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Off-axis final states of cylindrically bounded 2D fluids can develop from initially unstable, but
cylindrically symmetric, 2D vorticity distributions. Experiments with electrons in a Malmberg-
Penning trap, as well as 2D fluid simulations, demonstrated that such states result when the initial
vorticity distribution is close to the boundary, while less extended distributions lead to on-axis states. A
simple thermodynamic model, maximizing the entropy of a state consisting of a diffuse background
surrounding a strong coherent vortex, is shown to quantitatively predict this bifurcation, while
conserving circulation, angular momentum, and energy.
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FIG. 1. Time evolution of a large ring of electrons (ri, the
average initial radius is 0.79). The top of the scale (150)
corresponds to a density of 6� 106 cm�3.
Introduction.—Two-dimensional (2D) fluids often or-
ganize spontaneously into coherent vortices. Such struc-
tures can be found in geophysical flows and planetary
atmospheres; Jupiter’s Great Red Spot is the best known
example [1,2]. Analogies also exist between the forma-
tion of 2D vortices and the dynamics of galaxies and
protoplanetary nebulas [3].

Equilibrium statistical mechanics of 2D incompress-
ible ideal fluids can be used to understand the formation of
coherent vorticity structures [4]. Using just a few ther-
modynamic variables greatly reduces the complexity of
the problem compared to tracking the detailed dynamics.
Several studies have employed statistical mechanics to
predict the existence of off-axis equilibrium states in
cylindrically bounded 2D system [5–7]. The center of
mass of such states is shifted from the symmetry axis
of the system. These states do not share the cylindrical
symmetry of the boundary conditions, and they exist even
for cylindrically symmetric initial conditions.

Here we report experiments that show, for the first
time, that off-axis equilibrium states result if the initial
condition is an unstable configuration with sufficiently
large angular momentum. The experiments were per-
formed with electrons in a Malmberg-Penning trap, and
were corroborated with 2D fluid simulations. The elec-
trons in these traps follow E� B drift orbits, and the
drift-Poisson equations controlling their motion are iso-
morphic to the 2D Euler equations for an inviscid fluid.
The flow vorticity is proportional to the electron density,
and the electric potential is analogous to the 2D stream
function [8]. Thus, the electrons mimic ideal two-
dimensional fluid equations.

We also present a simple off-axis equilibrium model
that assumes that a fraction of the initial circulation
evolves into a coherent vortex, while the remainder forms
a diffuse background. Unlike previous models, we do not
assume ergodicity. Our model shows the same quantita-
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tive behavior as the experiments and simulations. We find
that the system tends to seek the maximum entropy state
consistent with circulation, energy, and angular momen-
tum conservation. For initially small radii systems (low
angular momentum), the maximum entropy states are
centered states. For initially large radii systems, no cen-
tered solutions are available and the system is forced to
move off axis to conserve angular momentum.

Experiments and simulations.—The electron experi-
ments were performed with the photocathode pure-
electron plasma trap [9]. This trap can create nearly
arbitrary, highly reproducible initial electron density-
vorticity configurations. The time evolution of a particu-
lar configuration is studied by repeatedly regenerating the
system and letting it evolve for ever longer times. Images
of the electrons are made by dumping them onto a phos-
phor screen.
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Figure 1 shows the evolution of a typical large electron
ring. First, the Kelvin-Helmholtz instability breaks the
ring into discrete vortices. After a short period of mixing
and merging, only a single strong ‘‘vortex’’ remains,
surrounded by an extended background. In this case, the
background reaches the trap wall and has a hole. The
smaller coherent vortex, with density comparable to the
density of the initial ring, is shifted off axis. All this
happens on a time scale short enough (30 ms) that the
electrons behave as a 2D fluid. The resulting state can be
regarded as a metaequilibrium because of the separation
of time scales between the fast, fluidlike E� B equili-
bration of the electrons, and the slow, non-fluidlike ex-
change of energy with other degrees of freedom [6]. These
nonfluid effects cause the center of charge to decay to the
trap axis after several hundred milliseconds. This slow
decay is likely caused by the mechanism of rotational
pumping [10,11].

Figure 2 shows the evolution of a typical small electron
ring. Initially, the evolution is similar to that of the larger
ring: the ring breaks into discrete vortices, the vortices
merge, and eventually a single strong vortex remains with
an extended background. Here, however, the vortex is
centered. The background is more uniform than in
Fig. 1 and barely reaches the wall. For yet smaller rings,
the background recedes from the wall.

The transition between initial distributions that result
in on-axis states and those that result in off-axis states is
quite sharp. Figure 3 shows the off-axis shift D of the
strong vortex as a function of the average initial radius of
the ring, ri. (The ‘‘average’’ radius is the density-
weighted average of the distance from the trap center
for the initial distribution. The wall radius is taken to
equal 1.) Rings whose ri is less than about 0.5 produce
centered final states. For larger rings, off-axis states
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FIG. 2. Time evolution of a small ring of electrons (ri � 0:5).
The top of the scale (150) corresponds to a density of 6�
106 cm�3.
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appear. The off-axis shift increases sharply with ri.
Moving the initial center of charge slightly off center
has no significant affect on the final state.

We verified that the observed phenomena are due to 2D
fluid dynamics by running a spectral code simulation of
the Euler equation [12]. As can be seen in Fig. 3, the
electron experiments and the 2D fluid simulation code
agree closely; the off-axis transition is very well pre-
dicted by the code. We also find that resulting final states
in the simulations typically have about half of the initial
circulation in the diffuse background, and half in the
small high vorticity disk. This is similar to the results
of the experiments. The simulation also verifies that the
off-axis states evolve with strict conservation of circula-
tion and angular momentum. Unlike the electron experi-
ments that inevitably include effects not described by the
ideal 2D picture, the off-axis states in the 2D fluid simu-
lations do not show a decrease of the off-axis deviation
with time. The simulation also demonstrates that the
results are obtained when the initial vorticity is concen-
trated only in the ring, with strictly zero background
vorticity.

The exact geometry of the initial distribution is not
crucial. We performed electron experiments with initial
distributions in the shape of bars (elongated rectangles)
or tribars (three rectangles merging in the center of the
trap). All the initial distributions had on-axis center of
charge. The initial distributions of bars and tribars broke
to two and three vortices, respectively, which then
merged to a single vortex. As can be seen in Fig. 4, an
on-axis strong vortex resulted for the smaller initial
shapes, while an off-axis state resulted for the more
extended initial distributions. Figure 5 shows that the
transition between on- and off-axis states is similar to
that of the ring experiments. Here the results are pre-
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FIG. 3. Off-axis shift of the coherent strong vortex in the
final state, as a function of the initial average radius of the
rings. Experimental results are shown with circles, simulation
results with crosses.
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sented as a function of the angular momentum.We use the
same normalization as in Ref. [6], where the density n is
scaled such that the total circulation is 1:

R
nd2r � 1.

With this scaling, the angular momentum is just the
weighted average of r2: M �

R
r2nd2r.

Model.—We have developed a simple model that can
predict the final state.We assume that this state consists of
two overlapping regions: a large background, with low
and uniform vorticity, and a small vortex, with high and
uniform vorticity. The background in our model is cen-
tered on the trap axis, while the small vortex has a shift D
from the axis (D � 0). The background has a radius of rb,
0 � rb � 1. The strong vortex is defined by having vor-
ticity comparable to the initial vorticity of the rings. Chen
and Cross [13] have concluded from numerical simula-
tions of a similar problem that the core region with
vorticity higher than 0.7 of the initial vorticity is essen-
tially nonmixing. Our experiments and simulations also
show that a level of 0.7 of the initial vorticity is reason-
able for the definition of the coherent vortex, and we use
this value in our model. We also verified that the model is
not sensitive to the choice of this value.With this vorticity
specified, there are only four parameters that characterize
the final state: the radius rv and off-axis shift D of the
small vortex, and the vorticity nb and the radius of the
background rb.

Possible final states of our 4 degrees of freedom model
(rv, D, nb, rb) are obtained using three constraints:
conservation of total circulation (charge), energy, and
angular momentum. Using the scaled variables of
Ref. [6], the energy is E � 1

2

R
n
d2r, where the potential


 is the solution for the Poisson equation r2
 � �4�n,
with the boundary condition 
 � 0 at r � 1. The pa-
rameter rv determines the circulation in the strong vor-
tex, while nb and rb define the circulation in the
background. Although the loss of electrons to the walls
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FIG. 4. Initial and final states in experiments with tribars of
different sizes.

215002-3
occurs at longer time scales in the experiments, the
transition to the metastable state occurs on a fast enough
time scale such that this loss is insignificant. Our fluid
simulations, which allow no loss of circulation, demon-
strate that the transition to off-axis states occurs with a
strict conservation of circulation.

Figure 6 parametrizes the solution as a function of the
angular momentum M and the off-axis shift D. For each
initial condition (the hollow rings shown in the first three
figures), we calculate the circulation, the energy E, and
the angular momentum M. Then, we solve for allowed
values of D, rv, nb, and rb. As there are only three
constraints for the 4 degrees of freedom, we get a one-
dimensional family of allowed solutions. Consequently,
we arbitrarily pick a D and find the allowed values for rv,
nb, and rb. We solve this nonlinear system using a
MathCad numerical solution finder or alternatively us-
ing an iterative search. In principle, multiple solutions are
possible, but for a given D we never found more than one
solution with positive, real values for all the parameters.
Noting that the background vorticity must fit within the
system, we divide the solutions into allowed final states
(rb < 1) and forbidden states (rb > 1), as shown in Fig. 6.
For low angular momentum the allowed range of solu-
tions always includes an on-axis solution (D � 0), while
for high angular momentum (M � 0:3) states only off
axis (D> 0) were found. As can be seen in Fig. 6, both the
experimental and numerical results show that the flow
evolves to the member of the one-dimensional family
with the minimum allowable value of D, which is equiva-
lent to the member that maximizes rb, or equivalently the
solution that maximizes the entropy. With this criterion,
the preferred solutions for angular momentum smaller
than M� 0:3 will be on axis (D � 0). At M� 0:3, the
value of rb for the on-axis solution reaches unity.
Thereafter, as M increases, the preferred solutions follow
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FIG. 6. Allowed solutions to the simple model for the final
states, satisfying conservation of circulation, energy, and an-
gular momentum. Also shown are the results of the experi-
ments (circles) and simulations (crosses).
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the allowed-forbidden separatrix, and rb remains fixed at
unity. The flow is off axis; D> 0 and increases with
increasing M. In agreement with the experiments and
simulations, the total circulation turns out to typically
split nearly equally between the diffuse background and
the small vortex. Similar results were obtained applying
the model to configurations resembling the bar experi-
ments we performed. As with the case of the rings, on-
axis solutions were obtained as long as angular momen-
tum could be conserved with rb < 1.

Previous work looked for single-vortex solutions of the
mean-field equations of the fluid in a disk [5–7]. For high-
enough energy both symmetric vortices at the center and
off-center vortices were found as possible solutions.
Beyond the bifurcation point, the off-axis solutions had
higher entropy than the on-axis states. Our results agree
with the phase diagram found in Fig. 12 of Smith and
O’Neil [6]. In that diagram, region 1 was defined as the
region where only on-axis solutions exist, while region 3
is where off-axis solutions are found and have higher
entropy. Configurations of lower angular momenta in
our experiments and simulations are found in region 1
of that phase diagram, while higher angular momentum
configurations are found in region 3. For example, a ring
with inner and outer radii of 0.4 and 0.5, respectively, has
E � 0:76 and M � 0:205, and so belongs to region 1,
while a ring with inner and outer radii of 0.6 and 0.7,
respectively, has E � 0:4, M � 0:425, and is inside re-
gion 3. Note that, while the energy of the larger rings is
smaller, their angular momentum is high enough to be
beyond the point of bifurcation.

Conslusions.—In this Letter, we showed, for the first
time, experiments, corroborated with fluid simulations,
that start with initially unstable, cylindrically symmetric
states and result in off-axis states. The unstable configu-
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rations developed quickly to metastable states of high
entropy by producing a diffuse background, although
the strong core did not mix and remained with vorticity
close to the initial one. Previous statistical models that
discussed the possibility of off-axis states assumed ergo-
dicity [5–7]. Our results differ substantially from these
models that predicted that the final off-axis configura-
tions would be small localized columns with no extended
diffuse background.

In our model we consider only a subset of all possible
final states available under the constraints of conservation
of circulation, angular momentum, and energy. By such
restriction, we explicitly assume that ergodicity is not
applicable to our system. Lack of ergodicity was also
invoked by Jin and Dubin [14] to explain the creation of
vortex crystals in trapped electron plasmas. Their key
idea was that the low vorticity background is well mixed,
while the strong vortices are not. Chen and Cross also
discussed lack of ergodicity in a problem similar to ours
[13], but did not apply this reasoning to their analysis of
off-axis states. Our model demonstrates that maximizing
entropy by way of increasing the radius of the diffuse
background can lead to the sharp transition to off-axis
metaequilibrium states when the radius of the background
attains its maximum value (rb � 1).
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