive conclusion: Gravity is a nasty mess.



‘ Generalized Unitarity Method

No Feynman rules; no need for virtual particles.

E2 _ ﬁ2 4 m2 on-shell \ /B, Dixon, Dunbar and Kosower (1994)

Two-particle cut: * Systematic assembly of

complete amplitudes from
other amplitudes.

* Works for any number of
particles or loops.

Three-particle cut:

PN ! /B, Dixon and Kosower;
I ZB, Morgan;
- = Britto, Cachazo, Feng;
| , Ossala,Pittau,Papadopoulos;

Generalized
unitarity as a

practical tool. / Ellis, Kunszt, Melnikov;
Forde; Badger
on-shell and many others

Reproduces Feynman diagrams, except intermediate steps of
calculation based on gauge-invariant quantities. 6



Gravity Amplitudes

KLT (1985)
Kawai-Lewellen-Tye string relations in low energy limit:
P gravity P gauge theory color ordered

Me(1,2,3,4) = —is19AT(1,2,3,4) AT*°(1,2,4,3),
ME™©¢(1,2,3,4,5) = is10534A5(1,2,3,4,5) AF®(2,1,4,3,5)
+ i813824Agree(1, 3.2,4, 5) Agree (3, 1.4.2, 5)

Pattern gIves eXPhCIt all-leg form. Bern, Dixon, Perelstein, J.S. Rozowsky (1998)

rav1ty (imée é;uge
Theory Theory
1. Gravity is derivable from gauge theory. Standard Lagrangian
methods offers no hint why this is possible.
2. Itis very generally applicable.



\ Duality Between Color and Kinematics ‘

ZB, Carrasco, Johansson (2007)

: momentum dependent 2}/ b
ﬁgﬁ&lgﬁ% ~, »¢olor factor " Kkinematic factor }nﬁ 5
_gfabc(n,u,u(kl — kQ)p + cyclic) 1a,u c

Color factors based on a Lie algebra: [T%, T°] = ifob°T¢
JaCObi Identity f‘al agbfba4a3 _|_ fa4a2bfba3a1 —I_ fa4a1 bfba2a3 — O

Use 1=s/s=tt=u/u
} [ ] [ ] [ ]
t U :&’Z to assign 4-point diagram
S )
to others.
s = (k1 +k2)? t= (k1 +kg)?

NgC neC Ny C
Affee=92( e ““) u= (ky + ks)2
S t U
Color factors satisfy Jacobi identity: Cy = Cs — Ct
Numerator factors satistfy similar identity: |72u = Tos — Ty

Proven at tree level

ZB, Carrasco, Johansson; Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove; Cachazo, etc 8



‘ Gravity Loop Integrands from Gauge Theory ‘

BCJ
Ideas conjectured to generalize to loops: color factor~
/ N : ' | Ck, = C; — Cj
kinematic
") () () Nraerator
If you have a set of duality satisfying numerators.
To get:

gauge theory —> gravity theory
simply take

color factor — kinematic numerator

Gravity loop integrands follow from gauge theory!
9



‘ UV Behavior of Gravity ‘

“Shut up and Calculate”

10



‘ UV Behavior of Gravity? ‘

P \/327TG n <+ Dimensionful coupling

K oV D ce K Ry ...
/ L 4 Gravity: / H d pz Lits
¢V‘ D propagators
Gauge theory: / H propagatOI‘S

* Extra powers of loop momenta in numerator means integrals are
badly behaved in the UV and must diverge at some loop order.

* Much more sophisticated power counting in supersymmetric theories
but this is basic idea.

* With more supersymmetry expect better UV properties.
* Need to worry about “hidden cancellations”.

* N =8 supergravity best theory to study.
11



N = 8 supergravity: Where is First D =4 UV Divergence?

“shut up and calculate”

/B, Kosower, Carrasco, Dixon,
Johansson, Roiban; ZB, Davies,
Dennen, A. Smirnov, V. Smirnov;
series of calculations.

This is what we are most
interested in.

Weird structure.
Anomaly-like behavior

3 loops Green, Schwarz, Brink (1982); Howe and

N=8 Stelle (1989); X
Marcus and Sagnotti (1985)

5 loops Bern, Dixon, Dunbar, Perelstein, Rozowsky

N=8 (1998); Howe and Stelle (2003,2009) X

6 loops Howe and Stelle (2003) X

N=38

7 loops Grisaru and Siegel (1982); Bossard, Howe,

N=8 Stelle (2009);Vanhove; Bjornsson, Green
(2010); Kiermaier, Elvang, Freedman(2010); ‘?
Ramond, Kallosh (2010); Biesert et al (2010); °
Bossard, Howe, Stelle, Vanhove (2011)

3 loops Bossard, Howe, Stelle, Vanhove (2011)

N=4 X

4 loops Bossard, Howe, Stelle, Vanhove (2011)

N=5 X

4 loops Vanhove and Tourkine (2012)

N=4 J €
9 loops Berkovits, Green, Russo, Vanhove (2009)
N=8 X <

of divergence.

___ Retracted, but perhaps to be

unretracted.

* Track record of predictions from standard symmetries not great.

* Conventional wisdom holds that it will diverge sooner or later.

12



Supersymmetry and Ultraviolet Divergences

Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove ; Green and Bjornsson ;
Bossard , Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon; Elvang and Kiermaier;
Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove, etc

* First quantized formulation of Berkovits’ pure-spinor formalism.

Bjornsson and Green

* Key point: all supersymmetry cancellations are exposed.

Poor UV behavior, unless new types of cancellations between diagrams exist
that are “not consequences of supersymmetry in any conventional sense”.

Bjornsson and Green

* N = 8 sugra should diverge at 5 loops in D = 24/5.
* N =8 sugra should diverge at 7 loops in D = 4.

Consensus agreement from all power-counting methods.
including power counting within out unitarity approach.

“Shut up and calculate”
13



Scorecard on Symmetry Predictions

* N =4 sugra should diverge at 3 loopsin D=4. X
e N =15 sugra should diverge at 4 loopsin D=4. X
« Half maximal sugra diverges at 2 loops in D =5. X
« N =8 sugra should diverge at 5 loops in D = 24/5./

e N =8 sugra should diverge at 7 loopsin D=4. ? key question

ZB, Davies, Dennen (2012, 2014); ZB, Davies, Dennen, Huang(2012)
7B, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng (2018)

* UV cancellation of N =5 supergravity at 4 loops in D = 4 definite

mystery. Clear problem with standard symmetry arguments.
Freedman, Kallosh and Yamada (2018)

What is the difference between N=5and N=8? D =4?

Goal is to provide definitive answers. Need to go to 7 loops!

“Impossible” gravity calculations are pretty standard
by now and shed nontrivial new light on UV properties.

14



‘ Applications to LIGO Physics

“Shut up and Calculate”

15



LIGO/VirgO and Templates

Era of gravitational wave astronomy begins!

LIGO Hanford

N
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>
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o
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LIGO Livingston
|

0.7 0.8
Time (sec)

Signal extracted and compared against ~250K templates computed from theory.

16



Goal: Improve on post-Newtonian Theor)d

Inspiral Merger Ringdown

.//. © o
M“J\/\/WWW

Post — Newtonian Numerical Perturbation
PN + EOB or Pheno Theory Relativity Theory

UV

analytic part we want to help with

Small errors accumulate. Need for high precision.

From Antelis and Moreno, arXiv:1610.03567 45



Post Newtonian Approximation ‘

2 GM<<1 ‘/ -

. 2 V- ~
Expand in G and v / r 7

For orbital mechanics:

virial theorem

In center of mass frame: m=ma+mp, v=u/M,

pw=mampg/m, Pr=P- R

2
H _ P Gm  Newton

7 2 R
N 1{ P4+31/P4+Gm( Pr?v 3 P2 1/P2>+G2m2}
c2 8 8 R 9 2 D 2R2

+. .. ~ 1PN: Einstein, Infeld, Hoffmann

Hamiltonian known to 4PN order.

2PN: Ohta, Okamura, Kimura and Hiida.
3PN: Damour, Jaranowski and Schaefer; L. Blanchet and G. Faye.

4PN: Damour, Jaranowski and Schaefer (2014) 18



PN versus PM expansion for conservative two-body dynamics

12 From Buonanno
I L GMp 1 1
==+ 5 T, +§[] "'74[] T Amplitudes 2018
E(v) = _H 2 + ... I non-spinning compact objects
2
OPN | 1PN | 2PN | 3PN 4PN 5PN
1 v? vt v° v® pt? pl2 a
N - , 9]
1PM: 1/r 02 /r v /r 0P /r VS /r E
e : > 7 ¢ . . VI — S
(2@ 1/r? | o2/ Lot | o8 |[08/02) | L. g,
3PM: 1/r3 | v?/e | ot | 8 )g
4PM- 1/ 02 /1 v /it
2
1 M
1— Mc?, v? — l—‘,, 1,¢ —.
a r rc=
current known current known overlap between unknown
PN results PM results PN & PM results

e PM results (Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10,
Damour 16-17, Guevara 17, Vines |7, Bini & Damour |7-18,Vines in prep)




Which problem to solve?

Some problems for (analytic) theorists:

Spin.

Finite size effects.

Radiation.

High orders in perturbation theory. €<—

-

—

Which one to solve?

* Needs to be extremely difficult using standard methods.
* Needs to be of direct interest to LIGO.
* Needs to be in a form that LIGO can use.

3rd post-Minkowskian order 2-body Hamiltonian

20



Our Approach

7B, Cheung, Roiban, Shen, Solon, Zeng

Gravitational Effective
Scattering Field Theory
Amplitudes Methods

Kawai, Lewellen, Tye
ZB, Dixon, Dunbar, Perelstein, Rozowsky
/B, Carrasco, Johansson

Goldberger, Rothstein
Neill,Rothstein
Cheung, Rothstein, Solon

Post
Minkowskian
Potentials

Inefficient: Start with quantum theory and take i — 0
Efficient: Almost magical simplifications for gravity amplitudes.
EFT methods efficiently target pieces we want.

Will show efficiency wins.

21



Potentials and Amplitudes

Iwasaki; Bjerrum—B-ohr, Donoghue, Vanhove; Neill, Rothstein
Bjerrum-Bohr, Damgaard, Festuccia, Planté. Vanhove

Tree-level: Fourier transform gives classical potential.

Vi) = / (;iwélB e 'IT AT (q) q

At higher orders things quickly become § § %g § § §
less obvious:

*  What you learned in grad school on / counting is wrong.
Loops can have classical pieces.

 Double counting and iteration. ptSclassical /1

« 1/h scaling of loop amplitudes.

: - 1/R% at L loops
« Non-uniqueness of potential. / p
* Cross terms between1/A and £

Piece of loops are classical: Our task is to extract these pieces.

We harness EFT to clean up confusion 99



EFT Matching

Goldberger and Rothstein
Neill, Rothstein

full Einstein’s theory
(complicated)

Amplitude methods
double copy

tree amplitude
h—0

generalized
unitarity
loop integrand

loop
integration

GR loop amplitude

identjcal

physics

Cheung, Rothstein, Solon (2018)
effective theory

(simpler)
build
ansatz
potential

Feynman
diagrams

loop integrand

loop
integration

EFT loop amplitude

Roundabout, but efficiently determines potential

23



Gauge-Theory Building Blocks for 2 PM Gravity

Atree(1372+’3—|—748) — ’Lml[ ]
(23)t12
Atree(13 9t 3= 4%) = (3[1]2]7 color-ordered gauge-theory
T T (23) 23]t tree amplitudes

e This is all you need for 2 PM.

* Scaling with number of loops is very good.

2 Por—C O>—" —C_ O>—' —C >
1 o O— 1 —C D— 1 —C D

£ + O?
Cym = 2(# + mim3
523

)

1

t10, T20,

2
£? = 1 [—t12823 + So3t1¢, — S23tor, + 2t10, L2y,

O? = £% — (sa3mi + sastie, + 134, )(s23m3 — sastae, + t5y,)

gauge theory
integrand

24



One loop gravity warmup

Apply unitarity and KLT relations.
Import gauge-theory results.

1 1 1 1 1
Cer =2| (E* + O +6E20%) + milm%] [ + ] [ + ]
t t10,  tae, | [t20, T30,

* Same building blocks as gauge theory!
* Double copy is visible even though we have removed
dilaton and axion.

We can extract classical scattering angles or potentials following

literature Damour; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove;
Cheung, Rothstein, Solon

This is 2" PM order
25



s23 = (P2 + p3)’ Two Loops for 3 PM

tij = 2p; - pj
ZB, Cheung, Shen, Roiban, Solon, Zeng
2 3
Z e Use KLT and sum over helicities
1 ) * Very similar to one loop

1 1
CH-Cut _ 22[ + ]
(ps —ps)?  (ps +p7)?

1
. [sg3m§m2 L Z (st + 0!+ 60353)]

523
1
2 2 2 2 2
1
53 = ngg (t17tas — tiots7 — soz(ti7 + t57))2;

2 2
02 put 82 — 7711772/25231:57

* Double copy is visible.
* Remarkably simple, given it is two-loop gravity.

* Other cuts somewhat more complicated, but straightforward



Integration + Extraction of Potential

To integrate follow methods of Cheung, Rothstein and Solon.
* Efficiently targets the classical pieces we want.

* Integrals reduce via residues to 3 dimensional integrals.
* Incorporates matching to effective field theory.
* Good scaling with perturbative order.

Checks on integrals using standard tools of QCD:

* Mellin-Barnes integration. V. Smirnov; Czakon
e Sector decompostion. Binoth and Heinrich, A. Smirnov
° Integration by parts. K. G. Chetyrkin and F. V. Tkachov, Laporta; A. Smirnov;

Maierhofer, Usovitsch, Uwer

* Differential equations.

7B, Dixon, Kosower; Remiddi and Gehrmann

e Method of regions. Beneke, V. Smirnov; A. Smirnov.
27



Amplitude in Classical Potential Limit

7B, Cheung, Roiban, Shen, Solon, Zeng (2019)

rapidity \

48v (3 + 1202 — 40*) arcsinhy / I+

Classical limit. The O(G®) or 3PM terms are:

/G3 2 41 - o2
MB:T v m2 0gq [3_61/+206V0—5402+1081/02+41/a3—
6+2€ 0% —1
18v7y (1 —202?) (1 —502)] 87T3G31/4mG[ 2 2 2 2 2)3 ]
— 3y(1—2 1 —50%)F1 — 32 1-2 F:
ST vy 7( 0)( oa) 1 m-v ( 0) 5
m=ma + mp, ,U:mAmB/ma V:/L/m, /VZE/m7
¢ = BBy E2, E = F) + Fs, 0 = p1 - p2/mima,

F, and F), IR divergent iteration terms that don’t affect potential.

Two loop gravity.

Simplicity of result is remarkable!

28



Conservative 3PM Potential

ZB, Cheung, Roiban, Shen, Solon, Zeng
Follow EFT strategy:

The 3PM Hamiltonian: H(p,7) =1/p*+mi+/p>+m3+V(pr)

V(p,r)=> ci(p?) (%)

1=1
2.2 2.3 4 1 — 952 2(1 _ 1_222
61:1/;77, (1_202)’ 62:1/;71 §(1_502)_ vo ( 0)_1/( §)§2 o?) 7
SS 7€ |4 8l 273¢
2a [ 1 4v (3 + 1202 — 40*) arcsinh, / &=+
c3 = — (3 — 6v + 206v0 — 5402 4+ 108vo? + 4vo3) —
3 ~v2€ 12( ) o2 —1
B vy (1 — 202) (1 — 502) B 3vo (7 — 2002) B V2 (3 + 8y — 36 — 1502 — 8002 + 15{02) (1 — 202)
21+7)(1+0) 27§ 4932
L 23490 (1 202) L 29 (1 252)”
4¢3 9664 ‘
m=ma + mp, 1L=mampg/m, v=pu/m, v=FE/m,
= E\ B>/ E? E=FE +FE = p1 - p2/mam 29
§= k1B /E7, =y + By, O = p1 - Pp2/Mi1ma,



Checks

ZB, Cheung, Roiban, Shen, Solon, Zeng

Primary check:

Compare to 4PN Hamiltonian of Damour, Jaranowski, Schifer

Need canonical transformation:

(r,p) > (R,P)=(Ar+Bp,Cp+Dr)

Azl—GmV—l—---, B:G(l_g/y)p-r—l—---
2|r| dm|r|
Gmu Gmu
C — 1 e, D = — . cee
TR T S ER.

For overlap terms of our Hamiltonian equivalent to 4PN Hamitonian.
Explicit canonical transformation found.

30



4 PN Hamiltonian

Damour, Jaranowski, Schaefer

2 n-—r
. P 1
HN(rap)ZT_;t
~ 1 1 1 1
2 L 2v2 L 2 RV
¢ Hipx (r,p) = 5B8v = )(P)? = F{B+1)p? +v(n - )}~ + 5 5.
~ 1 1 1
* Hypy (r,p) = 6 (1—5v+502) (p?)® + §{ (5 —20v — 31%) (p?)? — 2*(n - p)?p® — 3v%(n - p)4};

1 ) a1 1 1
+§{(5—|—81/)p +3v(n-p) }ﬁ_Z(H?’”)r_S’

8 Hapn (r,p) = % (=5 + 350 — 7002 + 351/3) (p%)* + %{ (—7+42v — 5302 — 51/3) (p?)?

1

(2= 30020 PP+ 30— ) p)'p? — 50 p

+ {1_16 (—27 + 136v + 109y2) (p?)? + %(17 +300)v(n - p)2p? + %(5 +430)(n - p)4}ri2

+ _§+ ﬁ_@ 1/—23V2 2 4 _%_ﬁ_lf v(n-p)? i+ 14_(@_%”2),/ L
8 64 48 g )P 16 64 4 PrraT™1s (12 ™ 32 A

31



4 PN Hamiltonian

763 189 , 105 5 63
. Hlocal ) Y - 2 3 4 2\5
¢ Higx (x.p) (256 256" T 256" " 128" T 256" )P

Damour, Jaranowski, Schaefer

1013 o

P e p) (%) + o (mp) ()

2 (n-p)°p? + ;rSG( p)s) v
g P! = 5B = G p) 0P = ) () }1 After canonical
) transformation

13 791 49 y
we match all but

p2>3+ﬁ<n-p>2<p2>2—%< PP+ o (n-p

TP
8—6 - PR 4 T )~ S p)) G* and G° terms

2335, 1135 1649 10353 1
P*)* + Seg (- p)*(P?)? = —o-(n-p)'p® + o (n- p)s) V3}—2

256 2r6 768 r

L Jws o 27497r 580189 o))+ 63347 105072 (0 p)p? 4 375 23533 )
5 ( 8192 19200 ) ‘P 1600 1024 )\ PP 8192 1280 )\ PV

1849172 1189789\ = 5. 127 403572 9 o (57563 3865572 4D\ o
( >(p) +( 3~ 2018 ) W PVPTH (Gopp T Tigass ) PV

16384 28800

Mess is partly due to

128 their gauge choice.

128

r

553 225 381 1
— )R )R - —<n~p>4) }—

105 by 189761 | 288TR) (3401779 2860177 o\
57600 24576

19200 8192

(672811 15817772 ) 9 (110099772 21827

1
— n- 2 — 4 o o
19152 3840)( p)) } r ———G Ours is all orders in
R 62377r B 169199) . (74037r2 B 1256) 1/2} is . - G5 P at G3

3072 45

19200 49152

6 1024 2400
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Tests of Our 3PM Hamiltonian for LIGO

Antonelli, Buonanno, Steinhoff, van de Meent, and Vines, arXiv:1901.07102
(8 days after our paper!)

orbits to merger

251510 54 3 2 1
—002f T T ﬁféi?“ — }{mﬁ ; Fed into EOB formalism.
_ _ EOB,PS _ _ _ 77EOBPS [l N o o o
M — Harnioey ==~ Hoew Test against numerical relativity.
—— gEOBPS . [EOBPS
3PM+4PN 4PN

~0.04f Note: Not conclusive, e. g.

—-0.05 - ° . °
: radiation not taken into account.
—0.06F

Binding energy = TSSTC ]

-0.07F

0.151

0.10¢ Winning curve is based on feeding

| < 3PM through machinery.

1 €— numerical relativity taken as truth

Ae/le|

0.05T

-
-
-
-
-
-
-
————
p—
e ——

0.00

0.02 003 004 0.05 0.06 0.07 0.08
GMSQ

“This rather encouraging result motivates a more comprehensive study...”

3PM + 4PN fed into EOB = Most advanced 2 body Hamiltonian
33



Outlook for Gravitational Wave Physics

* Methods are far from exhausted.
* Even more efficient methods seem likely.

* Methods should scale well to higher orders.

Natural future questions to investigate:

Higher orders. Resummation in G.
Radiation.

Spin.

Finite size effects.
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Summary

Marty’s basic lesson: “shut up and calculate”.

Remarkable connection between gauge and gravity theories:
— color «— Kkinematics.

— gravity ~ (gauge theory)?

Double-copy idea gives us a powerful new way to think about

sravity. We know this because we calculate.
High loop orders in (super)gravity now common. 5 loops.

Obtained the 3PM conservative 2-body potential for L1IGO.

Methods nowhere close to exhausted.

Expect many more calculations in the coming years!
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