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Abstract

Nonlinear and Multi-Wave Effects in Fast-Scale Laser-Plasma Interactions

by

Ryan Roger Lindberg

Doctor of Philosophy in Physics

University of California, Berkeley

Jonathan S. Wurtele, Chair

A new model of kinetic effects in Langmuir wave dynamics is developed. A nonlinear

distribution function is constructed that accounts for particle separatrix crossing and self-

consistent electrostatic evolution, assuming that the Langmuir wave changes slowly with

respect to the particle bounce frequency in the wave. Using simple physical arguments,

the distribution function is shown to be nearly invariant in the canonical action, such that

slow evolution results in an overall translation of the distribution in action. Requirements

of self-consistency with the electrostatic potential yield the key properties of the nonlinear

distribution function, including a frequency shift of the wave and the incoherent energy

associated with developing the final, phase-mixed state. These Bernstein-Greene-Kruskal

(BGK) type waves naturally arise in weakly driven, thermal plasmas, and extend earlier

work on nonlinear plasma waves by Morales and O’Neil and by Dewar. The bulk properties

of these BGK-type waves are used to develop a fluid model describing nonlinear, kinetic

Langmuir waves in a driven plasma that is shown to agree closely with electrostatic particle

simulations over a wide range of temperatures (0.1 ≤ kλD ≤ 0.4). This model is then

applied to the fundamental problem of including kinetic effects in Raman backscatter.

To obtain the coupled mode equations relevant to Raman backscatter in a plasma, we

average the Vlasov-Maxwell system over the fine spatio-temporal scales of the laser phase.

The resulting set of envelope equations coupling the two counter-propagating lasers with
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the plasma wave is then analyzed in two limits: that of an initial, linear Langmuir wave, and

that of the time-asymptotic state in which the particles become phase-mixed in the wave.

In the former limit, the standard natural frequency and Landau damping is obtained, while

the latter case leads to a vanishing damping and a nonlinear frequency shift of the wave,

in agreement with recent numerical results. Energy conservation is employed to provide a

smooth transition from one regime to the next, using the fact that the energy dissipated by

Landau damping must be equal to the increase in kinetic energy of the plasma electrons.

These results build on the ideas of nonlinear Landau damping studied by O’Neil, while

in the small amplitude limit our work reproduces that of Dewar on instability saturation

through trapping.

The resulting extended three-wave model is compared with kinetic simulations for a

wide range of system parameters, relevant to both inertial confinement fusion and Raman

laser amplification in a plasma. Particle trapping and the resulting decrease in Landau

damping gives rise to an increase in the Langmuir wave amplitude above linear theory

expectations, as has been observed in recent experiments and Vlasov simulations. The ex-

tended three-wave model captures the essential physics of this “kinetic enhancement” that

may lead to undesirably large levels of Raman scatter in the context of inertial confine-

ment fusion. The Raman amplifier, in which Raman scattering is used to transfer energy

from a long pump laser to a short seed pulse, can be adversely affected by the nonlinear

frequency shifts arising from the trapped particles, with a resulting decrease in efficiency.

The extended three-wave model is proposed as a simulation tool for efficiently evaluating

this temperature scaling for present and future experiments.

Jonathan S. Wurtele
Dissertation Committee Chair
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Chapter 1

Overview

Ever since Tonks and Langmuir [1] described and gave indisputable evidence for lon-

gitudinal, electrostatic oscillations in a plasma, Langmuir waves have played an important

role in plasma physics. So much so that even though plasmas support a host of waves,

Langmuir waves are often referred to as plasma waves or plasma oscillations, and their

characteristic frequency ωp ≡
(

4πen0
me

)1/2
is the plasma frequency (me is the electron mass,

e the magnitude of its charge, and n0 the ambient electron density).

In 1949, Pines and Bohm [2] clearly demonstrated that Langmuir waves are essentially

a collective phenomenon, describable in terms of collective coordinates for scale-lengths

greater than the Debye length λD ≡ vth/ωp, where, for a plasma with temperature Te the

thermal speed vth ≡
√
Te/me. This collective behavior is one of the defining features of

plasma. About the same time, Landau [3] showed that linear Langmuir waves have an

imaginary part to their oscillation frequency, so that electrostatic waves in a plasma decay

through the process of Landau damping. About ten years later, Jackson [4] provided

and Dawson [5] improved upon a physical mechanism for this collisionless damping in

terms of the resonant wave particle interaction: particles moving slightly slower than the

phase velocity of the wave vp are accelerated and take energy from the wave, while those

particles whose velocities are slightly faster than vp transfer energy to the wave. In the
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case of a Langmuir wave with vp & vth in a Maxwellian plasma, for example, there is

an excess of particles whose velocity is slower than vp, resulting in a net increase of the

particle kinetic energy and commensurate damping of the electrostatic wave. Nonlinear

modifications to the distribution function were shown by O’Neil [6] to arrest the process of

Landau damping for sufficiently large amplitude waves: if electrons perform many trapped

oscillations before Landau damping significantly changes the wave amplitude, then the

trapped particles effectively phase-mix in the wave and flatten the distribution in velocity,

resulting in a stationary final distribution of nonzero electrostatic amplitude.

Although it was not explicitly noted at the time, the phase-mixed final state described

by O’Neil has much in common with the nonlinear, stationary solutions first described by

Bernstein, Greene, and Kruskal (BGK) [7]. Formally, BGK waves are static solutions

of the one-dimensional Vlasov-Poisson system for which the distribution is a function of

the conserved particle energy H = 1
2mev

2 − eΦ(z). As shown in Ref. [7], any sufficiently

smooth electrostatic potential can be self-consistently realized with an appropriate distri-

bution function f(H) which includes both trapped and untrapped particles. While these

distributions may at first appear to describe a very specialized class of solutions, they

arise in a wide range of nonlinear phenomena, including the nonlinear stages of Landau

damping [6, 8] and other instabilities [9, 10], and furthermore have been used to develop

certain theories of shock waves [11] and double layers (see, e.g., [12] and references therein).

BGK-type waves have been excited and controlled in non-neutral plasmas [13, 14], have

been associated with the nonlinear evolution of stimulated Raman and Brillouin scattering

in laser-plasma experiments [15, 16], and have been directly observed in auroral and other

space plasmas [17, 18].

While BGK waves are of fundamental interest to a wide range of plasma physics, our

focus will center on a certain class of BGK-type waves that naturally arise as long-lived,

nonlinear Langmuir waves in plasmas that are driven on or near resonance. These waves

have a particular importance for laser-plasma interactions, as they dynamically appear in

the later, nonlinear stages of the Raman scattering instability.
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Figure 1.1: Feynman diagrammatic picture of Raman scatter in a plasma. Conservation
of energy and momentum dictates that ω0 = ω1 + ω2 and k0 = k1 + k2, corresponding to
the classical resonance conditions.

In quantum mechanical language, Raman scattering can be simply described as the

resonant decay of an incident photon into a frequency down-shifted daughter photon and

a Langmuir oscillation (or plasmon) [19, 20, 21]. A Feynman diagram representation of

the Raman interaction is given in Fig. 1.1, where the frequency and wavevectors satisfy

the resonance conditions

ω0 = ω1 + ω2 , k0 = k1 + k2, (1.1)

with the subscript 0 indicating the incident photon, 1 the scattered photon, and 2 the

Langmuir wave, so that ω2 is approximately the plasma frequency ωp.

The Raman interaction can give rise to an instability in which significant levels of

incident laser light is scattered. If, for example, the propagating laser encounters a density

fluctuation in the plasma, a transverse current given by the product of the density pertur-

bation and the quiver velocity of the electrons is produced. This current then generates

a scattered electromagnetic wave satisfying the resonance conditions (1.1), which in turn

beats with the incident laser, amplifying the initial density perturbation. The resulting

feedback can lead to significant energy being reflected from this “plasma grating.” The

characteristic growth rate of the linear Raman instability is

γR ≡
√

a2
0 ω0 ωp/2 , (1.2)

where a0 ≡ e
mc2e

A0 is the root mean square dimensionless vector potential of the incident,

“pump” laser. Note that instability occurs only if the growth rate γR is sufficiently large to
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overcome the damping of the plasma and scattered waves, or, alternatively, the gradients

in the plasma over which the resonance condition (1.1) approximately holds (see, e.g.,

Ref. [22, Ch. 7] and references cited therein).

The theoretical and numerical studies in this thesis are motivated, in part, by the

importance of Langmuir wave dynamics to Raman scattering in plasma. From the per-

spective of inertial confinement fusion, Raman backscatter is a deleterious instability that

can significantly decrease the laser energy on target, and furthermore produce hot electrons

which make it more difficult to compress the deuterium-tritium capsule. For this reason,

it is necessary to understand how Raman scattering scales with laser parameters, such as

intensity, wavelength, and phase coherence, and with plasma parameters, such as density

and temperature. Additionally, nonlinear processes must be identified and understood.

These processes can both increase Raman scattering through decreased Landau damping

[6, 8], or nonlinearly saturate the instability via particle trapping and the associated non-

linear frequency shifts [23, 24, 25], the trapped particle instability [26], or possibly through

Langmuir wave-breaking [27, 28].

Premature saturation of the Raman instability can lead to undesirably low efficiencies

for schemes that use Raman backscatter as a means to exchange energy from a long,

low intensity laser to a short, high intensity laser pulse [29, 30]. For this application,

the Raman interaction is initiated by a short, seeding laser, with the ultimate goal being

significant transfer of the pump energy into the seed. In this case, the Raman interaction

should ideally be “turned off” until the pump reaches the seed pulse, after which time

premature saturation of Raman scattering may lead to decreased amplification efficiency

and degraded amplified pulse characteristics.

These two schemes view the Raman instability from different perspectives, with fu-

sion applications looking to limit Raman scattering to some tolerable, low level, while the

Raman amplifier requires maximal Raman coupling when the counter-propagating lasers

overlap. Nevertheless, both applications require an understanding of the nonlinear ki-

netic effects to properly assess appropriate parameter regimes, and to develop the reduced
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numerical tools useful for theoretical analysis.

1.1 Findings of this thesis

In this thesis, we develop a new analysis of nonlinear distribution functions associated

with slowly-driven waves. These waves have particular relevance to plasma physics in gen-

eral and Raman scattering in particular as they naturally arise in plasmas that are driven

on or near the Langmuir resonance. By trapping particles self-consistently in the electro-

static potential, they give rise to long-lived, BGK-type solutions that are not damped by

(collisionless) Landau damping. We then use the bulk properties of this dynamic distribu-

tion to develop a simplified kinetic model of Raman backscatter, hereafter referred to as

an extended three-wave model. We compare our model predictions to results from Vlasov

simulations, and investigate the nonlinear growth and saturation of Raman scattering in

contexts relevant to both the inertial confinement fusion community and the scenario of

plasma-based Raman amplification.

We begin in Chapter 2 by introducing the nonlinear distribution function associated

with slowly-evolving Langmuir waves in a warm plasma. The critical theoretical develop-

ment is an action-angle description of particle motion including separatrix crossing in the

slowly-evolving wave. By dividing the fast angular dependence from the slow evolution

of the action, we find that these waves are described by an electron distribution function

that is invariant in the action difference for the untrapped particles, while invariant in

the action for the trapped particles. Self-consistency with the Poisson equation yields

the slowly-evolving mean action of the distribution, from which an amplitude dependent

frequency shift of the Langmuir wave is obtained that compares well with simulations.

In Chapter 3 the Vlasov-Maxwell system for Raman backscatter is reduced to a set

of three coupled-mode equations including thermal and kinetic effects. We derive this

extended three-wave model by averaging the Vlasov-Maxwell system over the short spatio-

temporal scales associated with the laser phase, assuming that the transverse gradients
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are small. We thereby obtain a set of coupled envelope equations describing the resonant

interaction between three modes given by the two counter-propagating lasers and the

Langmuir wave. The Langmuir wave envelope equation contains terms involving second-

order velocity moments of the distribution function. In two limits the system can be closed:

in the linear limit these additional terms gives rise to the complex frequency associated

with a Landau-damped “quasi-mode,” while in the time asymptotic limit the distribution

approaches that of the BGK-type wave of Ch. 2, with its associated zero damping and

nonlinear frequency shift. To interpolate between these two limits, we develop a simple

theory based on energy conservation and resonant particle phase-mixing in the Langmuir

wave, through which a smooth transition can be numerically interpolated. This results in

a model that includes the linear and nonlinear physics in a unified and consistent, albeit

somewhat heuristic, manner.

In Chapter 4 we compare the extended three-wave model to fully kinetic codes (both

Vlasov and particle-based) in a variety of different regimes. We illustrate some basic

features of the driven Langmuir waves which can grow to levels above those predicted by

linear calculations assuming a constant value of Landau damping. Because particles phase-

mix in these driven waves (associated with the flattening of the distribution in velocity-

space), Landau damping vanishes and the waves will continue to grow. We show that in

this case the Langmuir wave growth is saturated by the nonlinear frequency shift, which

detunes the plasma response from the resonant drive. Finally, we apply our extended three-

wave model to the transient amplification of a short laser seed pulse in plasma. Further

applications of the theory would be to develop an efficient multi-dimensional code to model

Raman backscatter.

In parallel to the analysis in chapters 2-4, we present a few new aspects of one dimen-

sional plasma fluid models in Ch. 5. We first obtain a Hamiltonian warm fluid model that

is both canonical yet given in terms of the physical, Eulerian velocity and electric fields.

This is unusual, since continuum models in Eulerian coordinates generally have noncanon-

ical Hamiltonian formulations. We use this model to show, in a simple and straightforward
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manner, that the cold, nonrelativistic Langmuir wave has a natural frequency ωp that is

independent of its amplitude. We close by showing a simple, geometric explanation of why

this is true.

We conclude in Ch. 6 with some possible extensions and applications of this thesis to

future research.

Appendix A contains some clarifications of previous work regarding separatrix cross-

ing in slowly-varying Hamiltonian systems. Specifically, we consider the evolution of a

distribution of particles initially of the same canonical action and spread uniformly in

the canonical angle as they cross a slowly-evolving separatrix, a situation relevant to the

particle trapping described in Ch. 2. We show that upon crossing, the action of nearly

all the particles changes by some small amount, while the distribution in angle becomes

bunched due to the slowing of some particles as they near the hyperbolic fixed points. This

bunching in angle only vanishes logarithmically with the slowness parameter, so that its

effect is important to the results of Ch. 2 for physically realistic parameters.
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Chapter 2

Nonlinear Langmuir waves in a

slowly driven plasma

2.1 Introduction

Much of the progress in understanding Langmuir waves has been from the linear

viewpoint, obtained by assuming that the perturbation of the plasma from its (Maxwellian)

equilibrium is assumed to be “sufficiently small,” such that second order terms in the

perturbation may be neglected. Under these conditions, one can derive the normal modes of

the distribution function (the singular Case-Van Kampen modes [31, 32]) or, alternatively,

the Landau damped “quasi-modes” of the electric field [3, 4]. A basic result of these linear

analyses is that smooth, electrostatic perturbations tend to zero through the process of

Landau damping.

That such damping is not universal was first pointed out by Bernstein, Greene, and

Kruskal (BGK) [7], who included the particles trapped in the electrostatic wave to formu-

late nonlinear distribution functions that give rise to stationary electrostatic disturbances.

Explicit constructions of sinusoidal, small-amplitude BGK waves were later derived by

Holloway and Dorning [33], in which they showed that arbitrarily small amplitude waves
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can exist without being Landau damped. BGK distributions are functions fe(H) of the

conserved particle energy H = 1
2mev

2 − eΦ(z) (where me is the electron mass, e is the

magnitude of its charge, z is the longitudinal position, and v is the longitudinal veloc-

ity), whose charge density generates the self-consistent electrostatic potential Φ(z) via

Poisson’s equation. Thus, BGK distributions are static solutions to the one-dimensional

Vlasov-Poisson system

d

dt
fe(v, z; t) =

∂fe
∂t

+ v
∂fe
∂z

+
e

me

∂Φ
∂z

∂fe
∂v

= 0 (2.1a)

∂2

∂z2
Φ(z) = 4πe

∫
dv fe(v, z; t)− 4πeni(z), (2.1b)

where fe is the electron distribution function at time t, normalized such that its marginal-

ization in velocity is the electron density

∞∫
−∞

dv fe(v, z; t) = ne(z, t),

and we consider the ions to have a time-independent density ni(z), implying that the

time-scales of interest are sufficiently fast such that ion motion can be neglected.

In this chapter, we extend previous work on nonlinear plasma waves. First, we in-

troduce and characterize nonlinear Langmuir wave solutions to the Vlasov-Poisson system

(2.1) that are naturally occurring BGK-like waves. These waves (and the distribution

functions that generate them) have particular relevance to laser-plasma physics, in that

they dynamically arise as kinetic, nonlinear Langmuir waves in systems that are weakly-

driven on or near resonance. To obtain these solutions, we use the canonical action-angle

coordinates, finding that the plasma is well described by a simplified distribution function

that is invariant in the canonical action difference for the plasma bulk. In this way, we

obtain near-equilibrium solutions that approximate the fully time-dependent distribution

function when the resonant forcing is small. While these notions may be reminiscent of

adiabatic theory, we do not invoke adiabatic invariance. Our calculation is more in the

spirit of an averaged theory, in that the dynamical dependence on the canonical angle is
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ignored on the grounds of rapid effective phase-mixing in the Langmuir wave, while the

particle action evolves self-consistently.

Because these nonlinear, kinetic Langmuir waves arise naturally in slowly-driven sys-

tems, their bulk properties can be used to illuminate basic plasma processes and obtain

reduced descriptions of complex phenomena. For example, the nonlinear frequency shift of

the thermal Langmuir resonance is an important quantity in any reduced model of Raman

scattering in plasma [34, 35, 36, 37], and our results extend those of Morales and O’Neil

[24] and Dewar [25] to colder plasmas and larger electrostatic potentials Φ(z). We will

discuss such an implementation in a Langmuir envelope code in the following chapter.

We introduce the nonlinear distribution in Sec. 2.2. We begin with the single par-

ticle equations-of-motion for a weakly-driven system dominated by the slowly-evolving

electrostatic potential, and proceed to introduce the relevant action-angle coordinates.

Assuming that these coordinates naturally divide the evolution into fast (canonical angle)

and slow (canonical action) components, we argue that slow evolution and phase-space

area conservation result in an electron distribution function that remains invariant in the

action difference for the bulk, for which we mean that any change in the action is reflected

throughout the untrapped distribution, while the trapped distribution remains invariant

in the canonical action, i.e., the particle action is effectively conserved. Note that because

the untrapped distribution is only found to be invariant in the action difference, the mean

canonical action may increase as the wave is slowly excited. We will discuss this important

departure from previous work in Sec. 2.2.3. Following this, we use Coulomb’s law and the

demands of self-consistency in Sec. 2.2.4 to derive the functional relationship between the

mean action and the amplitude of the potential. Under our present assumptions, this fully

specifies the distribution, from which we then extract the natural frequency of the BGK-

type wave. To compare this theory with previous results, we present the small-amplitude

limits of the mean action and frequency shift in Sec. 2.3, for which the dynamics can be

approximated by that of a pendulum. Finally, we compare the frequency of these nonlinear

Langmuir waves to those obtained from self-consistent particle simulations in Sec. 2.4 for
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thermal plasmas with 0.1 ≤ kλD ≤ 0.4, where λD ≡ vth/ωp is the Debye length.

2.2 The nonlinear electron distribution function relevant for

a weakly-driven plasma

In this section we present the single particle equations relevant to a weakly-driven

plasma wave in the action-angle formalism. This results in a natural separation of time-

scales, from which a simplified, approximate form of the distribution can be determined.

2.2.1 Single-particle equations of motion

In what follows we ignore transverse variation, assuming that the dominant dynamics

are along the longitudinal axis z. We also neglect the motion of the background ions, and

furthermore assume that the longitudinal force on the electrons can be divided into two

components: the first is given in terms of an external driving potential V (z, t) sin(ωt+kz),

which could arise, for example, from a ponderomotive force resulting from the beating

of two lasers. We assume that this external forcing can be expressed as an amplitude

V (z, t) modulating a carrier oscillation at frequency ω and wavenumber k. The second

force derives from the self-consistent electrostatic potential Φ(z, t) of the plasma electrons.

Thus, Newton’s equation of motion for the longitudinal electron coordinate z(t) is given

by

d2

dt2
z(t) =

ω2
p

k2

∂

∂z

[
φ(z, t)− V(z, t) sin(ωt+ kz)

]
, (2.2)

where we have scaled the potential by the kinetic energy associated with the nominal phase

velocity of the wave, introducing the dimensionless potentials

φ(z, t) ≡ ek2

meω2
p

Φ(z, t), V(z, t) ≡ k2

meω2
p

V (z, t), (2.3)

and the cold, linear plasma frequency corresponding to the equilibrium density n0 = ni is

ωp ≡
(

4πe2n0

me

)1/2

, where n0 ≡ lim
t→−∞

∫
dv fe(v, z; t).
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In the equation of motion (2.2) we have assumed the dynamics to be nonrelativistic,

requiring that the potentials remain sufficiently small such that |eΦ| , |V | � mec
2 , where c

is the speed of light in vacuo; note that the electrostatic potential will satisfy this relation

for all time if the nominal phase velocity is much less than the speed of light, (ω/k)2 � c2.

To further simplify (2.2), we assume that the normalized amplitude of the external

driving potential V(z, t) has a slow spatio-temporal variation with respect to its carrier

phase, so that ∣∣∣∣ ∂∂z lnV(z, t)
∣∣∣∣� k ,

∣∣∣∣ ∂∂t lnV(z, t)
∣∣∣∣� ω. (2.4)

The nearly-periodic, weak external drive then sets a natural spatial length-scale for the

slowly-evolving, self-consistent electrostatic potential φ(z, t). In order to facilitate subse-

quent discussion regarding the separation of time-scales and our resulting choice of coor-

dinates, we expand φ as a Fourier series of dimensionless eikonal amplitudes:

φ(z, t) =
∞∑
n=1

φn(z, t) cos{n[(ωt+ kz) + ψ(z, t)]}. (2.5)

Because φ(z, t) is excited by the slowly-varying potential V(z, t), the eikonal conditions

(2.4) imply that the harmonic amplitudes φn(z, t) and the phase shift ψ(z, t) are similarly

slowly-varying. In the limit of small forcing, we now express (2.2) as a Hamiltonian system

appropriate for action-angle variables. We introduce the dimensionless time τ ≡ ωpt, the

scaled (linear) frequency ωL ≡ ω/ωp, and the dimensionless coordinates given by the phase

in the electrostatic wave θ and its corresponding canonical momentum p:

θ ≡ ωt+ kz + ψ , p ≡ θ̇ − ψ̇ ≡ θ̇ − δω = kż + ωL, (2.6)

where ψ = ψ(τ) is the single-particle analog of the phase-shift introduced above, chosen for

any single-wavelength “bucket” of interest. The over-dot in (2.6) denotes the normalized

time derivative d
dτ ≡

1
ωp

d
dt so that the frequency shift δω ≡ ψ̇. To further simplify our

discussion, we assume that the potential is well described by the electrostatic field, namely,

that V � max |φ| ≡ φmax. Thus, we consider the case in which the single-particle dynamics
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Region I

Region II

Region III

Figure 2.1: Phase space schematic for a Langmuir wave overlaid on the results of a self-
consistent particle simulation. Region I (above the separatrices) consists of the plasma
bulk making up the wave; region II contains the trapped particles between the separatrices;
region III contains those particles moving too fast to be trapped in the wave.

is dominated by the self-consistent field, with the external drive serving as an energy source

through which the amplitude of φ is changed. Note that this assumption is consistent with

the constraint that the eikonal amplitudes φn and frequency shift δω have slow spatio-

temporal variation, and leads to the following approximate equations of motion

θ̇ = p+ δω(τ) , ṗ =
∂

∂θ
φ(θ, τ). (2.7)

The system (2.7) can be obtained from the Hamiltonian

H(p, θ; τ) =
1
2

[p+ δω(τ)]2 − φ(θ; τ). (2.8)

Here, we summarize a few general features regarding the Hamiltonian (2.8) that will

be important to our subsequent discussions. The frozen orbits of H are defined as the level

sets H(p, θ; τ) = H at a fixed time τ , for which the parameters φn and δω are constant

and the motion is periodic. A representative phase portrait of the frozen orbits is shown

in Fig. 2.1, superposed on a phase-space snapshot taken from a self-consistent particle

simulation. Generically, we see that phase space is divided into three distinct regions,

separated by the trajectories joining the hyperbolic fixed points at θ = ±π, p = −δω,

for which H = φmax. These separatrices partition the “rotational” motion of regions

I and III, for which H > φmax, from the “libration” about the stable fixed point at
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θ = 0 in region II, where H < φmax. Associated with these frozen orbits, there exists a

canonical transformation to action-angle coordinates (p, θ; τ) → (J,Ψ; τ), with the action

proportional to the phase-space area of the frozen orbit:

J(H; τ) ≡ 1
2π

∮
dθ p(θ,H; τ)

=
1
2π

∮
dθ
{√

2[H + φ(H; τ)]− δω(τ)
}
. (2.9)

The utility of the action-angle coordinates in this setting lies in their division of the motion

into two distinct time-scales: the natural frequency of the canonical angle Ψ̇ ∼ 1 gives the

time over which the particles complete oscillations in the wave, while the slow time-scale set

by the external drive yields the time over which the action may significantly evolve, J̇ ∼ V.

Furthermore, since J is related to the phase-space area, incompressible Hamiltonian flow

significantly restricts its evolution. We use these facts in the next section to obtain a

simplified, approximate description of the nonlinear electron distribution function.

2.2.2 Phase-mixing and the integral invariant of Poincaré-Cartan

The central assumption for our distribution function action ansatz is that the Lang-

muir wave amplitude and frequency are slowly-evolving, meaning that the parameters

φn(τ) and δω(τ) of the Hamiltonian do not vary appreciably over one period of the mo-

tion. For nearly all electrons, i.e., all except the exponentially few in a narrow range about

the separatrix, the condition of “slowness” can be written as

1√
φ1

∣∣∣∣ ddτ lnφ1

∣∣∣∣ ∼ 1√
φ1

∣∣∣∣ ddτ ln δω
∣∣∣∣ ∼ ε, ε� 1. (2.10)

As previously noted, while these conditions are reminiscent of adiabatic evolution, we do

not explicitly invoke adiabaticity; rather, we use the slowness condition (2.10) to justify

our assumption that the distribution function remains essentially uniform in the canonical

angle Ψ throughout its evolution. We will see that this knowledge coupled with the in-

tegral invariant of Poincaré-Cartan indicates that the distribution function of the bulk is

essentially invariant in action difference J − J̄(τ), while the trapped distribution is nearly
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invariant in the particle action. Here, J̄(τ) is the slowly-varying mean to be determined

from the constraints of self-consistency. We refer to this particularly invariant-in-action

distribution as the action ansatz.

Prior to explaining our approximate distribution function, we review the Poincaré-

Cartan integral invariant in the context of a one degree of freedom non-autonomous system.

Suppose that two simple, closed curves γ1 and γ2 encircle the same tube of trajectories

generated by H in the extended 2+1 dimensional phase space of (p, θ, τ). In this case, the

integral of the 1-form p dθ − H dt along the two curves is identical (see, e.g., [38]). If we

consider both γ1 and γ2 to consist of simultaneous phase-space points, namely, that each

lies in a plane of constant t, we have∮
γ1

dθ p =
∮
γ2

dθ p, (2.11)

which is a form of Liouville’s theorem, where the final curve γ2 = γ1(τ) is the image under

the flow of the initial curve γ1. These integrals should not be confused with the action

J : while J is evaluated along the frozen orbit of a given point in phase space, the curves

γ1,2 in (2.11) are determined by a family of trajectories evolving under the flow of H.

Nevertheless, under slow evolution given by (2.10), we will argue that the curves γ can be

associated, to within O(ε), with the appropriate pairs of frozen orbits, in which case (2.11)

indicates that the relative change in J among the particles is small.

The untrapped distribution function

We begin our discussion with those electrons that begin and remain far from the

separatrices. Specifically, we consider an initial curve γ1 defined by the locus of points

initially at two values of velocity as shown in Fig. 2.2(a). As also indicated in Fig. 2.2(b),

since in an initially Maxwellian plasma v ∝ J , the boundary of this curve is given by the

two values of the action, denoted here as J+
1 and J−1 . As the wave is excited, the phase

points evolve in time to the curve γ2 on the right-hand side of Fig. 2.2. Since the flow

is Hamiltonian, (2.11) dictates that the phase-space area (in either the θ-p or J-Ψ plane)
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Figure 2.2: Dynamics of a tube of untrapped trajectories slowly driven on resonance.
The particles remain essentially uniform in Ψ and can be identified [within O(ε)] with a
frozen orbit along the upper and lower portions of γ. Since the area enclosed by γ1 equals
that enclosed by γ2, the difference in J between the boundaries is invariant, although its
centroid, or mean J̄ may change. Choosing a family of γ1 indicates that the untrapped
distribution is essentially invariant in the difference J − J̄(τ).

bound by γ1 equals that bound by γ2, so that the shaded areas in Fig. 2.2(a) are equal,

as are those in Fig. 2.2(b). While this is true in general (the system is Hamiltonian),

stronger but approximate conclusions can be drawn when the parameters vary slowly in

time. Evidence of this is indicated by Fig. 2.2, where we see that while the shaded region

in the θ-p plane undergoes significant deformation, the same area remains approximately

rectangular in J-Ψ plane. We explain and use this result to determine a simplified form

for the distribution function.

Far from the separatrices, it is clear that the slowness conditions (2.10) imply that the

electrons make many oscillations before the parameters of the wave significantly change,

so that a set of these particles that is initially uniform in canonical angle remains so under

evolution by (2.8). This in turn implies that the particles do not “bunch” in the angle

Ψ, so that any change in the shape of γ1 in the J-Ψ plane must result from changes in

J . However, we know that the action changes ∼ O(ε) over an orbit, so that the curve of

phase trajectories γ2 can be identified, to O(ε), as the conjunction of two frozen orbits with
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definite actions J+
2 and J−2 as indicated in Fig. 2.2(b). Note this is only approximately

true, as evidenced by the slight O(ε) undulations in J , so that γ2 is only approximately

rectangular in the J-Ψ plane. Nevertheless, under slow evolution the Poincaré-Cartan

invariant results in the following relationship [accurate to O(ε)] :

J+
1 − J−1 = J+

2 − J−2 . (2.12)

Thus, we have shown that the relative difference in the area is invariant under slow,

Hamiltonian flow far from the separatrices. By considering a foliation of nested flux tubes

γ1,2, we see that slow evolution leads to an untrapped distribution that is invariant in the

action deviation J − J̄ , with only a slow temporal change in the mean J̄(τ). This is in

a sense a generalization of adiabatic motion for which J itself is taken to be conserved

so that, from (2.9), any shift in area would be due to a changing phase velocity (and

commensurate frequency shift δω).

The trapped distribution function

As particles approach the separatrix where H → φmax and the nonlinear period log-

arithmically diverges, the previous arguments based on the curve γ remaining essentially

uniform in Ψ with only small deviations in J cannot be used. In this case, we invoke

the dynamics obtained via the theory of separatrix crossing in slowly-evolving systems,

reviewed in Appendix A (for original references see, e.g., [46, 47, 40, 41]). One central

result of these works (and as shown in the Appendix), is that upon crossing the separa-

trix, the canonical action of any trajectory1 changes by a fixed amount determined by the

change in orbit topology (in our case, this increases the action by a factor of two as the

orbit transitions from “rotational” to “librational” motion) and a Ψ-dependent deviation

whose magnitude is O(ε). Furthermore, if we consider a set of initial conditions that is

uniform in canonical angle and with the same action, the deviation in J averaged over

1This is true excluding the exponentially few
h
i.e., O

“
e−1/ε/ε

”i
particles that pass very close to the

hyperbolic fixed point. Since these particles can spend an arbitrarily long time tracing the stable manifold,
they lead to long, diffuse phase-space tendrils.
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Figure 2.3: Dynamics of a tube of trajectories that become trapped in the wave. The
initially symmetric flux tube γ′1 in (a) evolves to γ′2 that can be identified [to O(ε)] with
the single trapped orbit whose action is J2 = 2J1, as shown in (b). Further evolution
conserves the area enclosed, and therefore the trapped action. Furthermore, while there is
some bunching in Ψ (note the striations), a family of γ′1 chosen over a width in J of O(ε)
will displace this bunching over the entire range in Ψ (see Fig. 2.4), thereby indicating that
the trapped distribution remains uniform in canonical angle and invariant in the canonical
action.

these trajectories after crossing vanishes. Thus, to this set of initial conditions one can

ascribe [to O(ε)] the trapped orbit whose action is twice the initial value.

Returning to the discussion of the trapped particle distribution, we consider an initial

flux tube γ′1 whose boundaries are chosen to be symmetric about the phase velocity, i.e.,

given by the strips of particles initially uniform in canonical angle whose actions are J1

and −J1 as shown in Fig. 2.3. The Poincaré-Cartan invariant associated with γ′1 is the

area between the two segments, and therefore proportional to 2J1. Furthermore, from the

discussion in the previous paragraph, we can associate the curve γ′2 in the trapped region

with the frozen orbit whose action is 2J1. Thus, the distribution is transported up to the

separatrix in such a way as to conserve the action difference, while after the particles are

trapped and essentially following the frozen, trapped orbit, the Poincaré-Cartan invariant

(2.11) implies that their canonical action is conserved.

Thus, we have seen that the conclusions regarding action evolution after crossing
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into the trapped region are much the same as that for the bulk, the primary difference

being that after the separatrix is crossed the curve γ′2 nearly closes, and the action of the

trapped distribution is conserved. What we have not shown, however, is how the trapped

distribution depends upon the canonical angle. In a näıve picture, the infinitesimal strip

of particles in region I with the same action J and spread over 0 ≤ Ψ < 2π would be

mapped across the separatrix to the strip from 0 ≤ Ψ < π that then rotates in region II.

As shown in [41], this picture is essentially true in the limit ε → 0, although as discussed

in the Appendix A, this approximation is corrected by terms ∼ 1/ ln(1/ε), which vanish

too slowly with ε for the parameters considered here2.

If the angle Ψ were rigidly mapped across the separatrix, than the initial rectangle

in the Ψ-J plane from Fig. 2.3(a) would be mapped across the separatrix to the rectangle

in (b), only along one-half of the curve γ′2 the value of the distribution would be that

transported from the bulk (region I), while the other half would inherit its value from

region III. Since there typically are many more particles in the plasma bulk, this in turn

implies that along the trapped orbit the distribution would not be uniform in Ψ. In

actuality, there are striations in the rectangle as seen in Fig. 2.3 and the distinct values

of f are not cleanly divided one-half from the next, but the basic conclusion still holds:

along the frozen orbit associated with γ′2 the distribution roughly has two disparate values,

one given by what was once the bulk (region I) and the other derived from the passing

particles (region III).

To show that the distribution remains, in some approximate sense, uniform in angle,

we consider a family of curves whose initial action is in a small neighborhood of J1 (i.e.,

initially within O(ε) to the upper boundary of γ′1). Each curve crosses the separatrix in

succession, displaced from the next by a relative phase in the canonical angle up to 2π.

Since Ψ̇ is of order one, while J̇ ∼ ε, the set of curves initially lying in the plasma bulk

results in a “barber-pole” type structure in the Ψ-J plane, with the width in Ψ at fixed
2Refs. [39, 40] claim that this “bunching” in Ψ persists in ε→ 0 limit; even if this is true, our subsequent

arguments will still hold.
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Figure 2.4: The crossing strips associated with the trapped particles originating in the
plasma bulk, modeled as a pendulum. Successive red and blue lines were initially spaced
about J1 by an amount ε, and each set was initially uniformly distributed in canonical
angle. As a result of the crossing, these lines become quite convoluted, but nevertheless
occupy a strip whose width in Ψ is approximately π, bounded by lines whose slope is O(ε).
The white regions would be occupied by initially passing particles. We see that averaged
over scales in J larger than ∼ 4ε, the distribution is approximately uniform in Ψ.

J of the filled stripes approximately π, while their slope is O(ε). We show an example

of this phenomenon in Fig. 2.4, taken from the slowly-evolving pendulum. Fig. 2.4 shows

significant undulations and deformations of the lines of initially fixed action; nevertheless,

the distribution essentially fills the “crossing ribbon” of width π with a slope ∼ ε. Fur-

thermore, we see that course-graining the distribution in action over a region whose size

∼O(ε) would average these stripes away, resulting in an approximate distribution that is

nearly uniform in canonical angle. Thus, we see that f(J,Ψ; τ) in the trapped region is,

to O(ε), uniform in Ψ as well as being invariant in the canonical action.

From the previous arguments, we have seen that the slowly-evolving distribution func-

tion is nearly uniform in canonical angle and parametrized in time by the slowly-evolving

mean J̄(τ). It can therefore be approximately written in the following simple form:

1
n0
fe(J,Ψ; τ) ≡ f(J,Ψ; τ) → 1

2π
f(J ; τ) =

1
2π
f
(
J ; J̄(τ)

)
. (2.13)

Note that we have scaled f(J) such that its phase space average over one spatial “bucket”
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ln f

Figure 2.5: Theoretical invariant-in-action distribution, plotted on a log scale and with
the action halved in the trapped region so that J is continuous. For this scaling, the blue
line f(J) is Maxwellian (along the red), except in the trapping region. In this case, f = 0
for −Jsep ≤ J ≤ 0, while those particles initially in this portion of the distribution have
been added to that for which 0 ≤ J ≤ Jsep; these additional particles give rise to the slight
deviation from the Gaussian, which is most apparent near J = 0.

2π/k (i.e., over the canonical angle) is approximately3 unity∫
dJdΨ 1

2πf
(
J ; J̄(τ)

)
=
∫
dJ f

(
J ; J̄(τ)

)
≈ 1. (2.14)

In this way, we see that our action ansatz approximately holds: the electron distribution

function remains essentially invariant in the action difference J − J̄(τ) for the untrapped

particles, and invariant in J itself for the trapped particles. The definition of J (2.9) implies

that to lowest order the slowly-excited Langmuir wave gives rise to an overall translation

of the distribution in the Ψ-J plane given by the offset J̄ which, as we shall see, depends

on the potential amplitude. This is to be contrasted with the work of Dewar [25] and

Bénisti and Gremillet [42], in which the distribution is taken to be constant in action J ,

i.e., J̄ ≡ 0, so that any shift in the phase-space area centroid is compensated by a change

in the phase velocity via δω. We explore this important difference further in the next

subsection. Finally, since the action J is discontinuous at the separatrices, in subsequent

plots we scale the trapped action by a factor of one-half, in which case the distribution

averaged over the angle Ψ looks like the schematic plotted in Fig. 2.5.
3This average is exactly unity if the external drive is independent of z; slow spatial dependence results

in small deviations (which give rise to long-range electrostatic fields).
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2.2.3 Action non-conservation in a slowly-evolving system

Previous studies have taken the distribution to be invariant in the action J , largely

motivated by earlier work on particle motion in an external, sinusoidal potential. While

adiabatic motion far from the separatrix has a rather long history4, to our knowledge

Best [44] was the first to note that the adiabatic invariant was nearly conserved even

when crossing the separatrix. The evidence in [44] is purely numerical, but sufficiently

compelling to inspire the initial work of Dewar [25]. Subsequently, Timofeev [45] developed

the theoretical tools to prove that for the pendulum the action is, to lowest order, conserved

at a separatrix crossing. The numerous and independent extensions of Ref. [45] published in

1986 [46, 47, 48] served as the theoretical basis for the invariant-in-action theory presented

by Bénisti and Gremillet [42]. While we use this neo-adiabatic theory in Appendix A

to derive a few important relations relevant to our previous discussions, we note that the

general adiabatic invariance need not, in general, apply to particles moving self-consistently

in a plasma wave.

Consider, for the moment, the Lagrangian (co-moving) electron displacement in a cold

plasma. In this case, it is well known [49] (and explicitly shown in Sec. 5.2.1) that, below

wave-breaking, the restoring force due to the electrostatic field is linearly proportional

to the displacement of the particle. Thus, each electron moves in a simple harmonic

oscillator potential, with the particle action proportional to the particle energy. In this

case, increasing the amplitude (energy) of the electrostatic field requires a commensurate

change in the particle action, since the frequency is constant.

From the viewpoint of the particle phase in a slowly-evolving (Eulerian) field, we show

in Sec. 5.2.3 that in the cold electrostatic potential there exists an orbit (the cold orbit)

for which the frequency is independent of the particle energy. The frequency of nearby

orbits is similarly nearly constant, in which case the standard adiabatic theorems do not
4The most famous incident being at the 1911 Solvay Conference, when Einstein used action invariance

to answer Lorentz’s question of what happens in a slowly-varying pendulum initially in some quantum
state. Apparently, action invariance in the classical pendulum was first noted by Rayleigh in 1902 [43].
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apply. Furthermore, for the orbit with constant frequency we have

1 = ω(H) =
dΨ
dτ

=
∂H
∂J

, (2.15)

so that the full Hamiltonian for the weakly-driven particle phase can be written as

H(J,Ψ; τ) = J + V H1(J,Ψ; τ), (2.16)

with V � 1, implying that the coupling to the (bounded) perturbation H1 is small. For

such a weak drive, (2.16) indicates that in order to significantly change the particle energy

(and hence, the energy of the Langmuir wave), one must proportionally change the particle

action. Note that this action non-conservation is associated with particles in the bulk of

the plasma, rather than the result of any complications due to violation of the slowness

conditions when crossing the separatrix. Thus, the non-conservation of J is related to

the resonance between the drive and the Langmuir wave. Furthermore, as shown in the

previous section, any change in action must be reflected, in part, amongst all the untrapped

particles due to the incompressible Hamiltonian flow, and therefore the existence of even

one such orbit is sufficient to shift the distribution in action.

To illustrate the distributions satisfying our action ansatz, we have performed a num-

ber of single-wavelength particle simulations, described in greater detail in Sec. 2.4, that

solve the periodic Vlasov-Poisson system. We include representative results in Fig. 2.6,

obtained with a drive potential V = 0.01 and initial Maxwellian distribution whose width

kλD ≡ σ = 0.3. In Fig. 2.6(a), we see the characteristic flattening of f(v) near the phase

velocity that is associated with particle trapping. For the same values of φ1, Fig. 2.6(b)

demonstrates that the distribution in J (integrated over Ψ) remains nearly Gaussian in the

canonical action. Note that to obtain this plot we have divided J by two in the resonance

region to make the action continuous at the upper separatrix. Furthermore, except for the

slight oscillations near the resonance region, f(J) has a constant variance σ2 and a slightly

increasing mean5 from its inital value ωL.
5Although difficult to see here, ∆J̄ is plotted for comparison in Fig. 2.8.
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Figure 2.6: Wavelength averaged distribution functions for three values of the electrostatic
potential φ1 using kλD = 0.3. In velocity-space, (a) shows the flattening of f(v) near the
phase velocity kvp/ωp ≈ 1.16 that is characteristic of particle trapping. At the same time,
(b) demonstrates that the distribution remains nearly invariant in the relative area, with a
small change in the mean J̄ from ωL as the wave is excited, and slight oscillations of f(J)
in the resonance region.

2.2.4 Parameterizing the nonlinear distribution function

In the previous section we showed that the distribution function satisfies the action

ansatz, remaining essentially invariant in difference J − J̄(τ) for the untrapped particles,

while invariant in J for the trapped particles. Now we turn to parameterizing this distribu-

tion by imposing the constraints of self-consistency, namely, that the assumed distribution

function must also act as a source for the appropriate electric field via Maxwell’s equations.

To facilitate this discussion, we introduce another “area” related to the action J in the

following manner:

I(H; τ) =
1
2π

∮
dθ
√

2[H + φ] = J(H; τ) + δω H ≥ φm, (2.17a)

I(H; τ) =
1
4π

∮
dθ
√

2[H + φ] =
1
2
J(H; τ) H < φm. (2.17b)

Since I is proportional to the canonical action J , the untrapped distribution is invariant

in the difference I − Ī, while the trapped distribution is invariant in I. Furthermore, the

definitions (2.17) suggest a natural method of using the Poisson equation to determine the

mean Ī(τ) consistent with a given potential amplitude, thereby parameterizing f . From

this description, we use the Ampère-Maxwell Law to calculate the frequency shift δω of
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the wave and compare δω with previous results.

Self-consistency and the Poisson equation

First, our nonlinear distribution function must give rise to a charge separation com-

mensurate with the electrostatic potential φ(z, t). This is summarized by the Poisson

equation (2.1b), which, using the dimensionless potential (2.3) and distribution function

(2.13), is
∂2φ

∂ζ2
=
∫
du

1
2π
f
[
I(u, ζ;φ); Ī(τ)

]
− 1. (2.18)

Here, ζ ≡ kz is the scaled longitudinal coordinate, while u ≡ vk/ωp is its scaled velocity.

The Poisson equation (2.18) is an implicit relationship for the average area Ī in terms of

the full potential φ; in order to solve this numerically, we use the dimensionless Fourier-

eikonal expansion (2.5). Multiplying (2.18) by cos θ and integrating over a wavelength, we

obtain:

0 =
[
1 +

2
φ1

〈
cos θ

〉
PS

]
φ1 ≡ ε

(
Ī;φ

)
φ1, (2.19)

where we have introduced the “nonlinear dielectric function” ε
(
Ī;φ

)
and the phase space

average

〈X 〉PS ≡
∞∫

−∞

du

π∫
−π

dζ
1
2π
f
[
I(u, ζ;φ), Ī(τ)

]
X (u, ζ).

Furthermore, the higher harmonics of the potential are given similarly by

φn = − 2
n2

〈
cos(nθ)

〉
PS . (2.20)

We solve the system (2.19)-(2.20) iteratively as a function of φ1. Our procedure can be

summarized with the following (presumably convergent) series:

Īj+1 = Īj −
ε
(
Īj ;φj

)
∂
∂Īj ε

(
Īj ;φj

) (2.21a)

φj+1
n = − 2

n2

〈
cos(nθ)

〉
PS . (2.21b)

To solve (2.21), we choose a level of φ1 near zero and calculate the mean area Ī1 and

harmonics φ1
n, assuming initial values Ī0 = ωL and φ0

n = 0 [the expression for ωL is
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subsequently given by (2.53)]. We then iterate (2.21) until ε(Ī, φ) ≈ 0, for which we have

Ī(φ1) and the potential φ(ζ). We then use these as initial values for the next iteration at

a larger value of φ1, thereby mapping out the entire function Ī(φ1).

The Ampère-Maxwell law and resulting frequency shift

To complete the characterization of the action distribution function, we calculate an

expression for the frequency shift as a function of the potential amplitude φ1 and the

mean Ī. To determine δω, we use the fact that the plasma tends to set up a return current

to erase any long-range electric fields. To make this more explicit, we consider the 1-D

Coulomb gauge condition: ∇·A = ∂
∂z

(
ẑ ·A

)
= 0, implying that the functionally-transverse

vector potential can be taken to be geometrically transverse as well, i.e., A · ẑ = 0. In this

case, the longitudinal component of the Ampère-Maxwell equation is given by

∂2

∂τ∂ζ
φ(ζ, τ) =

∫
du

1
2π
f
[
I(u, ζ;φ), Ī(τ)

]
u. (2.22)

Integrating (2.22) over one period in ζ, we have

∂2

∂τ∂ζ
φ(ζ, τ) =

∫
du

1
2π
f
[
I(u, ζ;φ), Ī(τ)

]
u. (2.23)

Since we assume the potential φ(ζ, τ) to be slowly-varying, the expression (2.23) approxi-

mately vanishes. Note that this would be exactly true in the limit of a time-independent,

nonlinear mode (similar to the BGK family), and expresses the fact that the plasma elec-

trons carry no net momentum [50]. Using u ∝ (p− ωL) ≡
(
d
dτ θ − δω − ωL

)
, we have

δω(τ) =
〈
d
dτ θ
〉
PS
− ωL. (2.24)

We note, as shown in Ref. [51], that the scale length of the transverse variation must be

much greater than the collisionless skin depth c/ωp for the one-dimensional approximation

associated with (2.22) to hold.
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2.3 The pendulum Hamiltonian relevant for small values of

the potential

To make direct comparisons with previously published results, we compute the linear

and small amplitude limits of the mean area Ī and frequency shift δω. In this limit, for

which the electrostatic energy is much greater than the thermal energy, φ1 � σ2, we can

assume that the potential consists of a single harmonic, so that φn = 0 for n ≥ 2. This

implies that the Hamiltonian (2.8) becomes that of a classical physical pendulum, so that

H(p, θ; τ) → 1
2 [p+ δω(τ)]2 + φ1(τ)

[
1− cos θ

]
. (2.25)

In this case, we can obtain analytical results suitable for comparison to those previously

published.

2.3.1 Dynamics of the classical physical pendulum

In this subsection, we review the well-known dynamics of the pendulum Hamiltonian

(2.25) relevant for calculating the frequency shift in the small amplitude limit. The canon-

ical action of the pendulum is well-known (see, e.g., [52, Sec. 1.3]), from which we obtain

the following expressions:

|κ| ≥ 1 : I(κ) = IsκE (1/κ) (2.26a)

|κ| < 1 : I(κ) = Is

[
E (κ) +

(
κ2 − 1

)
K (κ)

]
, (2.26b)

where we have defined the scaled energy κ and the separatrix action Is as

κ2 ≡ H(τ)
2φ1(τ)

, Is ≡
4
π

√
φ1(τ) . (2.27)

Here, the complete elliptic integrals of the first and second kind, K (κ) and E (κ), are

respectively defined in the usual way:

K (κ) ≡
π/2∫
0

dα
1√

1− κ2 sin2 α
, E (κ) ≡

π/2∫
0

dα
√

1− κ2 sin2 α . (2.28)
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The nonlinear period is calculated using the Hamiltonian relations

T (κ) =
2π

Ω(κ)
= 2π

∂J

∂H
= 2π

∂J

∂κ

∂κ

∂H
. (2.29)

Using the definitions (2.26) and the linear relationship between I and J , we have

|κ| ≥ 1 : T (κ) =
2 K (1/κ)
κ
√
φ1

; |κ| < 1 : T (κ) =
4 K (κ)√

φ1
. (2.30)

In subsequent analysis, we find that more straightforward calculations can be obtained

using the scaled energy κ and time τ as variables. Thus, we conclude this section by

relating the coordinates (κ, τ) to (p, θ). Using the definitions (2.6) and (2.27), we have

p+ δω(τ) =
dθ

dτ
= 2κ

√
φ1

√
1− (1/κ2) sin2(θ/2) . (2.31)

Rewriting this expression, we have

|κ| ≥ 1 :
d(θ/2)√

1− (1/κ2) sin2(θ/2)
= κ

√
φ1 dτ, (2.32a)

|κ| < 1 :
dα√

1− κ2 sin2 α
=
√
φ1 dτ, (2.32b)

with sin(θ/2) ≡ κ sinα. We take the indefinite integral of (2.32), obtaining

|κ| ≥ 1 : cos(θ/2) = cn
(
1/κ, κ

√
φ1τ
)
, (2.33a)

|κ| < 1 : cos(θ/2) = dn
(
κ,
√
φ1τ
)
, (2.33b)

where we have set the origin of time to zero without loss of generality, and the functions

cn(κ, x) and dn(κ, x) are the Jacobi elliptic functions defined via the inverse of incomplete

elliptic integral of the first kind in the usual manner:

x(κ, y) ≡
y∫

0

dz
1√

1− κ2 sin2 z
⇒ cos y ≡ cn(κ, x) ≡ 1

κ

√
κ2 − 1 + dn2(κ, x) .

Finally, differentiating (2.33) and using (2.31) yields

|κ| ≥ 1 : p = 2κ
√
φ1 dn

(
1/κ, κ

√
φ1τ
)
− δω(τ) (2.34a)

|κ| < 1 : p = 2κ
√
φ1 cn

(
κ,
√
φ1τ
)
− δω(τ). (2.34b)
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Phase space averages

Here, we write compact expressions for phase space averages in the pendulum approx-

imation using the distribution function action ansatz, namely that f remains uniform in

canonical angle Ψ and invariant in the difference I = Ī for the bulk. To begin, we note

that for fixed parameters φ1, δω, there exists a canonical transformation on phase space

(p, θ) ↔ (H, τ) for which the independent evolution parameter can be taken to be the

coordinate θ. Since the transformation is canonical, the Jacobian is unity and we have the

following relation between the integration measures:

dp dθ = dH dτ =
dH

dκ
dκ dτ = 4φ1κ dκ dτ. (2.35)

Thus, phase space averages can be written as

〈
X
〉
PS ≡

∞∫
−∞

dp

π∫
−π

dθ f(p, θ; τ)X (p, θ) →
∞∫

−∞

dκ 4φ1κ

T∫
0

dτ f(κ; τ)X (κ, τ). (2.36)

Assuming that the average action does not change significantly during one period of os-

cillation, i.e., that the slowly-evolving conditions (2.10) are met, we can take the nearly

constant distribution f(κ; τ) outside the integral over τ . Hence, in what follows we will

suppress the dependence of f on the time τ . Using the definitions (2.26), the invariant

distribution function divides into four natural pieces: one of untrapped particles in region

I, another below both separatrices in region III, and two associated with the trapped par-

ticles of region two, depending on whether they entered from region I (+) or region II (−);

these are respectively encapsulated in the following definitions

fI(κ) ≡
Is K (1/κ)
σ
√

2π
exp
[
− 1

2σ2

{
IsκE (1/κ)− Ī

}2
]

(2.37a)

fIII(κ) ≡
Is K (1/κ)
σ
√

2π
exp
[
− 1

2σ2

{
IsκE (1/κ) + Ī

}2
]

(2.37b)

f±II (κ) ≡
IsκK (κ)
σ
√

2π
exp
[
− 1

2σ2

{
Is

[
E (κ) + (κ2 − 1) K (κ)

]
± Ī

}2
]
. (2.37c)

From (2.37), we see that the distribution is essentially Gaussian in the variable I with a

slowly-varying average Ī and fixed variance σ2. Furthermore, the definitions (2.37) were
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chosen to facilitate the calculation of the phase space average 〈·〉PS ; our conventions imply

that
∞∫
1

dκ
[
fI(κ) + fIII(κ)

]
+

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
]

= 1. (2.38)

Using the definitions (2.37) in (2.36), the average of an observable X (p, θ) over phase space

is written as

〈
X (p, θ)

〉
PS =

∞∫
1

dκ fI(κ)

T∫
0

dτ
X (κ, τ)
T (κ)

+

∞∫
1

dκ fIII(κ)

T∫
0

dτ
X (−κ, τ)
T (κ)

+

1∫
0

dκ f−II (κ)

T∫
0

dτ
X (κ, τ)
T (κ)

+

1∫
0

dκ f+
II (κ)

T∫
0

dτ
X (−κ, τ)
T (κ)

.

(2.39)

2.3.2 BGK-type self-consistency

Now we turn to imposing the constraints of self-consistency in the small-amplitude,

pendulum limit. To determine the nonlinear dielectric function (2.19), we calculate the

phase space average 〈cos θ(κ, τ)〉PS . Using the trigonometric identity cos θ = 2 cos2(θ/2)−

1, the pendulum identity (2.33), and the phase space averaging (2.39), we have

〈
cos θ(κ, τ)

〉
PS =

∞∫
1

dκ
[
fI(κ) + fII(κ)

] T∫
0

dτ
2 cn2

(
1/κ, κ

√
φ1τ
)
− 1

T (κ)

+

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
] T∫

0

dτ
2 dn2

(
κ, κ

√
φ1τ
)
− 1

T (κ)
.

(2.40)

The integral over τ can be taken analytically; using the integral tables of Gradshteyn and

Ryzhik [53, pp 630], we obtain the following expression for the nonlinear dielectric function

(Eq. 2.19):

ε
(
Ī, φ1

)
= 1 +

2
φ1

∞∫
1

dκ
[
fI(κ) + fIII(κ)

][
2κ2 E (1/κ)

K (1/κ)
+ 1− 2κ2

]

+
2
φ1

1∫
0

dκ
[
f+
II (κ) + f−II (κ)

] [
2

E (κ)
K (κ)

− 1
]
.

(2.41)

Requiring (2.41) to vanish gives an implicit relationship between φ1 and Ī; to obtain an

explicit expression for Ī(φ1), we expand the nonlinear dielectric function for small changes
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in Ī. For an initially Maxwellian plasma with no electrostatic field, the mean action in the

moving frame is equal to the linear frequency ωL, and we have the expansion:

0 = ε(ωL, φ1) +
(
Ī − ωL

) ∂

∂Ī
ε
(
Ī, φ1

)∣∣∣∣
Ī=ωL

+ · · · . (2.42)

Rewriting the Taylor expansion (2.42) yields the following expression for the mean frequency-

shifted action in terms of potential amplitude:

Ī ≈ ωL −
ε(ωL, φ1)
∂
∂ωL

ε(ωL, φ1)
. (2.43)

The equation (2.43) determines the mean frequency-shifted action Ī required to support

the potential of amplitude φ1. In previous works, the right-hand side of (2.43) was identified

as the frequency shift of the wave, not the change in action of the distribution. We will see

that in the small φ1 limit the change in action equals the change in the frequency. This

is because the particle action J is essentially constant in this case, so that I ∝ p implies

that a change in I is due to a decrease in the phase velocity of the wave at fixed k [i.e.,

given by δω(τ)]. As the wave amplitude becomes appreciable, however, the plasma bulk

becomes excited and the particle action J begins to increase, so that δω(τ) < Ī(τ) − ωL

and (2.43) can no longer be considered to be simply equal to the frequency shift.

In subsequent sections we calculate the shift in mean action (2.43) analytically in the

linear and small φ1 limit, for which we find it convenient to integrate (2.41) by parts. The

boundary terms at κ = 0, ±∞ vanish, while those at κ = 1 cancel, leaving us with the

following expression for the dielectric function:

ε(ωL, φ1) = 1 +

∞∫
1

dκ
h(κ)
Is

{
fI(κ)

[
I(κ)− ωL

]
+ fIII(κ)

[
I(κ) + ωL

]}

+

1∫
0

dκ
q(κ)
Is

{
f−II (κ)

[
I(κ)− ωL

]
+ f+

II (κ)
[
I(κ) + ωL

]}
,

(2.44)

where

h(κ) ≡ 32
3π2σ2

[
(2κ3 − κ) E (1/κ)− 2(κ3 − κ) K (1/κ)

]
q(κ) ≡ 32

3π2σ2

[
(2κ2 − 1) E (κ)− (κ2 − 1) K (κ)

]
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and we take the convention that Ī → ωL in any of the distribution functions fs(κ) (s =

I, II, III) when evaluating (2.44). Taking the derivative of (2.44), we obtain

∂

∂ωL
ε(ωL, φ1) =

∞∫
1

dκ
h(κ)
Is

{
fI(κ)

[
(I(κ)−ωL)2

σ2 − 1
]
− fIII(κ)

[
(I(κ)+ωL)2

σ2 − 1
]}

+

1∫
0

dκ
q(κ)
Is

{
f−II (κ)

[
(I(κ)−ωL)2

σ2 − 1
]
− f+

II (κ)
[

(I(κ)+ωL)2

σ2 − 1
]}

.

(2.45)

Finally, we obtain an explicit expression for the frequency shift in the Langmuir wave

(2.24). To obtain δω(τ), we use the pendulum formula (2.34), which gives the momentum

in terms of Jacobi elliptic functions and the frequency shift δω(τ). By definition, in the

moving frame the average velocity of the trapped particles is zero [mathematically, the

integral of cn(κ, x) from 0 to 4K (κ) vanishes], and (2.24) can be written as

ωL + δω(τ) =

∞∫
1

dκ
fI(κ)− fIII(κ)

T (κ)

T∫
0

dτ 2κ
√
φ1 dn

(
1/κ, κ

√
φ1τ
)
. (2.46)

We can take the τ integral analytically using Gradshteyn and Ryzhik [53, pp 630]:

δω =

∞∫
1

dκ
4φ1κ√
2πσ

{
e−

1
2σ2 [Isκ E (1/κ)−Ī]2 − e−

1
2σ2 [Isκ E (1/κ)+Ī]2

}
− ωL. (2.47)

From the formula for the mean frequency-shifted action (2.43), with the numerator

and denominator given by (2.41) and (2.45), respectively, the equation for the frequency

shift (2.47) completely determines the weakly-driven, BGK-type solution. In the next two

sections we compare our results with previous calculations, discussing in what limits our

results mirror those. We conclude this chapter with some numerical comparisons of our

theoretical results with those obtained from particle simulations.

The dielectric function in the linear limit

Here, we present the linear limit of (2.43), i.e., the limit as φ1 → 0. In this limit, the

mean action is that corresponding to the phase velocity of the infinitesimal wave, Ī → ωL.

Since the denominator in (2.43) is well-behaved and (2.45) is neither zero nor infinite as
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φ1 → 0, the linear limit is characterized by

lim
φ1→0

ε(ωL, φ1) = 0. (2.48)

To evaluate this limit from the integral expression (2.44), some care must be taken. A

cursory inspection of the integrals in (2.44) seems to indicate that the terms ∼ Is vanish

as
√
φ1, while the terms ∼ ωL cancel. While this does hold true for the trapped particles

(the integral from 0 to 1), the infinite limit on the integral over the bulk of the distribution

invalidates such näıve analysis. This is because when φ1 ≡ 0, the integrand h(κ) ∼ 1/κ

for κ � 1, and the integral formally diverges. For this reason, we must work a little

harder to obtain the appropriate φ1 → 0 limit. Replacing the distributions fs(κ) with

their definitions (2.37), we determine

lim
φ1→0

1 +

∞∫
1

dκ
h(κ) K (1/κ)

σ
√

2π

[(
IsκE (1/κ)− ωL

)
e−

{Isκ E (1/κ)−ωL}2
2σ2

+
(
IsκE (1/κ) + ωL

)
e−

{Isκ E (1/κ)+ωL}2
2σ2

] .

(2.49)

To calculate (2.49), we note that as φ1 → 0, the integrand vanishes exponentially for small

κ. Thus, we consistently take κ� 1, for which we have

σ2h(κ) K (1/κ) ≈ 1
κ

+O
(
1/κ3

)
IsκE (1/κ) ≈

√
φ1

[
2κ+O(1)

]
. (2.50)

Defining the dummy variables x and y such that

σx ≡ 2κ
√
φ1 + ωL , σy ≡ −2κ

√
φ1 + ωL , (2.51)

and using the large κ relations (2.50), we find that lim
φ1→0

ε(ωL, φ1) = 0 yields

0 = σ2 + 1 +
ωL/σ√

2π
lim
φ1→0


∞∫

ωL
σ +2

√
φ1

dx
e−x

2/2

x− ωL/σ
+

ωL
σ −2

√
φ1∫

−∞

dy
e−y

2/2

y − ωL/σ

 . (2.52)

As we can see, the φ1 → 0 limit gives a prescription for treating the resonant pole at

x = ωL/σ: the symmetric limit is defined to be the Cauchy Principal Value. Note that this
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is the standard pole occurring when the particle velocity equals the phase velocity of the

wave (or, in our language, when the particle action equals that of the separatrix defined

by the infinitesimal wave). Denoting the principal value by P, we have shown that

lim
φ1→0

ε(ωL, φ1) = 1 +
1
σ2

1 +
ωL/σ√

2π
P

∞∫
−∞

dx
e−x

2/2

x− ωL/σ

 = 0. (2.53)

The condition (2.53) is nothing more than the linear plasma dispersion relation as found

by Vlasov [54]. While this is encouraging, one may wonder what happened to Landau

damping. Mathematically, we see that our calculation and Landau’s yield different pre-

scriptions for treating the pole at the particle phase velocity in the plasma dispersion

relation. The difference arises from our considering a distribution uniform in canonical

angle with a small, self-consistent electric field, rather than treating the problem as an

initial value problem (in the literature, these two assumptions are respectively referred to

as the “adiabatic” and “sudden” approximations).

Physically, our lack of any damping appears because we have assumed that the dis-

tribution is completely phase-mixed near the separatrix. As shown by O’Neil [6], such

phase-mixing causes linear Landau damping to be a transient effect that itself decays away

on the bounce time scale ∼ 1/
√
φ1, which diverges as φ1 → 0. Thus, our analysis and

the dispersion relation (2.53) apply to finite amplitude waves only after several bounce

periods have passed. In this case, the distribution evolves to become nearly uniform in

canonical angle so that Landau damping has been “washed out.” This interpretation gains

additional credence in light of the existence of small-amplitude Bernstein-Greene-Kruskal

(BGK) waves [7]. As shown in [33] and [55], the dispersion relation of small amplitude,

nearly sinusoidal BGK waves is that of Vlasov rather than Landau, and is identical to

(2.53) derived here.
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The mean frequency shifted action Ī and the nonlinear frequency shift δω in

the small amplitude limit

In this subsection, we calculate the change in the mean action (2.43) and frequency

shift (2.47) induced by the near-resonant particles, assuming the amplitude of the potential

φ1 is small. To make the expanded integrals of ε(ωL, φ1) manifestly convergent, we start

by first “rewriting the 1” in the expression for the dielectric function (2.44). Assuming the

linear dispersion relation (2.53) is satisfied, in terms of the energy κ we have

1 = −P

∞∫
−∞

dκ
[
2κ
√
φ1 − ωL

] e− 1
2σ2 (2

√
φ1κ−ωL)2

κ
√

2πσ3
. (2.54)

By appropriately partitioning the κ integration, we express (2.54) as a sum of integrals

whose limits are such that 1 ≤ κ < ∞ or 0 ≤ κ ≤ 1. In this form, we can replace the

σ2 in the nonlinear dielectric function (2.44) by the integral expression (2.54). Thus, the

nonlinear dielectric function is given by

ε(ωL, φ1) =

∞∫
1

dκ

[I(κ)− ωL

]
h(κ)fI(κ)−

2κ
√
φ1 − ωL

κ
√

2πσ3
e−

(2κ
√
φ1−ωL)2

2σ2


+

∞∫
1

dκ

[I(κ) + ωL

]
h(κ)fIII(κ)−

2κ
√
φ1 + ωL

κ
√

2πσ3
e−

(2κ
√
φ1+ωL)2

2σ2


+

1∫
0

dκ

[I(κ)− ωL

]
q(κ)f−II (κ)−

2κ
√
φ1 − ωL

κ
√

2πσ3
e−

(2κ
√
φ1−ωL)2

2σ2


+

1∫
0

dκ

[I(κ) + ωL

]
q(κ)f+

II (κ)−
2κ
√
φ1 + ωL

κ
√

2πσ3
e−

(2κ
√
φ1+ωL)2

2σ2

 .

(2.55)

The expression (2.55) is perfectly well-defined in the small amplitude limit, and this limit

is simple to calculate numerically. Taylor expanding the first two integrals, we have the

contribution
∞∫
1

dκ

[
3π3

64
− h(κ)κE (1/κ) K (1/κ)

]

×256
3π3

√
φ1

(
ω2
L

σ2
− 1
)
e−ω

2
L/2σ

2

σ
√

2π
≈ −1.5016

√
φ1

(
ω2
L

σ2
− 1
) exp

(
−ω2

L
2σ2

)
√

2πσ3
,
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while the last two integrals of (2.55) yield

1∫
0

dκ

{
3π3

64
− κq(κ) K (κ)

[
E (κ) + (κ2 − 1) K (κ)

]}

×256
3π3

√
φ1

(
ω2
L

σ2
− 1
)
e−ω

2
L/2σ

2

σ
√

2π
≈ 2.5905

√
φ1

(
ω2
L

σ2
− 1
) exp

(
−ω2

L
2σ2

)
√

2πσ3
.

Adding these contributions, we find that the small amplitude behavior of the nonlinear

dielectric function is

lim
φ1→0

ε(ωL, φ1) = 1.089
√
φ1

(
ω2
L

σ2
− 1
) exp

(
−ω2

L
2σ2

)
√

2πσ3
. (2.56)

A similar expression for the small amplitude dielectric function has been derived by a num-

ber of authors, although there is some variation in the O(1) coefficient replacing our 1.089

pre-factor. Interestingly, our coefficient is identical to that of Dewar [25], who calculated

the frequency shift assuming a small but finite sinusoidal wave that is adiabatically excited;

other calculations in a similar regime have obtained values of 1.41 (Manheimer and Flynn

[23]), 1.76 (Rose and Russell [35]) and 1.60 (Barnes [56]). It should be noted that these all

differ slightly from the coefficient of 1.63 calculated by Morales and O’Neil [24] and sep-

arately by Dewar [25] for an instantaneously excited wave (i.e., the initial value problem

starting from a Maxwellian plasma). The majority of these authors then determine the

nonlinear frequency shift using an expression similar to (2.43); we will see that this yields

accurate results provided that φ1 . v2
th/v

2
p ≡ σ2.

To complete the small amplitude results for the change in the average action (2.43),

we calculate lim
φ1→0

[
∂
∂ωL

ε(ωL, φ1)
]
, i.e., the small amplitude limit of (2.45). Differentiating

the linear dielectric function (2.53) and integrating by parts, we obtain

lim
φ1→0

∂

∂ωL
ε(ωL, φ1) =

1√
2πσ3

P

∞∫
−∞

dx
1− x2

x− ωL/σ
e−x

2/2 (2.57)

=
1

ωLσ2

(
ω2
L − 1− σ2

)
, (2.58)

and the second equality arises by enforcing the linear dispersion relation (2.53). Collecting

the results (2.56) and (2.58) into (2.43), we find that, for small values of φ1, the change in
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the mean action is given by

Ī(τ)− ωL ≈ −1.089ωL
√
φ1

(
ω2

L
σ2 − 1

)
e−ω

2
L/2σ

2(
ω2
L − 1− σ2

)√
2πσ

= −1.089
√
φ1

ωLσ
2

ω2
L − 1− σ2

f ′′(u)
∣∣∣
u=ωL

, (2.59)

with the distribution given by the Maxwellian f(u) = exp(−u2/2σ2)
/(
σ
√

2π
)
.

We conclude by calculating the difference between the frequency-shifted average action

and the frequency; in this limit, Ī − (ωL + δω) = J̄ , which we will show is O(φ3/2
1 ). Using

the definition Ī ≡ 〈I〉 and the expression for the frequency shift (2.47), we find that

Ī −
(
ωL + δω

)
=

∞∫
1

dκ

[
I(κ)− πκ

√
φ1

K (1/κ)

]
[fI(κ)− fIII(κ)]

+

1∫
0

dκ I(κ)
[
f−II (κ)− f+

II (κ)
]
.

It can be shown that both integrals separately vanish in the limit φ1 → 0. Taylor expanding

the integrals for small values of the potential φ1, we find that

Ī −
(
ωL + δω

)
≈ 32

π

ωL
σ2

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1


∞∫
1

dκ E (1/κ)
[
4κ2

π2
E (1/κ) K (1/κ)− κ2

]

+

1∫
0

dκ
4κ
π2

K (κ)
[
E (κ) + (κ2 − 1) K (κ)

]
=

64
9π

ωL
σ2

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1 . (2.60)

Thus, we see that the average action J̄ grows as φ3/2
1 for φ1 small. For Langmuir wave

amplitudes such that the right-hand side of (2.60) can be neglected, the frequency shift is

equal to the change in the frequency-shifted action I, and the canonical action is approx-

imately conserved.

2.4 Comparison of theory with Vlasov simulations

In this section, we compare our theoretical results for the properties of the slowly-

driven nonlinear Langmuir waves with those obtained from particle simulations. Before
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discussing these examples, we make a few comments on the numerical methods. In these

single-wavelength simulations, we numerically solve the equations of motion with periodic

boundary conditions for the electrons and the electric field, driven by an external force.

For a single wavelength with N macro-particles, an electron with coordinate ζj ≡ kzj

experiences the combined self-consistent electrostatic force and prescribed drive, giving

rise to the following equation of motion:

d2

dτ2
ζj(τ) =

M∑
m=1

1
N

N∑
`=1

2
m

sin
[
mζj(τ)−mζ`(τ)

]
+ V(τ) cos(ωLτ + ζj)− E0(τ),

(2.61)

where we have expanded the electrostatic potential in M harmonics, each of which is a

sum over the N macro-particles. This is a standard technique of the free electron laser

community [57], although here we have also retained the DC field E0 [58], to be calculated

using the longitudinal component of the Ampère-Maxwell law:

d

dτ
E0(τ) =

1
N

N∑
`=1

d

dτ
ζ`(τ). (2.62)

For the examples shown here, we use N ≈ 106 particles and M ≈ 32 harmonics. We solve

the system (2.61-2.62) for a given drive potential V(τ) using a symplectic operator-splitting

scheme that is second-order accurate in time.

To compare the simulation results to our theory, we slowly turn on the ponderomotive

drive, ramping the electrostatic field to a chosen amplitude, at which point we slowly turn

the drive off. By taking the discrete Hilbert transform of the potential φ, we obtain the

total frequency (ωL+ δω), from which we extract the frequency shift for a given amplitude

φ1. These results are shown in Fig. 2.7, where we compare the frequency shift extracted

from simulation to the theory of Dewar [25] and Bénisti and Gremillet [42] using action

invariance (dashed green line) and to our theory (solid red line) for four different values of

kλD ≡ σ: kλD = 0.4 (a), kλD = 0.3 (b), kλD = 0.2 (c), and kλD = 0.1 (d). Furthermore,

we include the lowest order results (orange dotted line) given by Morales and O’Neil [24]

and Dewar [25], δω ∼
√
φ1f

′′(ωL), expressed in (2.59). We obtain the green dashed line
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corresponding to the nonlinear invariant action theory of the Dewar/Bénisti by solving the

equations (2.21) and taking δω = Ī − ωL of the untrapped particles. Our action ansatz

theory (red line) then uses this expression for the mean area to determine the frequency

shift via (2.24).

The range of φ1 over which δω was measured in Fig. 2.7 includes all electrostatic

amplitudes that were attained via resonant excitation with the peak drive amplitude V =

0.01 and frequency equal to ωL. Further driving of the plasma results in a ringing of φ1

that we interpret as resulting from the detuning of the nonlinear Langmuir wave from the

external drive (as observed and explained numerically in Ref. [59]).

As we can see in Fig. 2.7, the Dewar/Bénisti theory agrees with our results assuming

that φ1 � σ2, but deviates at larger values of the potential. For warm plasmas such

that σ = 0.4, Fig. 2.7(a) shows that the two theories closely agree over the entire range of

attained values of φ1, with the simulation results more or less lying on top of the two. In this

case, the action J is nearly conserved, since its deviation (2.60) scales as f ′(vp)φ
3/2
1 � δω,

and the pendulum results of Sec. 2.3.1 mimic all the essential features of the dynamics.

However, for colder plasmas that can be driven to larger amplitudes, the discrepancy

between the theories becomes apparent. Fig. 2.7(b) indicates that while the qualitative

features of the two theories are similar for σ = 0.3, their quantitative predictions can

differ by nearly a factor of two. In this case, we see that the simulation results favor our

action ansatz that the distribution remains invariant in the action difference J − J̄ for the

bulk and invariant in J for the trapped particles, rather than the direct invariant-in-action

distribution theory of Dewar and Bénisti and Gremillet.

For the relatively cold plasmas with σ = 0.2 and σ = 0.1, Fig. 2.7(c)-(d) indicates

that taking the distribution to be invariant in the presumably conserved action results

in a positive value for the frequency shift. This positive δω was predicted theoretically

using action conservation in Ref. [60], although we see that this result is not borne out by

the Vlasov simulations. On the other hand, the distribution corresponding to our action

ansatz closely follows the simulation points of δω for kλD = 0.2; for kλD = 0.1 our theory
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Figure 2.7: Nonlinear frequency shift for four different temperatures: kλD = 0.4 (a),
kλD = 0.3 (b), kλD = 0.2 (c), and kλD = 0.1 (d). The points are obtained from particle
simulations, with error bars indicating two standard deviations in the output. This “error”
was due to uncertainty arising from the residual ringing in the electrostatic amplitude after
the drive was turned off, along with oscillations in the measured frequency of the Langmuir
wave. We see that the theoretical value of δω from the action ansatz distribution (solid
line) agrees quite well with the simulation results, which are only closely represented by
the Dewar and Bénisti theory of constant action for φ1 � σ2. To compare with the well
known lowest order result δω ∼ f ′′(v)

√
φ1 first given by Morales and O’Neil and Dewar,

we also include the orange dotted line, whose equation is given by (2.59). To calculate our
theoretical frequency shift (red line), we obtain f by solving the equations associated with
a distribution invariant in I − Ī(τ), (2.21), and use (2.24) to obtain δω.
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is qualitatively the same, but some quantitative difference arises for the highest amplitude

plasma waves, from which φ1 ∼ 0.45.

The basic lesson of Fig. 2.7 is that assuming that the distribution in invariant in a

constant action [i.e., J̄(φ1) = 0] yields reliable results only if φ1 . σ2. In this case, the

electrostatic potential felt by an electron is less than its typical kinetic energy, so that

the change in the action associated with the excited Langmuir wave is small, and can be

neglected. However, as the coherent electrostatic field of the plasma wave grows, the change

of the action resulting from the nearly-constant frequency of the particles in the plasma

bulk6 becomes appreciable. Thus, to obtain an accurate expression for the frequency shift

for potentials φ1 & σ2, one must include the bulk change in action J̄ .

To clarify these arguments, we conclude this section by comparing the change in the

canonical action J̄ predicted by our distribution action ansatz with that obtained from our

Vlasov simulations. To extract ∆J̄ from the simulations, we use the previously determined

frequency shift to obtain the Hamiltonian for each particle (after the drive is turned off):

H(pj , θj) = 1
2

(
pj + δω

)2 + φ(θj) = 1
2

(
pj + δω

)2 +
M∑
m=1

1
N

N∑
`=1

cos(mθj −mθ`). (2.63)

At any given time, (2.63) gives the particle energy Hj in terms of the numerical position

and momentum; using the nonlinear potential, the average action is determined by

J̄ ≡ 1
N

N∑
n=1

Jj =
1
N

N∑
n=1

1
2π

∮
dθj

{√
2[Hj + φ(θj)]− δω

}
. (2.64)

We compare the simulation points with those of our action ansatz theory for three different

temperatures in Fig. 2.8. As we can see, the average action increases as the particles are

excited in the Langmuir wave, becoming appreciable (of order δω) when φ1 � σ2. As seen

in Fig. 2.7, neglecting this change in J̄ yields a significantly different frequency of the wave

from that measured in the particle simulations.
6As mentioned earlier, while typical nonlinear oscillators have frequencies that are a function of the

action, this nearly amplitude-independent frequency is a peculiarity of the (sufficiently cold, sufficiently
nonrelativistic) nonlinear Langmuir wave. In this case, the dynamics are analogous those of the simple
harmonic oscillator, in that a change in oscillator energy is accompanied by a change in its action.
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φ1

kλD = 0.3

kλD = 0.2

kλD = 0.4

J̄
−

ω
L

Figure 2.8: Growth of the average particle action J̄ as a function of the potential for
three different temperatures: kλD = 0.4 (red), kλD = 0.3 (blue), and kλD = 0.2 (brown).
The points are obtained from particle simulations, with error bars indicating two standard
deviations (again, basically arising due to the uncertainty associated with the ringing of
the plasma wave amplitude and measured frequency). We see that the average action
increases as the Langmuir wave amplitude increases. As discussed earlier, this corresponds
to a nearly rigid shift of the distribution in the Ψ-J plane, and results from the nearly
amplitude-independent frequency of the particles oscillating in the plasma bulk.

Structures similar to the BGK-type distributions have been seen in kinetic simulations

of Raman backscatter [61, 62], while their generic physical properties (reduced Landau

damping and the nonlinear frequency shift) have been used to interpret experiments inves-

tigating Raman backscatter in a plasma [15, 63, 16]. We will use various properties of these

distributions in the following chapters to formulate a reduced description of Raman scatter

in an under-dense plasma. Since nonlinear electrostatic waves arise in a variety of appli-

cations, the BGK-type distributions detailed in this chapter may have other applications

as well.
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Chapter 3

Extended Three-Wave Model of

Stimulated Raman Scatter in a

Plasma

When studying the Raman interaction of lasers in plasma it is convenient and often

necessary to resort to reduced models. The utility of such simplified descriptions is two-

fold: they illuminate the basic physics processes and are significantly less time-consuming

to implement numerically. Of course, these models are only as valid as their underlying

assumptions and reliable to the extent to which they capture the dominant physics. The

simplest description of Raman scatter is that given by the ubiquitous three-wave model

describing the lowest order coupling between nearly resonant modes [21, 64]. It can be

thought of as an interaction through which a laser photon is converted to a frequency

down-shifted photon and a longitudinal plasma oscillation in such a way as to satisfy the

Planck-Einstein energy and momentum conservation relations:

ω0 = ω1 + ω2 , k0 = k1 + k2, (3.1)
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where ω0, k0 are the frequency and wave vector of the initial pump photon, while ω1, k1 is

that of the daughter photon, and ω2 ≈ ωp, k2 characterize the Langmuir wave. Note that

although we have used quantum-mechanical language, the conservation equations (3.1)

can be understood in purely classical terms as resonance conditions. From the three-wave

models a number of important physical insights have been made regarding the growth rates

of the instability, the effects of plasma inhomogeneities, and novel nonlinear solutions in

which the energy of one laser is efficiently transferred to an amplifying, narrowing pulse

suitable for short-pulse, high intensity interactions [29, 65, 66].

Although the three-wave model is physically appealing, (somewhat) analytically tract-

able, and straightforward to implement numerically, it also neglects a host of other poten-

tially important phenomena. Perhaps the most relevant physics that it does not include are

the thermal and kinetic influences on the plasma wave. To completely address these issues,

one must turn to a either particle-in-cell [67, 68, 69] or Vlasov codes (see, e.g., [62, 70, 71]).

Even as computers increase in computational power, however, full-scale kinetic simulations

in multiple dimensions are prohibitively time-consuming, even on state-of-the-art parallel

computers. For this reason, there is much interest in developing three-wave type models

that incorporate the relevant kinetic processes; we call such a description an extended

three-wave model.

In this chapter, we develop the stimulated Raman backscatter equations beginning

with Maxwell’s equations coupled to plasma charges and currents. By assuming the

field quantities vary slowly over a ponderomotive bucket, we suitably average the Vlasov-

Maxwell equations in Sec. 3.1, thereby deriving a simplified coupled set of laser amplitude

and plasma equations. This set of equations is not closed, however, as it involves higher or-

der moments of the distribution function as well as nonlinear terms. Although not soluble

in general, we consider two physically important limits in Sec. 3.2, in which the higher-

order terms from the plasma envelope equation can be expressed in terms of the Langmuir

wave amplitude, thereby closing the system. The first limit is obtained when the pon-

deromotive force initially interacts with the Langmuir wave, in which case the distribution
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function is close to a Maxwellian and the linear oscillation has a natural frequency and

damping given by the plasma dispersion relation evaluated along the Landau contour. The

second limit is determined assuming that sufficient time has passed such that the electrons

have effectively phase-mixed in the wave. In this case the natural frequency is that found

in Ch. 2, and the Landau damping goes to zero.

The dynamics linking the initial value, linear problem to the asymptotic, phase-mixed

state is complicated by particle trapping and phase-mixing in an evolving electrostatic

wave. Rather than attempt to model this transition directly, in Sec. 3.3 we develop an

approximate scheme to smoothly interpolate the evolution from the linear state to the

phase-mixed state. The basis of this model is energy conservation: the decrease in wave

energy due to Landau damping must equal the increase in particle kinetic energy. By

associating this kinetic energy with that required to develop the phase-mixed distribution,

we have a means of estimating the degree to which the distribution is phase-mixed. This

in turn yields a tractable expression for the dynamic frequency and damping that depend

on both the Landmuir wave amplitude and time. Finally, we write the complete, reduced

three-wave model of Raman backscatter in a thermal plasma in Sec. 3.4, and briefly com-

pare it to other results of Divol et al. [36] and that of Vu, DuBois, and Bezzerides [37].

3.1 Raman backscatter in a Vlasov plasma: governing equa-

tions

In this section, we develop the coupled mode equations relevant for stimulated Ra-

man backscatter. To begin, we sacrifice some rigor for clarity and brevity when reducing

the fully three-dimensional equations to a more manageable set1 for which transverse di-

mensions appear only through the diffraction of the lasers. We carefully average these

equations over the fast time-scales defined by the laser frequencies and the small spatial
1This set of equations is typically the starting point for the three-wave type analyses we have seen in

the literature without apology or derivation; see, e.g., [34, 72].
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scale defined by the laser beat wavelength; coupled mode equations then emerge. In the

final sections in this chapter, we develop an approximate plasma model to close the set of

equations.

3.1.1 From three to “nearly” one dimension

We begin our presentation by establishing under what assumptions and limits Raman

scattering can be described as the propagation of paraxial lasers, coupled to the plasma

response through an essentially one-dimensional, three-wave type interaction. To perform

this reduction in a transparent manner, we use the cold-fluid model for the plasma. In

Sec. 3.1.4 we replace the cold plasma response with that obtained from moments of the

Vlasov equation, thereby including thermal and kinetic effects, assuming that the dominant

contribution acts on the longitudinal (Langmuir wave) degrees of freedom. Thus, we start

with the cold fluid continuity and momentum equations, coupled via Maxwell’s equations:

∂ne
∂t

+ ∇ · (nev) = 0 (3.2a)[
∂

∂t
+ v ·∇

]
mev = e∇Φ +

e

c

∂A

∂t
− e

v

c
× (∇×A) (3.2b)

∇2Φ = 4πe(ne − n0) (3.2c)[
∂2

∂t2
− c2∇2

]
A = −4πecnev − c

∂

∂t
∇Φ, (3.2d)

where we have introduced the usual electromagnetic scalar and vector potentials, so that

E ≡ −∇Φ− 1
c

∂A

∂t
B ≡ ∇×A, (3.3)

and we have assumed the Coulomb gauge condition ∇ ·A = 0. Rather than deal directly

with the fluid quantities from (3.2), we simplify our presentation by introducing a special

case of the Clebsch potential formulation of the cold plasma [73, 74] in which the canonical

momentum pc ≡ mev− e
cA is replaced by a scalar field. We take the curl of the momentum
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equation (3.2b) and rearrange, obtaining

∂

∂t
∇× pc + ∇× [(∇× pc)× v] = 0. (3.4)

Eq. (3.4) is of the same form as that for the vorticity in an incompressible fluid, and

Kelvin’s theorem (see, e.g., [75]) guarantees that the “canonical vorticity” is carried by the

flow. For an initially quiescent plasma, such that the “canonical vorticity” is everywhere

zero, (3.4) implies that ∇ × pc = 0 for all times, and the canonical momentum can be

written as the gradient of a scalar. To simplify the subsequent equations, we will, for this

section only, normalize variables with appropriate combinations of the speed of light c and

the characteristic frequency of the lasers ω:

ť ≡ ωt x̌ ≡ ω

c
x ϕ ≡ e

mec2
Φ a ≡ e

mec2
A ∇x̌χ ≡

pc
mec

. (3.5)

We write the Maxwell-fluid system (3.2) in terms of the scaled variables (3.5). Dropping

the háčeks from the coordinates, and defining the small parameter ε2 ≡ ω2
p/ω

2 � 1, we

have

∂

∂t

δn

n0
+ ∇ ·

[(
1 +

δn

n0

)
∇χ

]
+ a ·∇δn

n0
= 0 (3.6a)

∂χ

∂t
+

1
2
a2 + a ·∇χ+

1
2

(∇χ)2 = ϕ+ 1 (3.6b)

∇2ϕ = ε2
δn

n0
(3.6c)[

∂2

∂t2
− c2∇2

]
a = −ε2

(
1 +

δn

n0

)
(a + ∇χ)− ∂

∂t
∇ϕ. (3.6d)

We now make explicit use of the fact that the plasma is under-dense, i.e., ω2
p/ω

2 ≡ ε2 �

1. In this case, there are two well-separated, natural time-scales in the problem: that

associated with the laser frequencies, ω ∼ 1 and that associated with the plasma frequency

ωp ∼ ε. In the one-dimensional limit, the former dominantly describes the lasers and the

associated rapid transverse quiver of the electrons, while the latter is basically related to

the longitudinal plasma waves and the back-reaction on the laser envelopes. Therefore,

each field variable Y (i.e., δn/n0, χ, ϕ, a) consists of a “fast” and a “slow” component in
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the following additive manner:

Y = Y f + Ys with
∂Y f

∂t
∼ Y f,

∂Ys

∂t
∼ εYs. (3.7)

The continuity equation (3.6a) has a rapidly oscillating component of both the density and

the canonical momentum potential χ given by(
∂n

n0

)f

∼ χf ∼ af
⊥ ·∇⊥

(
δn

n0

)s

+ af
z

∂

∂z

(
δn

n0

)s

.

∣∣af
⊥
∣∣

R⊥
, (3.8)

where R⊥ is the transverse scale length. We assume that the laser spot sizes are much

greater than the plasma collisionless skin depth c/ωp, so that 1/R2
⊥ � ε2. From the Poisson

equation (3.6c) the fast component of the potential scales as:

ϕf ∼ ε2
(
δn

n0

)f

∼ ε2
∣∣af
⊥
∣∣

R⊥
. (3.9)

Using the scalings (3.8)-(3.9), the transverse part of the fast component of the current in

the Ampère-Maxwell Law, i.e., the right-hand side of (3.6d), is seen to behave as

ε2

[
1 +

(
δn

n0

)s
](

af
⊥ + ∇⊥χ

f
)

+ ε2
(
δn

n0

)f (
as
⊥ + ∇⊥χ

s
)
−∇⊥

∂ϕf

∂t

∼ ε2

{[
1 +

(
δn

n0

)s
](

af
⊥ + ∇⊥χ

f
)

+
|a⊥|
R2
⊥

}
.

(3.10)

The last term in (3.10) can be thought of as representing changes to the transverse profile

of the lasers due to coupling with the plasma. As is apparent from (3.10), this effect is

O(ε2) smaller than that of the transverse Laplacian of the Ampère-Maxwell wave operator.

Therefore, (3.10) indicates that, to lowest order, the lasers couple to a current given by

neca⊥ as one would have in the case of exact canonical momentum conservation. In this

limit, the dominant three-dimensional physics is given simply by the vacuum diffraction

operator ∇2
⊥ acting on the laser field.

We similarly simplify the plasma response: the slow terms from the ponderomo-

tive/convective derivative term on the left-hand side of the momentum-type equation (3.6b)

scale as
1
2
(af)2 + af ·∇χf +

1
2

(∇χs)2 ≈ 1
2
(af

⊥)2 +
1
2

(
∂χs

∂z

)2

+O
(
|a⊥|
R2
⊥

)
, (3.11)
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while the slowly oscillating terms from the convective derivative in the continuity equation

are given by

∇ ·
[(

1 +
δn

n0

)
∇χ

]s

+af ·∇
(
δn

n0

)f

≈ ∂

∂z

(
1 +

δn

n0

)s ∂χs

∂z
+O

(
χ
R2
⊥

)
+O

(
|a⊥|2
R2
⊥

)
. (3.12)

Inspection of the nonlinear terms from the plasma response (3.11) and (3.12) shows that

the plasma is, to O(1/R2
⊥), described by the slow pieces of the density perturbation and

the z-derivative of the “canonical momentum potential” χ. Additionally, we can show that

the slow part of ∂
∂zχ is essentially the longitudinal velocity by considering the slow part of

the transverse Ampère Maxwell Law:

ε2as
⊥ ∼ ε2∇⊥χ

s + ∇⊥ϕ
s ⇒ as

⊥ ∼
χs

R⊥
. (3.13)

Using the Coulomb gauge condition, we obtain as
z ∼ |a|s⊥ /R⊥. Therefore, from the defi-

nition of (3.5) of the Clebsch potential, the slow part of ∂
∂zχ is given by

∂χs

∂z
∼ 1

cvz

[
1 +O

(
1
R2
⊥

)]
. (3.14)

Therefore, in the limit that the plasma is under-dense (ω2
p � ω2) and the laser spot sizes

are large (typically with waists much larger than c/ωp), the Raman interaction can be

consistently modeled by essentially transverse (paraxial) lasers that couple to the plasma

through the current generated by the transverse quiver, and the Ampère-Maxwell Law (in

terms of actual time and space) is given by[
∂2

∂t2
− c2∇2

]
a⊥ = −

ω2
p

n0
nea⊥. (3.15)

Furthermore, in this approximation the transverse motion of the particles is given by the

local quiver in the laser field, so that different transverse ribbons of the plasma only couple

to each other via the lasers. We will use these facts in the next sections wherein we average

the laser and plasma equations.

3.1.2 Paraxial, eikonal lasers in a plasma

We now generalize the fluid response in (3.15) to include longitudinal thermal and

kinetic effects. To do this, we replace the fluid density ne with its definition as the moment
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of the electron distribution over velocity space

ne ≡
∫
dv fe(v, z, r⊥; t). (3.16)

Since we noted in the previous section that the fluid variables inherit their transverse

structure from the laser profile, we will omit the explicit transverse spatial dependence of

fe in what follows. Thus, the Ampère-Maxwell equation (3.15) is written as[
∂2

∂t2
− c2

∂2

∂z2

]
a⊥(z, t) = −

ω2
p

n0
a⊥(z, t)

∫
dv fe(v, z; t) (3.17)

We further assume the transverse vector potential characterizes two linearly polarized

lasers that are counter-propagating along the z-axis. In terms of the dimensionless root

mean square amplitudes and phases, the lasers are given by

a⊥(x, t) =
1√
2

[
a0(x, t)e−i(ω0t+k0z) + a1(x, t)e−i(ω1t−k1z)

]
x̂ + c.c., (3.18)

with the convention that each ω and k is positive, such that the “pump wave” a0(x, t)

travels to the left, while the “seed wave” a1(x, t) travels to the right. Furthermore, the

lasers are assumed to each satisfy the eikonal relations∣∣∣∣ ∂∂t ln a0,1(x, t)
∣∣∣∣� ω0,1,

∣∣∣∣ ∂∂z ln a0,1(x, t)
∣∣∣∣� k0,1, (3.19)

and the linear dispersion relations

ω2
0 = c2k2

0 + ω2
p, ω2

1 = c2k2
1 + ω2

p. (3.20)

Using the counter-propagating laser vector potential (3.18) and the dispersion relations

(3.20), Ampère’s Law (3.17) becomes

e−i(ω0t+k0z)

[
ω0

∂

∂t
− c2k0

∂

∂z
− ic2

2
∇2
⊥

]
a0(x, t) + c.c.

+ e−i(ω1t−k1z)
[
ω1

∂

∂t
+ c2k1

∂

∂z
− ic2

2
∇2
⊥

]
a1(x, t) + c.c.

= −
iω2
p

2n0

[
a0e

−i(ω0t+k0z) + a1e
−i(ω1t−k1z)

][∫
dv fe(v, z; t)− 1

]
+ c.c.,

(3.21)
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where, in light of the eikonal relations (3.19), we have dropped the second-order time and

space derivatives. To obtain fully consistent amplitude equations for the lasers, we further

average the equation (3.21) over the short spatial scale defined by the beat wavenumber

k2 ≡ k0 + k1, and then over the fast temporal scale given by the laser frequencies ∼ ω0,1,

yielding two equations for the counter-propagating amplitudes a0 and a1. Since these

amplitudes vary smoothly and slowly (with respect to k2) in space, they are driven by a

smooth, averaged electron current. Thus, we are led to equations that couple the eikonal

fields to averaged plasma quantities, for which we must also determine equations of motion.

3.1.3 The averaged transverse Ampère-Maxwell equation

Eliminating the spatial scale given by 1/k2 from the wave equation (3.21) requires

a longitudinal averaging procedure that we will denote as 〈·〉z. To simplify notation, we

introduce the dimensionless coordinate ζ ≡ k2z, so that the spatial average of any function

X (z, t) is given by

〈
X (z′, t)

〉
z
(z, t) ≡ k2

2π

z+ π
k2∫

z− π
k2

dz′ X (z′, t) ≡ 1
2π

ζ+π∫
ζ−π

dζ ′ X (ζ ′, t). (3.22)

Note that, as indicated, removing the fine-scale structure still allows for variation in z

on scales longer than k2, although in what follows we will generally suppress this explicit

dependence. To obtain an equation for the slowly-varying amplitude a0(z, t), we multiply

(3.21) by the phase ei(ω0t+k0z) and apply the londitudinal averaging operation (3.22). We

address each term in turn; for those terms on the left-hand side of (3.18) involving a0, we

Taylor expand around the central point of the averaging operator 〈·〉z to obtain

〈
a0(ζ ′, t)

〉
z

=
〈
a0(ζ, t) + (ζ ′ − ζ)

∂a0

∂ζ
+ 1

2(ζ ′ − ζ)2
∂2a0

∂ζ2
+ . . .

〉
z

= a0(ζ, t) +
1
6
∂2a0

∂ζ2
+ . . . , (3.23)

where we will only retain the first term, consistent with our previous omission of the

second order derivatives. Alternatively, the terms involving a1 can be wholly neglected
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upon averaging, as seen by〈
a1(ζ ′, t)eiζ

′
〉
z

=
〈
eiζ

′
[
a1(ζ ′, t) + (ζ ′ − ζ)

∂a1

∂ζ ′
+ . . .

]〉
z

= ieiζ
∂

∂ζ
a1(ζ, t) + . . . (3.24)

If our lasers were circularly polarized, the results (3.23) and (3.24) would be sufficient for

the averaged right-hand side of (3.21). However, for linearly polarized light we still have

two additional series of terms: those involving a∗0 and a∗1. To appropriately eliminate these,

we must also take the time average over the sum frequency ω0+ω1. Because the amplitude

a0 is essentially constant over this time scale, we have

〈
a0(z, t′)

〉
t
≡ ω0 + ω1

2π

t+
π

ω0+ω1∫
t− π
ω0+ω1

dt′ a0(z, t′) = a0(z, t) +
π2

6(ω0 + ω1)2
∂2a0

∂t
+ . . . , (3.25)

and only the first term on the right-hand side of (3.25) survives. On the other hand, since

the time average commutes with the spatial average, for the terms involving a∗1 we consider〈
a∗1(z, t

′)ei(ω0+ω1)t′
〉
t
=

i

ω0 + ω1

∂a∗1
∂t

ei(ω0+ω1)t + . . . ,

and these terms can be neglected. Finally, we calculate the lowest order terms involving

a∗0. First, we have〈
a∗0(ζ

′, t)ei(2ω0t+2k0ζ′/k2)
〉
z

=
sin(2πk0/k2)

2πk0/k2
a∗0(ζ, t)e

i(2ω0t+2k0/k2) + . . . ,

while the time average of this is

sin(2πk0/k2)
2πk0/k2

〈
a∗0(ζ, t

′)ei(2ω0t′+2k0ζ′/k2)
〉
t

=
sin[2πω0/(ω0 + ω1)] sin(2πk0/k2)

[2πω0/(ω0 + ω1)]2πk0/k2
a∗0(ζ, t)e

i(2ω0t+2k0ζ/k2) + . . .

(3.26)

To simplify (3.26), we note that

2πω0

ω0 + ω1
≡ 2πω0

2ω0 − (ω0 − ω1)
≈ π

(
1 +

ω0 − ω1

2ω0

)
, (3.27)

where we have assumed that the plasma is under-dense (i.e., ω2
0,1 � ω2

p) and that the

frequency difference between the lasers is near resonance (ω0 − ω1 ≈ ωp). These assump-

tions and the electromagnetic dispersion relations also lead to the following approximate
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equation:
2πk0

k2
≡ 2πk0

k0 + k1
≈ π

(
1 +

k0 − k1

2k0

)
≈ π

(
1 +

ω0 − ω1

2ω0

)
. (3.28)

Using the approximate expressions (3.27) and (3.28), we find that

〈
a∗0e

i(2ω0t′+2k0ζ′/k2)
〉
z,t
≈
(
ω0 − ω1

2ω0

)2

ei(2ω0t+2k0ζ/k2)a∗0, (3.29)

which is much smaller than the retained terms. Finally, we consider the course-grained

current given by the temporal and spatial averaging of the right-hand side of (3.21). For this

discussion, we proceed largely in analogy with those averages already computed, and use

the general properties of the plasma response discussed in Ch. 2 to determine which terms

survive the averaging procedure. To further simplify notation, we use the dimensionless

longitudinal velocity u ≡ k2vz/ωp and the rescaled and marginalized (over the transverse

velocities) distribution function f defined such that

1
n0

∫
dv fe(v, z; t) ≡

∫
du f(u, z; t).

As indicated in Sec. 3.1, the Raman interaction in an under-dense plasma with large

laser spots is essentially one-dimensional, so that this marginalization does not affect the

relevant information. Furthermore, we recall that the distribution f is defined such that

the dimensionless electron perturbation is

δn

n0
≡ ne − n0

n0
≡
∫
du f(u, ζ; τ)− 1. (3.30)

To simplify the plasma current, we use the fact that the natural response of the plasma

has a frequency ωp ≈ ω0 − ω1 and is dominantly driven2 at the beat spatial length-scale

1/k2. Under these assumptions, averaging the terms in the current ∼ a∗0 and ∼ a1 is, in

analogy with (3.29), given by〈
a∗0e

i(2ω0t′+2k0ζ′/k2) δn

n0

〉
z,t

∼
〈
a∗1e

i[(ω0+ω1)t′+(k0−k1)ζ′/k2) δn

n0

〉
z,t

∼
ω2
p

ω2
0

a0,1e
i(ω0,1+k0,1).

2To be complete, for now we also include long-scale spatial variation in the plasma wave that is relevant
if the laser envelopes have longitudinal structure on the scale ∼ c/ωp � 1/k2.
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while the term involving the initial velocity spread vx(0) is〈(
1 +

δn

n0

)
vx(0)
c

ei(ω0t′+k0z′)

〉
z,t

∼
ω2
p

ω2
0

vx(0)
c

ei(ω0t+k0z). (3.31)

Note that in order to obtain (3.31) we implicitly assumed that any variation in the initial

perpendicular velocity was over spatiotemporal scales much longer that 1/ω0 and 1/k2.

While this is consistent with the eikonal assumptions in a pre-ionized plasma, it may fail

to be true if either the pump or seed laser is providing the ionization energy. In this case,

the transverse velocity is correlated with the laser phase, and (3.31) may not hold.

Neglecting those terms that have been “averaged away,” we see that the averaged

longitudinal current is given by

4πe
mec

〈
J⊥
〉
z,t

= −
iω2
p

2

[
a0(z, t)

〈
δn

n0

〉
z

+ a1(z, t)
〈
ei[(ω0−ω1)t+ζ] δn

n0

〉
z

]
x̂, (3.32)

where we have used expansions of the form (3.23) to take the eikonal fields outside of the

averaging in z, and implicitly assumed that the currents change little over the time-scale

given by ω0,1, thereby neglecting the explicit time average. For what follows, we assume

that any long-range density perturbation is small, so that we may neglect the first term

on the right-hand side of the averaged current (3.32). In this way, we have now completely

determined the averaged equation for the eikonal field amplitude a0(z, t); by multiplying

(3.21) by the phase ei(ω1−k1z) and carrying out the same averaging procedure we obtain a

similar equation for the amplitude a1(z, t). Introducing the dimensionless time, frequency

difference, and group velocities

τ ≡ ωpt, ω2 ≡
ω0 − ω1

ωp
, u0 ≡

k2

ωp

c2k0

ω0
, u1 ≡

k2

ωp

c2k1

ω1
,

the resulting set of equations is written as[
∂

∂τ
− u0

∂

∂ζ
− iωp
ω0

∇2
⊥

]
a0(ζ, τ) = − iωp

2ω0
a1

〈
ei(ω2τ+ζ)

[∫
du f(u, ζ; τ)− 1

]〉
z

(3.33a)

[
∂

∂τ
+ u1

∂

∂ζ
− iωp
ω1

∇2
⊥

]
a1(ζ, τ) = − iωp

2ω1
a0

〈
e−i(ω2τ+ζ)

[∫
du f(u, ζ; τ)− 1

]〉
z

. (3.33b)
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The rest of this chapter will concern itself with the derivation of a simplified equa-

tion for
〈
e−i(ω2τ+ζ)

[∫
du f − 1

]〉
z
, what is known in the free electron laser community as

the bunching parameter. We proceed by forming a hierarchy of moments of the Vlasov

equation, and then close this set of equations by formulating an approximate distribution

function in the limit that the bunching changes slowly on the plasma time scale 1/ωp.

3.1.4 Bunching parameter governing equation

In this section, we derive a governing equation for the phase-modulated density per-

turbation that couples the lasers a0 and a1 to each another. This is typically expressed

either through a third wave equation to complete a three-wave model of stimulated Raman

scatter, or through a kinetic response using either a particle or Vlasov model. The former

has the advantage of elegant interpretation and numerical simplicity, while the latter more

accurately models the thermal and kinetic effects in a realistic plasma. In what follows, we

will try to incorporate some kinetic physics into a simple, extended three-wave type model.

Before proceeding to this task, we find it convenient to define the following ponderomotive

potential phase space average at fixed time (this is the slowly-varying generalization of the

phase-space average in Ch. 2):

〈
X (u, ζ ′; τ)

〉
PS

(ζ, τ) ≡ 1
2π

ζ+π∫
ζ−π

dζ ′
∞∫

−∞

du f(u, ζ ′; τ)X (u, ζ ′; τ).

To determine the plasma response relevant in Raman scattering, we must derive an

equation for the bunching parameter3. We turn to the Vlasov equation for the electron

distribution function. In terms of the dimensionless variables τ, ζ, and u, the Vlasov

equation is given by [
∂

∂τ
+ u

∂

∂ζ
+
du

dτ

∂

∂u

]
f(u, ζ; τ) = 0, (3.34)

where du/dτ is the dimensionless acceleration due to the normalized electrostatic and
3This derivation is similar in spirit to that used for the averaged particle equations in Ref. [76], but by

not mixing Eulerian and Lagrangian coordinates, we feel that it is simpler.
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ponderomotive potentials

du

dτ
=
k2

ω2
p

dv

dt
=
k2

ω2
p

[
e

me

∂Φ
∂z

− e2

2m2
ec

2

∂A2
⊥

∂z

]
≡ ∂φ

∂ζ
− c2k2

2

2ω2
p

∂a2
⊥

∂ζ
. (3.35)

As in the previous chapter, the dimensionless electrostatic potential φ is obtained by

scaling Φ by the kinetic energy associated with the nominal phase velocity ωp/ck2, so that

φ ≡ eΦ/[me(ωp/k2)2]. It is determined via Poisson’s equation:

∂2φ

∂ζ2
=

e

meω2
p

∂2Φ
∂z2

=
4πe2n0

m2
eω

2
p

[∫
du f(u, ζ; τ)− 1

]
≡ δn

n0
. (3.36)

We begin by obtaining a relation between the zeroth and first order moments of the

Vlasov equation. Integrating (3.34) over u and rearranging yields the following form of the

continuity equation

− ∂

∂ζ

∫
du f(u, ζ; τ)u =

∂

∂τ

[∫
du f(u, ζ; τ)− 1

]
≡ ∂

∂τ

δn

n0
. (3.37)

Multiplying the Vlasov equation (3.34) by u and integrating with respect to the velocity

yields the dynamical equation for the first moment (i.e., the momentum equation)

∂

∂τ

∫
du f(u, ζ; τ)u+

∂

∂ζ

∫
du f(u, ζ; τ)u2 − du

dτ

∫
du f(u, ζ; τ) = 0, (3.38)

where we have integrated the last term (involving the acceleration) by parts. Taking

− ∂
∂ζ to the momentum equation (3.38), and using the continuity equation (3.37) and the

acceleration (3.35), we have

∂2

∂τ2

δn

n0
+
∂2φ

∂ζ2
− ∂2

∂ζ2

∫
du fu2 +

∂

∂ζ

[
∂φ

∂ζ

δn

n0

]
=

∂

∂ζ

[
c2k2

2

2ω2
p

∂a2
⊥

∂ζ

(
1 +

δn

n0

)]
,

from which, using Poisson’s equation (3.36), we obtain

∂2

∂τ2

δn

n0
+
δn

n0
− ∂2

∂ζ2

[∫
dufu2 − 1

2

(
∂φ

∂ζ

)2
]

=
c2k2

2

2ω2
p

∂

∂ζ

[
∂a2

⊥
∂ζ

(
1 +

δn

n0

)]
. (3.39)

To make the averaging and eikonal approximations explicit, we rewrite this second-order

(in time) equation for the real density perturbation as a first-order equation for a single

complex wave-field g(ζ, τ). This is in some ways similar to quantum field theory, for
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which one typically defines k-dependent creation and annihilation operators that factor

the Hamiltonian. Thus, we define

g(ζ, τ) ≡ 1
2

[
1 +

i

ωL

∂

∂τ

]
δn

n0
, (3.40)

where ωL is the dimensionless linear resonant frequency, shifted shifted slightly from unity

(the plasma frequency) due to thermal effects. Using the oscillator-type equation (3.39),

we find that the wave-field g(ζ, τ) satisfies the following partial differential equation

∂g

∂τ
+ i

ω2
L + 1
2ωL

g − i

2ωL
∂2

∂ζ2

[∫
du fu2 −

(
∂φ

∂ζ

)2
]
− i

ω2
L − ω2

p

2ωL
g∗

=
i

2ωL
∂

∂ζ

[
c2k2

2

2ω2
p

∂a2
⊥

∂ζ
(1 + g + g∗)

] (3.41)

Now, we expand the field g(ζ, τ) in a Fourier-eikonal series about the resonant phase

(ζ + ωLτ) as follows

g(ζ, τ) =
1
2

∑
n6=0

gne
−in(ζ+ωLτ) (3.42)

where we assume that the modes gn are slowly-varying in space:∣∣∣∣ ∂∂ζ ln |gn(ζ, τ)|
∣∣∣∣� n. (3.43)

Before proceeding, we remind ourselves that the eikonal laser equations (3.33) are coupled

though the bunching parameter
〈
ei(ζ+ω2τ) δn

n0

〉
z
. Apart from the phase difference ωL − ω2,

we determine its relation to the modes gn as

〈
ei(ζ+ωLτ)

δn

n0

〉
z

=
1
2π

ζ+π∫
ζ−π

dζ ′ ei(ζ+ωLτ)

[∫
duf(u, ζ; τ)− 1

]

=
1
2π

ζ+π∫
ζ−π

dζ ′ ei(ζ+ωLτ)(g + g∗) =
1
2
(
g1 + g∗−1

)
. (3.44)

Thus, we see that the lasers couple to the plasma modes g1 and g−1. To obtain their gov-

erning equations, we respectively multiply (3.41) by ei(ζ+ωLτ) and e−i(ζ+ωLτ) and integrate
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over one wavelength. To simplify the second line in (3.41), we note that〈
ei(ζ+ωLτ)

∂2

∂ζ2
X (ζ, τ)

〉
z

= eiωLτ

〈
∂

∂ζ
eiζ
∂X
∂ζ

− ieiζ
∂X
∂ζ

〉
z

= eiωLτ

〈[
∂2

∂ζ2
− 2i

∂

∂ζ
− 1
]
eiζX (ζ, τ)

〉
z

=
[
∂2

∂ζ2
− 2i

∂

∂ζ
− 1
]〈

ei(ζ+ωLτ)X (ζ, τ)
〉
z
.

Due to our eikonal assumptions (3.43), we can drop the second order ζ-derivatives in what

follows. Thus, alternately multiplying (3.41) by ei(ζ+ωLτ) and e−i(ζ+ωLτ) and integrating

over one wavelength, we find[
∂

∂τ
− i

ω2
L − 1
2ωL

]
g1 − i

ω2
L − 1
2ωL

g∗−1 −
[

1
ωL

∂

∂ζ
− i

2ωL

]
Q(ζ, τ) = F (3.45a)[

∂

∂τ
+ i

3ω2
L + 1
2ωL

]
g−1 − i

ω2
L − 1
2ωL

g∗1 +
[

1
ωL

∂

∂ζ
+

i

2ωL

]
Q∗(ζ, τ) = F ∗, (3.45b)

where we have defined

Q(ζ, τ) ≡

〈
ei(ζ

′+ωLτ)

[
2
∫
du fu2 −

(
∂φ

∂ζ ′

)2
]〉

z

, (3.46a)

F (ζ, τ) ≡ i

ωL

〈
ei(ζ

′+ωLτ)
∂

∂ζ ′

[
c2k2

2

2ω2
p

∂a2
⊥

∂ζ
(1 + g + g∗)

]〉
z

. (3.46b)

Simplification of the drive term F yields the desired lowest order coupling to the lasers.

Integrating the average 〈·〉z by parts results in

F (ζ, τ) =
1
ωL

〈
ei(ζ

′+ωLτ)

[
c2k2

2

2ω2
p

∂a2
⊥

∂ζ
(1 + g + g∗)

]〉
z

+O
(
∂
∂ζF

)
. (3.47)

From the assumed form (3.18) of the vector potential, the dominant contribution to the

ponderomotive force ∂
∂ζa

2
⊥ is given by

∂

∂ζ
a2
⊥(ζ, τ) = −ia0a

∗
1e
−i(ζ+ω2τ) + ia∗0a1e

i(ζ+ω2τ) + . . . .

The dots represent terms that are either small due to our eikonal assumptions or rapidly

oscillating and would otherwise be subsequently averaged away. Using the Fourier-eikonal

expansion (3.42) for g(ζ, τ), and neglecting the higher order couplings, we see that

F (ζ, τ) ≈ − i

ωL

c2k2
2

2ω2
p

a0(ζ, τ)a∗1(ζ, τ) e
−i(ω2−ωL)τ . (3.48)
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To further simplify the Langmuir wave equation, we now use results that will be

obtained in subsequent analysis. In the following sections, we will show that in two limits

(the initial, linear value problem and the asymptotic, phase-mixed case) Q(ζ, τ) can be

written in the form:

Q(ζ, τ) = (ω2 − 1)(g1 + g∗−1), (3.49)

where the (possibly complex, possibly nonlinear) frequency ω will also be determined

later. If we additionally assume that the dispersion relation remains of the Bohm-Gross

form ω2 = ω2
p + βk2, we find that the scaled group velocity is

ugr =
k

ωp

dω

dk
=
ω2 − ω2

p

ωp ω
. (3.50)

Finally, we assume that the time-scale set by the plasma frequency ωp is much faster that

that associated with the change in the Langmuir wave amplitude. In this, the so-called

Raman limit of stimulated scattering, the temporal and spatial derivatives in (3.45b) can

be neglected, and the resulting algebraic equation solved for g∗1:

g∗−1 ≈
ω2
L − ω2

3ω2
L − ω2

g1 + i
2ωL

3ω2
L − ω2

F . (3.51)

Now, we combine the lowest order expressions for the slowly-evolving Langmuir wave,

namely: the lowest order drive (3.48), the term Q given by (3.49), the group velocity

(3.50), and the non-resonant Langmuir wave (3.51). Neglecting terms of order (ωL − ω)3

under the assumption that the plasma wave is nearly resonant, the system (3.45) simplifies

to [
∂

∂τ
+ i(ω − ωL)− ugr

∂

∂ζ

]
g1 = − ic2k2

2

2ωLω2
p

a0a
∗
1e
−i(ω2−ωL)τ . (3.52)

As mentioned previously, the rest of this chapter concerns itself with obtaining closed

form expressions for the term Q(ζ, τ) in two limits: the first for an initial value problem

with linear amplitudes, the second corresponding to the asymptotic, phase-mixed limit.

As alluded to, we will find that in these two limits Q is given in the form (3.49), so

that Eq. 3.52 holds. We then link these two limits with a physically motivated, albeit
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heuristic, model to obtain a simplified, closed set of equations for the laser and plasma

wave amplitudes.

3.2 Dynamic damping and frequency shift for the plasma

wave equation

In this section, we determine simplified expressions of the plasma wave damping and

frequency shift in two limits. The first limit is that of a linear, initial value problem, in

which case the results are naturally expressible in terms of the plasma dispersion function

[77]. The second limit corresponds to the asymptotic, phase-mixed state presented in Ch. 2

with its associated frequency shift and vanishing damping.

3.2.1 The envelope equation in the initial value, linear limit

In the linear, τ = 0 limit, we assume that the distribution function can be written as

a sum of the initial Maxwellian and a small perturbation:

f =
e−u

2/2σ2

σ
√

2π
+ f1 ≡ f0 + f1. (3.53)

Taking the Fourier-Laplace transform of the Vlasov equation and using the expansion

(3.53), we have

[
ω + vzk

]
f̃1(vz, k, ω) + kφ̃(k, ω)

∂f0

∂vz
= −

∫
dω′dk′ k′φ̃(k′, ω′)

∂

∂vz
f̃1(vz, k − k′, ω − ω′),

(3.54)

where the tilde indicates the Fourier-Laplace transform4, and we have omitted the pon-

deromotive drive. Assuming that the perturbation is small, i.e., f1 � f0, we neglect the

convolution on the right-hand side of (3.54), and then solve for f̃1 in terms of the potential

and the unperturbed distribution:

f̃1(k, ω) = −φ̃(k, ω)
∂
∂vz

f0(vz)
vz + ω/k

, (3.55)

4To more easily mesh with our choice of the plasma wave having carrier wave vector −k2 < 0, the sign
convention for the Fourier transform is opposite that of standard analysis.
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To be consistent with the previous section, we write (3.55) in terms of the dimensionless fre-

quency ω̂ ≡ ω/ωp and the dimensionless wave vector k̂ ≡ k/k2. In terms of these variables,

the Poisson equation implies that the Fourier transform of the potential is approximately

given by

φ̃(k̂, ω̂) = − 1

k̂2

δñ

n0
= − 1

k̂2
(g̃ + g̃∗) ≈ −1

2

∑
n6=0

1

k̂2

[
g̃nδ(k̂ + n) + g̃∗nδ(k̂ − n)

]
. (3.56)

We insert the linear relation (3.55) with the potential (3.56) into the nonlinear/thermal

average (3.46a). Taking the inverse Fourier-Laplace transform and neglecting the higher-

order nonlinear terms, we find

Q(ζ, τ) ≈ −
(
g1 + g∗−1

) ∫
C
du

u2

u+ ω

∂f0

∂u
, (3.57)

where the velocity integration proceeds along the usual Landau contour C, defined to lie

below all the poles in the complex u-plane [3, 4]. To write (3.57) in the simplified form

(3.49), we manipulate the integral as follows:∫
C
du

u2

u+ ω

∂f0

∂u
=
∫
C
du

[
u− ω +

ω2

u+ ω

]
∂f0

∂u
= −1− ω2

∫
C
du f0

∂

∂u

1
u+ ω

= −1− ω2

√
2πσ

∂

∂ω

∫
C
du

e−u
2/2σ2

u+ ω
, (3.58)

where we have taken the initial unperturbed distribution f0(u) to be Maxwellian. The

second term in (3.58) is closely related to the linear susceptibility of the plasma, and

therefore equal to −1 for ω satisfying the linear dispersion relation. To make this more

explicit, we set x ≡ u/σ, α ≡ −ω/σ, obtaining

Q =
(
g1 + g∗−1

)[
−1 + ω2 1

σ2
√

2π
∂

∂α

∫
C
dx

e−x
2/2

u− α

]
.

Along the Landau contour, for a given temperature set by k2λ2
D ≡ σ2 and complex phase

velocity α, the linear plasma dispersion relation is given by

1− ε(σ, α) =
1

σ2
√

2π
∂

∂α

∫
C
dx

e−x
2/2

u− α

=
1

σ2
√

2π
∂

∂α

[
P

∫
dx

e−x
2/2

u− α
+ iπe−α

2/2

]
= 1. (3.59)
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If desired, (3.59) can be directly written in terms of the so-called plasma dispersion func-

tion5 [77]. Regardless, enforcing the Landau dispersion relation (3.59) yields the complex

frequency frequency ω = ωr − iν` of the electrostatic oscillation; this gives rise to the

Landau damping associated with phase-mixing of the Case-van Kampen modes of the dis-

tribution function. Decomposing the natural frequency into its real and imaginary parts

in this way, the Langmuir wave envelope equation (3.52) becomes[
∂

∂τ
+ i(ωr − ωL) + ν` − ugr

∂

∂ζ

]
g1 = − ic2k2

2

2ωLω2
p

a0a
∗
1e
−i(ω2−ωL)τ . (3.60)

This Langmuir wave governing equation is as one might expect; in the linear limit, similar

envelope equations (and related equations for the wave energy) can be derived by expanding

the dielectric assuming eikonal wave fields (see, e.g., [78, 79]).

3.2.2 The envelope equation in the time asymptotic, BGK-type limit

Complementary to the initial value problem of the previous section, we consider here

the case where the electrons have made many oscillations in the wave, producing the

time-asymptotic, BGK-type limit presented in Ch. 2. In this case, we have seen that the

Landau damping has been phase-mixed away while the flattening of f(v) at the phase

velocity (as described by the action ansatz distribution) gives rise to a nonlinear frequency

shift. In analogy with our discussion of the initial value problem, we anticipate obtaining

the following expression for the kinetic/nonlinear term Q(ζ, τ)

Q →
[
(ωL + δω)2 − 1

]
(g1 + g∗−1). (3.61)

Using the pendulum limit, for which the potential is assumed to have only one harmonic

so that φn = 0 for n ≥ 2, we show this to be true analytically, while in the general case we

resort to numerical analysis.
5With root finding software readily available, we find the explicit use of the plasma dispersion function

Z(ζ), as it is ususally written, to be unnecessary, particularly since it is expressible in terms of other
well-known functions, i.e., the complex error function. Thus, we choose not to use it.
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Time asymptotic limit in the pendulum approximation

To consistently evaluate the single harmonic, pendulum limit, we first note that as-

suming a single harmonic potential and an action-invariant distribution induces a second

(and third, etc.) harmonic. Using the bulk, trapped, and passing distributions fI, fII, and

fIII defined in (2.37), the second harmonic is obtained via

φ2 = −1
2 〈cos 2θ〉z = −1

2

〈
8 cos4(θ/2)− 8 cos2(θ/2) + 1

〉
z

= −1
2

∞∫
1

dκ
fI(κ) + fIII(κ)

K (µ)

K (µ)∫
0

dx
[
8 sn4(µ, x)− 8 sn2(µ, x) + 1

]

− 1
2

1∫
0

dκ
f−II (κ) + f+

II (κ)
K (κ)

K (κ)∫
0

dy
[
8κ4 sn4(κ, y)− 8κ2 sn2(κ, y) + 1

]
.

(3.62)

Since we have assumed a monochromatic potential described by φ1, in future calculations

we must also neglect terms of the form (3.62). In other words, retention of such terms

would require consistent calculation of the dynamics using the potential described by φ1

and φ2, and is beyond our analysis here. To evaluate the integrals (3.62) and a similar one

to follow, we make use of the identities [53, pp 629-630]

cn2(κ, x) = 1− sn2(κ, x) dn2(κ, x) = 1− κ2 sn2(κ, x) (3.63a)

3κ2

K (κ)∫
0

dx sn4(κ, x) =

K (κ)∫
0

dx
[
2
(
1 + κ2

)
sn2(κ, x)− 1

]
(3.63b)

κ2

K (κ)∫
0

dx sn2(κ, x) = K (κ)− E (κ). (3.63c)

This gives

φ2 =

∞∫
1

dκ
[
fI(κ) + fIII(κ)

][16(κ2 − κ4)− 3
6

+
4(2κ4 − κ2)

3
E (1/κ)
K (1/κ)

]

+

1∫
0

dκ
[
f+
II (κ) + f−II (κ)

][5− 8κ2

6
+

4(2κ2 − 1)
3

E (κ)
K (κ)

]
.

(3.64)

Numerical evaluation of the integral (3.64) indicates that the second harmonic of the

potential satisfies φ2 ∼ 1
4φ

2
1, as to be anticipated from the warm fluid theory (see, e.g.,
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[80, 81]). Keeping in mind that consistency of our approximation requires neglecting such

terms, we proceed by evaluating the term Q(ζ, τ) using our assumed invariant-in-action

distribution function. First, we note that in the pendulum limit, the contribution from the

phase-weighted electrostatic energy is zero〈
ei(ζ

′+ωLτ)

(
∂φ

∂ζ ′

)2
〉
z

=
∞∑
n=1

n(n+ 1)
2

φnφn+1e
i(ψn−ψn+1) → 0.

Next, we calculate the first term in Q, proportional to the phase-weighted kinetic energy:

2
〈
u2ei(ζ

′+ωLτ)
〉
PS

= 2
〈
(p− ωL)2ei(ζ

′+ωLτ)
〉
PS

= 2e−iψ
〈(

dθ
dτ

)2
eiθ
〉
PS
− 4(ωL + δω)e−iψ

〈
dθ
dτ e

iθ
〉
PS

+ (ωL + δω)2
(
g1 + g∗−1

)
,

(3.65)

where we have used p = d
dτ θ−δω and replaced the bunching with the modes g1, g∗−1. In the

limit of a fully phase-mixed distribution, the last term on the first line of (3.65) vanishes,

while 〈(
dθ
dτ

)2
eiθ
〉
PS

=
〈(

dθ
dτ

)2
cos θ

〉
PS

. (3.66)

Since (3.66) is real, it provides a pure nonlinear frequency shift of the wave; we note that

we expect the terms ∼ i sin θ to provide damping, which should initially reproduce the

Landau damping of the previous section, while at long times should asymptote to zero

as appropriate for a fully phase-mixed distribution function. In subsequent sections, we

provide a heuristic way to describe this dynamical process. Now, we turn to calculating

(3.66) for our assumed BGK-type action distribution. Using the pendulum relations (2.31),

(2.33), and (2.34), the phase-space average (2.39), and the coordinates x ≡ κ
√
φ1τ , y ≡

√
φ1τ , and µ ≡ 1/κ, we have

〈(
dθ
dτ

)2
eiθ
〉
PS

=

∞∫
1

dκ
[
fI(κ) + fIII(κ)

]K (µ)∫
0

dx
4φ1 dn2(µ, x)
µ2 K (µ)

[
2 cn2(µ, x)− 1

]

+

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
]K (κ)∫

0

dy
4κ2φ1 cn2(κ, y)

K (κ)
[
2 dn2(κ, y)− 1

]
.

(3.67)
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We can perform the x and y integrals analytically with the tables of Gradshteyn and

Ryzhik [53, pp 630]. Using the identities (3.63) and the expression for φ2 (3.62) gives

2
〈(

dθ
dτ

)2
eiθ
〉
PS

=

∞∫
1

dκ
[
fI(κ) + fIII(κ)

]8φ1κ
2

3

[
2− 2κ2 +

(
2κ2 − 1

) E (1/κ)
K (1/κ)

]

+

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
]8φ1

3

[
1− κ2 +

(
2κ2 − 1

) E (κ)
K (κ)

]

= φ1

(
1 + 2φ2

)
. (3.68)

Poisson’s equation relates (3.68) to the modes g1 and g−1:

∂2φ

∂ζ2
= −

∞∑
n=1

n2φn cos[n(ζ + ωLτ) + ψ] =
δn

n0
=

1
2

∑
n6=0

gne
−in(ζ+ωLτ).

Multiplying by ei(ζ+ωLτ) and integrating over 2π in ζ yields

φ1 = −
(
g1 + g∗−1

)
eiψ. (3.69)

Thus, using (3.69) in (3.68), the phase-weighted kinetic energy (3.65) is given by

2
〈
u2ei(ζ

′+ωLτ)
〉
PS

=
[
(ωL + δω)2 − 1

]
(g1 + g∗−1) = Q(ζ, τ). (3.70)

Again, we see that the kinetic/nonlinear term in the Langmuir envelope equation is given

in the form ∼ (ω2−1), only in this case the frequency is purely real, but is also a nonlinear

function of the plasma wave amplitude as determined in Sec. 2.2.4.

Langmuir envelope equation in the general, nonlinear, time asymptotic limit

We have shown that a single harmonic potential leads to a time-asymptotic nonlinear

frequency shift of the Langmuir wave, as indicated by (3.70). For the fully nonlinear wave,

one must numerically determine the distribution and potential via the system of equations

(2.21), from which the averaged quantity Q can be determined. While this can be done

in principle, it is complicated by the fact that the various terms comprising Q tend to be

much larger than Q itself, so that very precise numerical calculations must be made at

every step to obtain the appropriate cancelation between terms.
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From previous arguments, we know that in the time asymptotic, fully phase-mixed

limit, the plasma wave is stationary (not damped), and has a nonlinear frequency given

by ωL + δω, where δω is a function of the Langmuir amplitude, resulting from thermal

and trapped particle effects. In the previous section, we showed that this frequency shift

is precisely what appears in the Langmuir envelope equation. Numerical evaluations of

Q indicate that in the general, nonlinear case, Q is similarly given by (3.61), so that the

total contribution to the envelope equation is again the frequency shift δω; as mentioned

earlier, however, it is difficult to obtain this result numerically with high precision. For

these reasons, we take the following form for the Langmuir wave amplitude equation in

the asymptotic, phase-mixed limit:[
∂

∂τ
+ iδω − ugr

∂

∂ζ

]
g1(ζ, τ) = − ic2k2

2

2ωLω2
p

a0(ζ, τ)a∗1(ζ, τ) e
−i(ω2−ωL)τ , (3.71)

where the purely real, nonlinear frequency shift δω is obtained via (2.24) using the phase-

mixed distribution and potential determined by (2.21). We have found that over the wide

range of temperatures and amplitudes investigated here, namely 0.4 ≤ k2λD ≤ 0.1 and

0 ≤ |g1| ≤ 0.5, this frequency shift is approximately given by an analytic expression:

δω ≈ −e
−ω2

L/2σ
2

√
2πσ

1.09
ωL

(
ω2

L
σ2 − 1

)
ω2
L − 1− σ2

√
|g1|+ 40 |g1|+ 7.8

ω2
L

σ4
|g1|2

+ 0.115
(ω2
L − 8σ2)2

σ11
|g1|4

+ 6σ2
(
|g1|2 + 3 |g1|4 − 250 |g1|8

)
.

(3.72)

The expression (3.72) can be roughly considered as consisting of two contributions: the

first, in square brackets, arises from the resonant and near-resonant particles (and thus is

proportional to the number particles near the phase velocity, ∼ e−ω2
L/2σ

2
); the second, in

parentheses, can be thought of as resulting from the fluid nonlinearities, and scales as the

temperature σ2. We reiterate that, while quite complicated, (3.72) is widely applicable,

roughly valid for 0.1 ≤ k2λD ≤ 0.4. If one is only interested in warmer plasmas, simpler

expressions with fewer terms can be fit to δω, but we do not pursue that further here.
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3.2.3 The extended three-wave equations

In this section, we complete the derivation of our model coupling the two laser am-

plitudes to that of the Langmuir wave envelope via an extended three-wave model. To do

this, we must collect various results that are scattered throughout the text. We begin with

the equations governing the lasers (3.33). Replacing the bunching
〈
δn
n0
ei(ω2τ+ζ)

〉
z

with our

Langmuir modes g±1 using the relation (3.44):[
∂

∂τ
− u0

∂

∂ζ
− iωp
ω0

∇2
⊥

]
a0(ζ, τ) = − iωp

4ω0
a1(ζ, τ)

[
g1 + g∗−1

]
ei(ω2−ωL)τ (3.73a)[

∂

∂τ
+ u1

∂

∂ζ
− iωp
ω1

∇2
⊥

]
a1(ζ, τ) = − iωp

4ω1
a0(ζ, τ)

[
g∗1 + g−1

]
e−i(ω2−ωL)τ . (3.73b)

Again, we eliminate the mode g−1 with the slowly-varying approximation (3.51). At this

point, we could introduce the wave actions for the pump laser, seed laser, and Langmuir

wave, along with the wave coupling W

a ≡
√

ω0
ωp
a0, b ≡

√
ω1
ωp
a1,

ρ ≡
√
ωL

iωp√
2ck2

g1 e
ei(ω2−ωL)τ

, W ≡ ck2

2
√

2ω0ω1ωL
,

to write the equations in manifest wave-action form. However, we find that this will

require a change in notation that does unnecessary violence to our attempts at coherency

across the chapters. For this reason, we only make a minor change, by introducing the

phase-shifted Langmuir wave amplitude

G ≡ −ig1ei(ω2−ωL)τ . (3.74)

We use this definition, the laser equations (3.73) with g∗−1 eliminated, and the Langmuir

wave equations (3.60) and (3.71), to obtain the following three coupled-mode equations:[
∂

∂τ
− u0

∂

∂ζ
+ i

c2k2
2 |a1|2

32ωpω0ω2
L

− iωp
ω0

∇2
⊥

]
a0(ζ, τ) =

ωp
4ω0

a1(ζ, τ)G(ζ, τ) (3.75a)[
∂

∂τ
+ u1

∂

∂ζ
+ i

c2k2
2 |a0|2

32ωpω1ω2
L

−− iωp
ω1

∇2
⊥

]
a1(ζ, τ) = − ωp

4ω1
a0(ζ, τ)G∗(ζ, τ) (3.75b)[

∂

∂τ
− ugr

∂

∂ζ
+ i
(
ω − ω2

)
+ ν

]
G(ζ, τ) = − c2k2

2

2ωLω2
p

a0(ζ, τ)a∗1(ζ, τ). (3.75c)
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Here, the frequency ω and damping ν have the initial, linear expression indicated in (3.60),

while asymptotically appear as in (3.71). The question remains how the initial, complex

frequency ωr − iν` of the Landau dispersion relation (3.59) evolves into the nonlinear, real

frequency ωL+ δω associated with the asymptotically phase-mixed distribution. Schemat-

ically, as time progresses we have

ω(t = 0) = ωr → ω(t = ∞) = ωL + δω, ν(t = 0) = ν` → ν(t = ∞) = 0. (3.76)

The dynamics encapsulated within the arrows in (3.76) are complicated, involving orbit

modification, phase-mixing, and trapping of many particles with widely disparate initial

conditions in a changing Langmuir wave. In the simplified case of an initial plasma wave

whose amplitude does not change dramatically before particles phase-mix in the wave,

a dynamic expression for the damping was first calculated by O’Neil in his pioneering

work on nonlinear Landau damping [6], while a similar expression for the frequency shift

was given later by Morales and O’Neil [24]. The latter work indicates that the nonlinear

Landau damping oscillates with a period of order the bounce period while asymptoti-

cally approaching zero, while the frequency shift oscillates (with decreasing amplitude)

at approximately twice the bounce frequency about its asymptotic value. After about

3-5 bounce periods, both the damping and the frequency have attained their respective

asymptotic values. While these results serve to illuminate the process, they do not directly

apply to a driven Langmuir wave. Furthermore, we anticipate that any attempt to gen-

eralize these (already complicated6) expressions would lead to a dramatic increase in the

complexity of the system, which is against the spirit of our reduced description. For this

reason, in the next section we present a simple model describing the process (3.76) based

on energy conservation: the electrostatic energy that is “lost” due to Landau damping is

equal to the kinetic energy gain associated with particle phase-mixing.
6The dynamic damping given in Ref. [6] involves an infinite sum over complicated integrals involving

trigonometric functions whose arguments are elliptic functions. The dynamic frequency shift is not in any
readily accessible source, although [24] indicates that it involves multiple sums over similar integrals.
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3.3 Phase-mixing as a means to formulate a simplified model

of nonlinear Landau damping

Our model owes much to the asymptotic result obtained by O’Neil in his landmark

paper on nonlinear Landau damping [6]. After first deriving the evolution of the Langmuir

wave in the regime where the damping is much smaller than the bounce period (so that

the wave amplitude changes little before Landau damping has been “washed out”), Ref. [6]

proceeds to show that the loss in electrostatic energy from Landau damping is equal to

the increase in kinetic energy of the particles. This is a simple consequence of energy

conservation and illuminates the “irreversible” nature of Landau damping, since in essence

it states that the originally “coherent” electrostatic energy of the plasma wave is converted

to the “incoherent” kinetic energy of the phase-mixed distribution. It must be stressed

that because the Vlasov equation conserves the plasma entropy, this notion of phase-

mixed, incoherent energy is only viable in a course-grained sense; nevertheless, in Ref. [6]

O’Neil showed that because nearby particles have different frequencies in the wave, the

phase-space area over which one must course-grain goes to zero as t → ∞. Thus, in the

long-time limit any macroscopic measure of the entropy increases, and one has a consistent

notion of this transfer from coherent to incoherent energy in the plasma wave7.

Although the basic physics (energy conservation in nonlinear Landau damping) of

our model is quite similar to O’Neil’s, our analysis also has much in common with the

work of Dewar [10], who adopted the ideas of particle trapping and subsequent phase-

mixing to serve as a nonlinear saturation mechanism of plasma instabilities. In particular,

Dewar used momentum conservation to equate the increase in wave momentum of the

growing, unstable mode to that of the trapped particles, thereby obtaining an expression

for the saturated electrostatic potential. To determine the trapped particle momentum
7Note that these arguments are adopted from the general ideas underlying “irreversibility” in many-

degree-of-freedom Hamiltonian systems. Although the dynamics of each particle may be time-reversible,
macroscopic averages of these particles typically do not respect this symmetry (i.e., for many initial condi-
tions there is one final state) and time has a “natural” direction.
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and saturated Langmuir wave amplitude, Dewar used the distribution function assuming a

constant particle action that he introduced in [25]. We will find that our theory reproduces

his analytic result in the small amplitude limit, much like was found Sec. 2.3. For larger

amplitude potentials, however, our asymptotic phase-mixed distribution described in Ch. 2

results in a mean shift in canonical action, and the two theories give quite different answers

(see Fig. 2.7).

In this section, we calculate the phase-mixed (i.e., incoherent) energy required to

develop the invariant-in-action-difference distribution introduced in Ch. 2. Since we assume

that the source of this energy is the electrostatic wave, we thereby obtain the total amount

of energy to be lost by (nonlinear) Landau damping as a function of the wave amplitude

φ1. We will then use this in Sec. 3.4 to formulate an extended three-wave model of Raman

backscatter in a plasma.

3.3.1 The Langmuir wave action and associated incoherent energy

In this section, we derive two equations for the Langmuir wave action (i.e., plasmon

number in quantum mechanical language): the first from the envelope equation of the

Langmuir wave (3.75c), and the second directly from the Vlasov equation. Equating the

resulting expressions leads to energy conservation: associated with the loss of coherent

Langmuir wave energy due to the nonlinear damping coefficient ν(φ1, t) is an equal increase

in phase-mixed (incoherent) kinetic energy of the particles. We begin with the Langmuir

wave equation (3.75c):[
∂

∂τ
− ugr

∂

∂ζ
+ i
(
ω − ω2

)
+ ν

]
G = − c2k2

2

2ωLω2
p

a0a
∗
1. (3.77)

Multiplying (3.77) by ω2
LG∗ and adding to the resulting equation its complex conjugate,

we have [
∂

∂τ
− ugr + 2ν(|G| , τ)

](
ω2
L |G|

2
)

= −ωL
c2k2

2

2ω2
p

(
a∗0a1G + a0a

∗
1G∗
)
. (3.78)

Since the wave energy is given by the product of the wave action (or quanta) ωL|G|2 with

its associated excitation energy ωL, (3.78) describes how the wave energy evolves in time.
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The second term on the left-hand side changes the local wave energy via advection in

space, while the third term decreases the energy through a (possibly nonlinear) Landau-

type damping; the right-hand side affects the Langmuir energy by coupling it to the lasers.

This can be interpreted as inverse Joule heating via JPMEz, where JPM is an effective pon-

deromotive (longitudinal) current. To eliminate the driving term in favor of an expression

involving only the Langmuir wave amplitude, we multiply the Vlasov equation (3.34) by

u2:
∂

∂τ

(
fu2

)
+

∂

∂ζ

(
fu3

)
+

∂

∂u

(
du

dτ
u2f

)
− 2

du

dτ
uf = 0. (3.79)

We integrate (3.79) over all u and over a single wavelength in ζ, assuming that the energy

flux is small, consistent with our assumptions that the plasma is slowly-varying on the

laser beat scale. Using the expression (3.35) to replace the acceleration in favor of the

electrostatic and ponderomotive forces, we obtain

1
2
∂

∂τ

∫
dζdu fu2 +

1
2
∂

∂ζ

∫
dζdu fu3 =

∫
dζdu fu

∂φ

∂ζ
− c2k2

2

2ω2
p

∫
dζdu fu

∂a2
⊥

∂ζ
. (3.80)

We now simplify the right-hand side of (3.80). First, we use the longitudinal compo-

nent of the Ampère-Maxwell law (2.22) to relate the longitudinal current to the potential:∫
dζ

∂φ

∂ζ

∫
du fu = −

∫
dζ

∂φ

∂ζ

∂2φ

∂ζ∂τ
= −1

2
∂

∂τ

∫
dζ

(
∂φ

∂ζ

)2

≈ −1
4
|G|2 − 1

4

∞∑
n=2

n2 |φn|2 (3.81)

Next, we integrate by parts the term involving the ponderomotive force on the right-hand

side of (3.80), and use the continuity equation (3.37) to obtain∫
dζ

∂a2
⊥

∂ζ

∫
du fu = −

∫
dζ a2

⊥
∂

∂ζ

∫
du fu =

∫
dζ a2

⊥
∂

∂τ

∫
du f. (3.82)

Finally, we replace the time derivative of the density with our electrostatic modes using

(3.40), the Fourier expansion (3.42) and the definition (3.74). We then insert the pon-

deromotive laser drive a2
⊥ from (3.18) and neglect those terms that vary on the fast time
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scales; the dominant result is given by

c2k2
2

2ω2
p

∫
dζ a2

⊥
∂

∂τ

∫
du f ≈ −iωL

c2k2
2

2ω2
p

a∗0a1

∫
dζ ei(ω2τ+ζ)

(
g − g∗

)
− c.c.

≈ −ωL
c2k2

2

2ω2
p

(
a∗0a1G + a0a

∗
1G∗
)
. (3.83)

Collecting the expressions (3.81) and (3.83) in the second moment equation (3.80), we

obtain

∂

∂τ

{
1
2
〈
u2
〉
PS +

1
4
|G|2 +

∞∑
n=2

n2

4
|φn|2

}
+

1
2
∂

∂ζ

〈
u3
〉
PS = ωL

c2k2
2

4ω2
p

(
a∗0a1G+a0a

∗
1G∗
)
. (3.84)

This is another expression for the change in the energy of the Langmuir wave. In this case,

the sum of the kinetic and electrostatic energy in the plasma can be either advected via

the last term on the left-hand side of (3.84) or changed by the inverse Joule heating on

the right-hand side. Comparing (3.84) to the previous result involving the Langmuir wave

energy (3.78), we can eliminate the coupling to the ponderomotive drive, obtaining

∂

∂τ

{
1
2
〈
u2
〉
PS −

1
2
(
ω2
L − 1

2

)
|G|2 +

∞∑
n=2

n2

4
|φn|2

}
= ν ω2

L |G|
2 . (3.85)

Integrating in time, and assuming that initially G = φn = 0 and
〈
u2
〉
PS = σ2, we find that

the integrated damped energy is given by the following relation

ω2
L

τ∫
0

dτ ′ ν(τ ′) |G|2 =
1
2

[ 〈
u2
〉
PS − σ2

]
︸ ︷︷ ︸

(1)

+
1
4

[
|G|2 +

∞∑
n=2

n2 |φn|2
]

︸ ︷︷ ︸
(2)

− 1
2
ω2
L |G|

2

︸ ︷︷ ︸
(3)

. (3.86)

We interpret the damped energy (3.86) as the incoherent energy associated with particle

phase-mixing in the (nearly) sinusoidal potential. To be more explicit, we divide up the

right-hand side into three parts: (1) is the change in kinetic energy of the particles; (2)

consists of the total electrostatic energy; while (3) represents the wave energy. Thus, the

incoherent, phase-mixed energy is given by the difference between the total [kinetic (1)

plus potential (2)] and the wave energy (3). The latter wave energy can be understood

as the coherent energy (in the form of the resonant Langmuir wave) of both the particles

and potential. In the cold, linear limit, the scaled frequency ωL → 1, and (3.86) indicates
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that the wave energy is equal to twice the electrostatic energy. Furthermore, in this limit

the electrostatic and kinetic energies are equal, so that their sum is precisely that given

by the wave energy 1
2ω

2
L |G|

2 (in agreement with standard results, see, e.g., Nicholson [82,

Sec. 6.6]).

The right-hand side of (3.86) can be evaluated for a given potential φ1 = |G| using

the asymptotic, action ansatz distribution. We will find that this damped/phase-mixed

energy, to lowest order, behaves as ∼ ν` |G|3/2, where ν` is the linear Landau damping

exponent. This implies that the damping coefficient is approximately that given by linear

Landau damping for a time on the order of the bounce period in the wave, τB = 1/
√
φ1.

For times beyond the bounce period, particles have nearly completed an oscillation in the

wave, and the damping has “phase-mixed away”. This is precisely the effect that O’Neil

discussed in [6], and we will show that our result for the right-hand side of (3.86) is similar

to his asymptotic result for small amplitude waves. This saturation of Landau damping is

also closely related to the saturation of plasma instabilities by particle trapping as studied

by Dewar [10]. In fact, we obtain an identical expression for the saturated wave amplitude

as that found by Dewar in the small amplitude limit φ2
1 � σ2, only in our case the linear

instability growth rate of [10] is replaced by the Landau damping rate. However, our

analysis extends the saturation energy beyond this small amplitude regime, and it may be

applicable to the nonlinear saturation of other plasma instabilities.

3.3.2 Small amplitude damped energy

In this section, we calculate the integrated, phase-mixed energy in the small amplitude

limit. In this case, the higher harmonics are neglegible, i.e., φn = 0 for n ≥ 2, so that

we again assume that the particles move in a pendulum-like potential. As previously

mentioned, we find the right-hand side of (3.86) to be ∼ φ3/2 = |G|3/2, so that its small

amplitude limit can be derived via

lim
φ1→0

ω2
L

φ
3/2
1

∞∫
−∞

dτ ν(τ)φ1(τ)2 = lim
φ1→0

〈
u2
〉
PS − σ2

2φ3/2
1

.
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We concentrate on the calculation of the numerator, keeping only those terms ∼ φ
3/2
1 . In

coordinates co-moving at the phase velocity of the wave, the average of the kinetic energy

in terms of the canonical coordinates (2.6) is given by

〈
u2
〉
PS =

〈
(p− ωL)2

〉
PS =

〈(
dθ
dτ

)2〉
PS
−
(
ωL + δω

)2
. (3.87)

In terms of integrals over the invariant-in-action distribution (in the pendulum limit), the

average in (3.87) becomes

〈(
dθ
dτ

)2〉
PS

=

∞∫
1

dκ [fI(κ) + fIII(κ)]
4κ2φ1

K (1/κ)

K (1/κ)∫
0

dx dn2(1/κ, x)

+

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
] 4κ2φ1

K (κ)

K (κ)∫
0

dy cn2(κ, y)

(3.88)

= 4φ1

∞∫
1

dκ [fI(κ) + fIII(κ)]
κ2 E (1/κ)
K (1/κ)

+ 4φ1

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
] E (κ) + (κ2 − 1) K (κ)

K (κ)
,

(3.89)

where the small amplitude distributions fs are given by (2.37), and the integration over τ

was performed, as in (2.40), using Gradshteyn and Ryzhik [53, pp 630]. We simplify the

integrals of the first line in (3.89) by integrating by parts, obtaining

∞∫
1

dκ [fI(κ) + fIII(κ)]
4φ1κ

2 E (1/κ)
K (1/κ)

= Ī
∞∫
1

dκ [fI(κ)− fIII(κ)]
πκ
√
φ1

K (1/κ)

+

∞∫
1

dκ [fI(κ) + fIII(κ)]
σ2π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)3

≡ Ī
(
ωL + δω

)
+

∞∫
1

dκ [fI(κ) + fIII(κ)]
σ2π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)3
. (3.90)
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Combing the expressions (3.89) and (3.90) with the average of the kinetic energy (3.87),

we find that in the small amplitude limit the total change in kinetic energy is given by

〈
u2
〉
PS − σ2 =

(
ωL + δω

)[
Ī −

(
ωL + δω

)]
+ σ2

∞∫
1

dκ
[fI(κ) + fIII(κ)]π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)3
− σ2

+ 4φ1

1∫
0

dκ
[
f−II (κ) + f+

II (κ)
] E (κ) + (κ2 − 1) K (κ)

K (κ)
.

(3.91)

We have already calculated the small amplitude expression for the first line (3.91), which

is the difference between the frequency shifted average action and the frequency, namely,

the change in the average action J̄ ; the expression is given in Sec. 2.3 by (2.60), in which

we see that J̄ ∼ φ
3/2
1 . Since the frequency shift δω ∼

√
φ1, it is of higher order in φ1, and

the first line of (3.91) is given by

(
ωL + δω

)[
Ī −

(
ωL + δω

)]
≈ ωL

(
Ī − ωL

)
≈ 64

9π
ω2
L

σ2

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1 . (3.92)

Next, we calculate the two terms proportional to σ2 from the second line in (3.91). From

our normalization of the distribution function we have σ2 =
〈
σ2
〉
PS , so that the terms

proportional to σ2 can be written as

σ2

∞∫
1

dκ

[
π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)3
− 1
]
[fI(κ) + fIII(κ)]− σ2

1∫
0

dκ
[
f−II (κ) + f−II (κ)

]
.

Again, these integrals vanish in the limit φ1 → 0; to find the small amplitude approximation

we Taylor expand the distributions:

σe−ω
2
L/2σ

2

√
2π

∞∫
1

dκ

[
π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)2
−K (1/κ)

]

×

[
8
√
φ1

π
+

64φ3/2
1

π3σ2

(
ω2

L
σ2 − 1

)
κ2 E (1/κ)2

]

− σe−ω
2
L/2σ

2

√
2π

1∫
0

dκ κK (κ)

{
8
√
φ1

π
+

64φ3/2
1

π3σ2

(
ω2

L
σ2 − 1

)[
E (κ) + (κ2 − 1) K (κ)

]2}
.

(3.93)
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The terms ∼
√
φ1 in (3.93) can be shown to cancel:

∞∫
1

dκ

[
π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)2
−K (1/κ)

]
−

1∫
0

dκ κK (κ)

=
[

π2κ

4 K (1/κ)
− κE (1/κ)

]∞
κ=1

−
[
E (κ) + (κ2 − 1) K (κ)

]1
κ=0

= 0,

while the terms ∼ φ
3/2
1 in (3.93) can be integrated analytically. For the integral such that

1 ≤ κ <∞, we integrate by parts, so that the piece ∼φ3/2
1 is given by

∞∫
1

dκ

[
π2κ2 E (1/κ)
4(κ2 − 1)

−K (1/κ)3
]
κ2 E (1/κ)2

K (1/κ)2

=
κ3

4

[
π2 E (1/κ)2

4 K (1/κ)
− E (1/κ)3

]∞
κ=1

−
∞∫
1

dκ
κ2

2

[
π2

4
E (1/κ)−K (1/κ) E (1/κ)2

]

= 1− 2
3

{
π2κ

12
[
(4κ2 − 2) E (1/κ)− (κ2 − 1) K (1/κ)

]
− κ3 E (1/κ)3

}∞
κ=1

=
1
3

+
π2

9
. (3.94)

Integration of the second term proportion to φ3/2
1 (for which 0 ≤ κ ≤ 1) yields

1∫
0

dκ κK (κ)
[
E (κ) + (κ2 − 1) K (κ)

]2 =
1
3
[
E (κ) + (κ2 − 1) K (κ)

]3 ∣∣∣1
κ=0

=
1
3
. (3.95)

Taking the difference of (3.95) from (3.94), we find that (3.93) [i.e., the second line of

(3.91)] is

σ2

∞∫
1

dκ
π2κ2 E (1/κ)

4(κ2 − 1) K (1/κ)3
[fI(κ) + fIII(κ)]− σ2 ≈ 64

9π
e−ω

2
L/2σ

2

σ
√

2π

(
ω2
L

σ2
− 1
)
φ

3/2
1 . (3.96)

Finally, we calculate the last integral of (3.91), which is the contribution of the trapped

particles to the damped energy. Taylor expanding fII to lowest order, the last term in

(3.91) gives the contribution

32
π

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1

1∫
0

dκ κ
[
E (κ) + (κ2 − 1) K (κ)

]
=

32
π

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1

{
1
9

[
(4κ2 − 2) E (1/κ) + (3κ4 − 5κ2 + 2) K (1/κ)

]}1

κ=0

=
64
9π

e−ω
2
L/2σ

2

σ
√

2π
φ

3/2
1 . (3.97)
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Combining (3.92), (3.96), and (3.97), we find that

1
2
[〈
u2
〉
PS − σ2

]
=
π

2
ω2
L

σ2

e−ω
2
L/2σ

2

σ
√

2π
128
9π2

φ
3/2
1 ≡ ν`

128
9π2

φ
3/2
1 . (3.98)

The physical interpretation of (3.98) is clear: the increase in the particle kinetic energy

is that dissipated by Landau damping (parametrized by the coefficient ν`) over a time of

order the bounce period 1/
√
φ1. As previously mentioned, this expression is similar to

that derived by O’Neil [6] for the initial value problem; his O(1) coefficient (Eq. 34 in

[6]) can be numerically integrated to approximately yield 1.96, which is 40% larger than

our value 128
9π2 ≈ 1.44. Furthermore, our expression (3.98) can be obtained from Dewar’s

[10] equation for the momentum of the trapped particles due to the saturation of an

instability. Multiplying Eq. 10 from Ref. [10] by the characteristic energy of the trapped

particles moving at the phase velocity of the wave, 1
2ω

2
L, we obtain (3.98), with Dewar’s

linear instability growth rate γ replaced by the linear Landau damping coefficient ν`.

3.3.3 The fully nonlinear damped energy and maximal damping rate

While the expression for the damped energy (3.98) is attractive both because it is

analytic and because it has a clear, physical interpretation, it will fail to be an accurate

expression for the phase-mixed energy when the amplitude of the potential becomes suffi-

ciently large. In this case, we again must resort to the fully nonlinear realizations of the

distribution function and electrostatic potential, from which we then calculate the average

of the kinetic energy. To obtain the invariant-in-action-difference distribution of Ch. 2 and

the corresponding potential, we solve the system of equations [from (2.21)]

Īj+1 = Īj −
ε
(
Īj ;φj

)
∂
∂Īj ε

(
Īj ;φj

) , (3.99a)

φj+1
n = − 2

n2

〈
cos(nθ)

〉
PS . (3.99b)



Section 3.3. Phase-mixing and nonlinear Landau damping 78

For the distribution obtained using (3.99), we determine the phase-mixed, incoherent (i.e.,

Landau damped) energy [from (3.86), with |G| = φ1]:

ω2
L

τ∫
0

dτ ′ ν(τ ′) |G|2 =
1
2

[ 〈
u2
〉
PS − σ2

]
−
ω2
L

2
φ2

1 +
1
4

∞∑
n=1

n2φ2
n ≡ Uincoh. (3.100)

While we have obtained a fully nonlinear expression for the phase-mixed energy inher-

ent in the asymptotic distribution function, we have yet to relate this to an instantaneous

damping coefficient. As a first step, we consider the maximal damping rate associated with

a plasma wave whose asymptotic, phase-mixed energy is Uincoh. We proceed by analogy

with the small amplitude case, in which we interpreted this energy to be proportional to

the electrostatic energy ∼ φ2
1 damped over a bounce period ∼ 1/

√
φ1, so that the behavior

of the Landau damped energy (3.100) is given by

ω2
L

τ∫
0

dτ ′ ν(τ ′) |G|2 ∼
1/
√
φ1∫

0

dτ νmaxφ
2
1 ∼ νmax(φ1)φ

3/2
1 ∼ Uincoh. (3.101)

Thus, we see that the maximal damping of the plasma wave is proportional to Uincoh/φ
3/2
1 .

In the small amplitude limit, the maximal damping νmax should reproduce linear Landau

damping. Inspection of the small amplitude result for the incoherent energy (3.98) implies

that this matching is satisfied by taking

νmax(φ1) =
Uincoh

128
9π2φ

3/2
1

.

By numerically solving for the average action and nonlinear potential (3.99), and then

using the resulting distribution to calculate the incoherent energy (3.100), we can obtain

curves for the maximal damping as a function of the potential amplitude for different

temperatures. We have fit these curves to the following approximate analytic expression

Uincoh(φ1) ≈
128
9π2

ν` φ
3/2
1

(
1 + 1.3

σ2 φ1

)
+ 2.45σ2φ

5/2
1 (1 + 59φ2

1), (3.102a)

νmax(φ1) ≈ ν`
(
1 + 1.3

σ2 φ1

)
+ 1.7σ2φ1(1 + 59φ2

1). (3.102b)

These equations have been found to fit the numerically determined averages to within

a few percent for the range of temperatures 0.1 ≤ k2λD ≤ 0.4 and wave amplitudes
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Figure 3.1: Maximal nonlinear damping νmax ≡ Uincoh/φ
3/2
1 as a function of the electro-

static potential for three different temperatures. For vanishing φ1 the lines asymptote to
the linear Landau damping rate ν`, as marked on the figure for σ = 0.4 and σ = 0.3. As
the wave grows, so does the damping rate; for the relatively cold plasma with kλD = 0.2
it can increase by several orders of magnitude.

0 ≤ φ1 . 0.5. From the formula (3.102b) we see that if the electrostatic potential is much

less than the thermal energy of the plasma, φ1 � σ2, then the damping decrement is close

to the linear Landau level ν`. When the electrostatic potential is larger than the thermal

spread, however, there is a significant increase in the damped energy over the lowest-order

expression (3.98), suggesting that the effective damping rate is an increasing function of

the electrostatic potential. This phenomenon has a straightforward explanation: as the

Langmuir wave grows, it resonantly interacts with a larger number of electrons from the

plasma bulk, nearly all of which (in an initially Maxwellian plasma) will be accelerated

and take energy from the wave. Consequently, the corresponding electrostatic damping is

more rapid than that obtained in the linear limit, a result that qualitatively agrees with

the calculation of Sugihara et al. [83] (although the specifics are quite distinct). We will

provide further comparison to their findings at the end of this section.

To explicitly show this effect, we plot the maximum Langmuir wave damping νmax

as a function of the wave amplitude for three different temperatures in Fig. 3.1. For a
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vanishingly small value of φ1, we see that the damping asymptotes to the Landau damping

value ν` for the given temperature. As the plasma wave amplitude grows, the phase-

mixed, asymptotic energy required to sustain the invariant-in-action-difference distribution

increases, and the corresponding damping of the plasma wave also increases. For warm

plasmas with kλD = 0.4, the initial linear Landau levels are rather large, and Fig. 3.1

indicates that the maximal plasma damping increases by an factor of order one. For cold

plasmas with kλD = 0.2, the initial linear damping ν` ≈ 6 × 10−5, but can increase by

several orders-of-magnitude as the plasma wave grows to φ1 ∼ 0.3.

For these large amplitude plasma waves, the incoherent energy is of the same order as

the kinetic energy of all trapped particles moving at the phase velocity of the wave. Thus,

this additional nonlinear Landau-type damping can be thought of as associated with the

transfer of coherent wave energy to that of the trapped particles moving at the phase

velocity of the large amplitude wave. Note that while it may be a useful interpretation of

the nonlinear damping for high-amplitude waves, this correspondence fails for small φ1, in

which the trapped particle fraction is given by

Is∫
−Is

dI 1
σ
√

2π
e−(I−ωL)2/2σ2

=
1
2

{
erf
[

1√
2σ

(
4
√
φ1

π − ωL

)]
+ erf

[
1√
2σ

(
4
√
φ1

π + ωL

)]}

≈ 8
π

e−ω
2
L/2σ

2

σ
√

2π

√
φ1 + . . . (3.103)

so that the energy associated with the trapped particles appears to scale ∼
√
φ1. Since

we have explicitly shown that the total energy of phase-mixing ∼ φ
3/2
1 for φ1 � σ2, there

must be additional contributions to the phase-mixed energy due to near-resonant particles

that cannot, in general, be neglected. Furthermore, even in the large amplitude limit we

do not claim that the incoherent energy is equal to the product of the trapped particle

fraction and their kinetic energy ∼ 1
2ω

2
L, but rather that this is the dominant contribution

as the Langmuir wave becomes quite large, i.e., in the limit φ1 � σ2.

Finally, we note that our result for the maximal damping (3.102b) is rather different

from the expressions of Sugihara et al. [83], who perturbatively calculated the corrections to
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the linear damping rate assuming an initially prescribed, large amplitude Langmuir wave.

In this analysis, Ref. [83] found the large-amplitude corrections to the damping became

super-exponential for large amplitude waves, such that the wave amplitude decreased ∼

e−t
2

and ∼ e−t
4
. However, since phase-mixing happens rapidly in such large amplitude

waves, the expressions of [83] are only valid over some short time scale characterized by

the bounce period 1/
√
φ1, at which time the damping becomes negligible. In a similar way,

(3.102b) is to be understood as approximating the maximal damping coefficient, which,

as time progresses, decreases from (3.102b) to zero in such a way that the total damped

energy is given by (3.102a) over a time ∼ 1/
√
φ1. For either driven or large amplitude

waves, we find that it is this dynamical decrease in damping that is the dominant physics,

so that the quantitative discrepancies between (3.102b) and the expression of [83] are

largely irrelevant. In the following section, we will present a simple model that, while

not computing the true dynamics, nevertheless yields the correct physics involved in this

complicated process.

3.4 The extended three-wave model of Raman backscatter

in a plasma

In the previous sections of this chapter, we derived various components of an extended

three-wave model relevant to Raman backscatter in a plasma. By averaging the transverse

Ampère-Maxwell equation, we first derived equations for the counter-propagating laser

amplitudes, coupled via the bunching parameter of the plasma wave. Since the bunching

parameter is closely related to the natural modes of the Langmuir wave, we then turned to

the Vlasov equation, from which governing equations for the natural modes can be derived.

These equations in turn involve higher moments of the distribution, and hence do not form

a closed set of equations. In two limits, however, a natural closure is available: initially,

the higher order terms can be equated to the natural frequency and damping given by the

linear Langmuir dispersion relation along the Landau contour; in the time-asymptotic limit
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these terms can be written as the frequency shift associated with the BGK-type nonlinear

distribution function of Ch. 2.

In this section, we develop a technique for making the transition from the initial to

asymptotic limits of the envelope equation by using the incoherent energy (3.102a) associ-

ated with the phase-mixed distribution. By comparing this energy to that damped by the

envelope equations, we have a means of estimating the degree to which the distribution

has phase-mixed as a function of time. As the distribution becomes more phase-mixed,

we smoothly take the (real) frequency from ωr to ωL + δω, while also taking the nonlinear

damping from νmax(φ1) to zero. Although our choice for this transition is rather ad hoc, we

have found that the envelope equation is not strongly dependent on its precise functional

form. The model thus obtained, while heuristic, is well-grounded in physical principles, effi-

cient to implement numerically, and agrees well with single-wavelength Vlasov simulations

using a non-evolving laser drive. We will show such comparisons in the next chapter.

3.4.1 Dynamic damping and frequency of the Langmuir wave

In the previous section we saw how the damped and phase-mixed energy are related,

and obtained the total incoherent energy required to develop the asymptotic, phase-mixed

distribution. As this phase-mixing progresses, the maximal (Landau-type) plasma wave

damping coefficient (3.102b) should smoothly asymptote to zero as the total damped/phase-

mixed energy approaches (3.102a). At the same time, particle trapping and other kinetic

effects will cause the natural frequency of the wave to decrease from its linear value ωr

to the nonlinear, BGK-type frequency ωL + δω. Since these effects result from the degree

to which the distribution is phase-mixed, we will take them to be a function of the ratio

of the total energy damped by the (nonlinear) Landau damping to the total incoherent
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energy required to yield the asymptotic distribution:

ν(φ1,Λ) = Υν(Λ)νmax(φ1) (3.104a)

ω(φ1,Λ) = Υω(Λ)ωr +
[
1−Υω(Λ)

][
ωL + δω(φ1)

]
(3.104b)

where Λ ≡
Udamp(φ1, τ)
Uincoh(φ1)

; Υν(0) = Υω(0) = 1; Υν(1) = Υω(1) = 0. (3.104c)

Note that the damping νmax, frequencies ωr and ωL + δω, and incoherent, phase-mixed

energy Uincoh have analytic expressions in the text, while the damped energy Udamp is a

single number easily obtained from the numerical implementation. Thus, we have only to

determine the functions Υν and Υω, both of which are a measure of the degree to which the

distribution function has phase-mixed. Since the argument of these functions is the ratio of

the damped to incoherent energy, we have 0 ≤ Λ ≤ 1. At the two extremes, Λ = 0 indicates

no phase-mixing, while Λ = 1 represents a perfectly phase-mixed, asymptotic distribution.

Beyond these limits, our discussion thus far provides no particular guidance regarding the

precise functional form. We found that the resulting model is rather independent of the

exact form for Υ, provided only that it smoothly and monotonically satisfies (3.104c); for

simplicity, we choose

Υν(Λ) = Υν(Λ) = Υ(Λ) = 1
2

{
1− tanh

[
7 (Λ− 0.5)

]}
. (3.105)

The numerical coefficients were chosen such that the appropriate Λ → 0 and Λ → 0 limits

are satisfied; we note that making the replacement 7 → 8 or 0.5 → 0.4 has little discernable

effect on the Langmuir wave evolution.

We now have a closed set of envelope equations for Raman scatter in a plasma including

some thermal and kinetic corrections to the Langmuir wave evolution. Collecting the

coupled-mode equations (3.75), the nonlinear frequency shift (3.72) and damping (3.102b),

and the phase-mixed energy (3.102a) and interpolating function (3.105), we write the
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complete extended three-wave model here:[
∂

∂τ
− u0

∂

∂ζ
+ i

c2k2
2 |a1|2

32ωpω0ω2
L

− iωp
ω0

∇2
⊥

]
a0(ζ, τ) =

ωp
4ω0

a1(ζ, τ)G(ζ, τ), (3.106a)[
∂

∂τ
+ u1

∂

∂ζ
+ i

c2k2
2 |a0|2

32ωpω1ω2
L

− iωp
ω1

∇2
⊥

]
a1(ζ, τ) = − ωp

4ω1
a0(ζ, τ)G∗(ζ, τ), (3.106b)[

∂

∂τ
− ugr

∂

∂ζ
+ i
(
ω − ω2

)
+ ν

]
G(ζ, τ) = − c2k2

2

2ωLω2
p

a0(ζ, τ)a∗1(ζ, τ), (3.106c)

where, for |G| ≡ φ1, we have

ν(φ1,Λ) = Υ(Λ)νmax(φ1), (3.107a)

ω(φ1,Λ) = Υ(Λ)ωr +
[
1−Υ(Λ)

][
ωL + δω(φ1)

]
, (3.107b)

Λ(φ1, τ) ≡
Udamp

Uincoh
=

Udamp(τ)
128
9π2 νmaxφ

3/2
1

, (3.107c)

and

νmax = ν`
(
1 + 1.3

σ2 φ1

)
+ 1.7σ2φ1(1 + 59φ2

1), (3.108a)

δω = −e
−ω2

L/2σ
2

√
2πσ

1.09
ωL

(
ω2

L
σ2 − 1

)
ω2
L − 1− σ2

√
φ1 + 40φ1 + 7.8

ω2
L

σ4
φ2

1

+ 0.115
(ω2
L − 8σ2)2

σ11
φ4

1

+ 6σ2
(
φ2

1 + 3φ4
1 − 250φ8

1

)
.

(3.108b)

In the model above, the (real) frequencies ωr and ωL are given by the Landau and Vlasov

dispersion relations, (3.59) and (2.53) respectively, ν` is the damping decrement given by

(3.59), and the total damped energy Udamp is tracked during the numerical integration.

Our set of equations bears some resemblance to that by Divol et al. [36] and that of

Vu, DuBois, and Bezzerides [37]. Both of these models consider the competition between

trapping (which tends to decrease Landau damping while yielding a nonlinear frequency

shift) and collisions (which will tend to de-trap particles and return the plasma to a

Maxwellian). Although their exact calculations are rather different, both [36] and [37]

rely on the smallness of the electrostatic amplitude, and use the physical intuition given

by Zakharov and Karpman [84] and O’Neil [6] to obtain thresholds for when to eliminate
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Landau damping, and when to use a frequency shift that is chosen to match, within

factors of O(1), that of Morales and O’Neil [24]. As we have seen, the model we have

deriven is qualitatively similar, but obtained with a consistent and uniform set of equations

and assumptions, and is applicable to larger amplitude Langmuir waves. For problems

involving longer time-scales, however, our analysis will need to be generalized to include

the collisional relaxation of the plasma. We leave this to future research.
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Chapter 4

Modeling thermal effects in

Raman backscatter

In Chapter 2, we developed a simplified distribution function to describe thermal, one-

dimensional electron plasmas that are weakly-driven on or near resonance. We found that

the distribution was invariant in canonical action for the trapped particles, while invariant

in the difference J − J̄ for the untrapped distribution, where J̄ is the slowly-evolving

mean determined via self-consistency with the Poisson equation. From this distribution,

we extracted a nonlinear frequency shift of the Langmuir wave due to thermal and kinetic

effects, which agreed quite well with particle simulations for 0.1 ≤ kλD ≤ 0.4.

We then developed a simplified model of Raman backscatter in a plasma in Chapter 3,

deriving three coupled-mode equations for the pump, seed, and Langmuir wave envelope,

under the assumptions that these envelopes varied over spatial scales much longer than the

wavelength of the laser beat (∼ 1/k2) and over time scales much greater than that given

by the plasma frequency, (1/ωp). As is characteristic of any set of moment equations,

however, the equation for the plasma response included higher-order velocity moments of

the distribution function; in order to close these equations, we derived two limits of these

higher-moment terms, one valid for a linear initial value problem and the other valid in the
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time-asymptotic limit. In the former, the plasma wave is described by a natural, complex

frequency given by the Landau dispersion relation, while in the latter limit the damping

vanishes and the natural frequency is given by the real, nonlinear value obtained in Ch. 2.

To interpolate between these two extremes, we introduced the idea of the phase-mixed

energy required for the time-asymptotic limit, and argued that as the damped energy

approaches the phase-mixed energy, the damping smoothly goes to zero while the real part

of the frequency is smoothly decreased from its linear value to the nonlinear level.

In this Chapter, we compare the Langmuir wave evolution as predicted by this re-

duced envelope model to that obtained via Vlasov simulations. Because some of these

comparisons involve effects that are strongly dependent on the tails of the distribution

(most notably, the nonlinear Landau damping of very weakly-driven plasmas), we devel-

oped an Eulerian Vlasov solver to complement the particle code discussed in Sec. 2.4. We

continue this Chapter with Sec. 4.1, in which we discuss some basic aspects of this Vlasov

code, and then show, as an example, results obtained for the nonlinear Landau damping

of an initially prescribed plasma wave. We proceed in Sec. 4.2 to compare the results of

this code to those predicted by the extended three-wave model of Ch. 3. In Sec. 4.2.1,

we compare results for Langmuir wave evolution in a strongly damped plasma, for which

linear theory predicts a steady state plasma wave amplitude given roughly by the ratio

of the drive to damping, whereas our model and the Vlasov code indicate an increase in

the plasma wave levels due to particle phase-mixing. We then address the regime of more

strongly-driven thermal plasmas in Sec. 4.2.2, for which our model predicts saturation of

Raman scattering through the nonlinear frequency shift due to resonant particle effects.

Having verified our model of the Langmuir wave response in the case of a prescribed, ex-

ternal ponderomotive drive, we then turn to the full three-wave model, in which feedback

and, hence, laser amplification and depletion are possible. Finally, we conclude with some

preliminary discussions concerning the use of this code as a simulation tool for modeling

an ongoing experiment of the plasma-based Raman amplifier at Princeton University.
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4.1 An Eulerian Vlasov code for Raman scatter in a plasma

To complement the particle code previously discussed, we developed a single-wavelength,

one-dimensional Vlasov-Poisson solver with external forcing. To solve the Vlasov equation

∂fe
∂t

+ v
∂fe
∂z

+
Fz
me

∂fe
∂v

= 0, (4.1)

we use the standard Cheng-Knorr algorithm [85] for advecting the incompressible phase-

space “fluid” on an Eulerian grid. This operator splitting scheme divides the integration

along the characteristics (which are the single particle orbits) for any time step into three

pieces as shown schematically in Fig. 4.1. The first part (a) entails an advection for a

half-step in v by an amount Fz
me

∆t
2 , followed by advecting fe in z by an amount v∆t in (b),

and concluding in (c) with a final half time step in v. Note that during the simulation,

substeps (c) from one step and (a) from the next can usually be grouped together into one

step in v by an amount Fz
me

∆t. The value of the updated distribution function for each step

is determined by looking “back in time” along the characteristic, as indicated by the blue

arrows in Fig. 4.1. In general, these updates require the value of the distribution function

that is between the Eulerian grid points, so that we must interpolate fe from the grid; we

do this by fitting fe with (1D) cubic splines along either v for the substeps (a) and (c) or

z for step (b).

To solve for the self-consistent electrostatic fields, we use the longitudinal ẑ component

of the Ampère-Maxwell law, given by

∂Ez
∂t

= −4π
c
Jz =

4πe
c

∫
dv fe(v, z; t) v. (4.2)

Thus, in this model Ez is considered a dynamical variable that must be incorporated in the

split-step scheme in such a manner as to leave the entire method second order accurate.

To do this, we add two more steps to our operator split scheme in Fig. 4.1, advancing Ez

by one half time step between (a) and (b) and between (b) and (c).
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Figure 4.1: A schematic representation of the Cheng-Knorr split-step algorithm for solving
the Vlasov equation on an Eulerian grid [85]. Each time step is divided into three sub-steps:
advecting in v for a half time-step, followed by a full step advection in z, and concluding
with a half time-step advection in v. To obtain the value of fe between the grid points, we
interpolate with cubic splines.

4.1.1 Numerical example of nonlinear Landau damping

We benchmarked the Vlasov code with many basic plasma physics problems; as one

example most relevant to this chapter, and to illuminate the nonlinear saturation of Landau

damping, we present some examples for an initially prescribed Langmuir wave. In [6],

O’Neil showed that the dynamic damping drops to zero in the limit that the product of

the linear Landau damping rate and the bounce period 1/
√
φ1 is small, i.e., ν`τB � 1.

Physically, this means that the trapped particles execute many oscillations in the wave

before its amplitude changes significantly, so that phase-mixing occurs before the wave is

damped away. Building upon these ideas, Oei and Swanson [86] included the lowest order

change of the electrostatic potential to show that waves with an initial value ν`τB . 0.6

damp away to zero, while larger initial potentials will survive, approaching a steady-state,

BGK-type wave.

Since these theoretical papers and the first numerical work [87], the idea that there

may be a critical initial amplitude below which Langmuir waves are destined to be damped

to zero while above which they are may persist as BGK-type steady-states with non-zero

electrostatic amplitude has received some attention in the literature, with both theoretical

[88, 89] and numerical papers [90, 91] seeming to indicate different scalings and relevant
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Figure 4.2: Nonlinear Landau damping in a warm plasma with kλD = σ = 0.4, for which
ν` ≈ 0.066. To make this example, we initialize the plasma wave at various amplitudes,
as indicated in (a). As the product of the initial bounce period and the linear Landau
damping ν`/

√
φ1 = ν`τB decreases, the damping rate of the potential decreases over time;

for ν`τB(0) ≈ 0.3, we see that the wave amplitude approaches a steady state. This is
associated with particle trapping, as shown by the phase space plot at τ = 90 in (b).

physics. We believe that the BGK-type waves and their associated phase-mixed energy

presented in Chs. 2 and 3 may provide additional insight into this “critical phenomenon”

that has been associated with phase space, and leave this for future work.

Returning to the Vlasov code, we initialized standing Langmuir waves using an initial

sinusoidal density variation of various amplitudes in a plasma with kλD = 0.4. We plot

the evolution of the maximum amplitude (scaled by its initial value) in Fig. 4.2. After an

initial transient over a plasma oscillation or two (not visible), we see that the wave initially

damps at the linear Landau levels. For very small initial amplitudes, say φ1(0) = 10−3

and ν`τB ≈ 2, the damping is nearly constant for 300 plasma oscillations. For larger initial

amplitudes, the damping rate decreases with time, until at φ1(0) = 0.05 and ν`τB ≈ 0.3, the

wave oscillates about a steady, finite value. This is associated with trapping and phase-

mixing in the Langmuir wave, as can be seen from the phase-space portrait at τ = 90

shown in Fig. 4.2(b), where, for ν`τB ≈ 0.3, φ1 is growing. Finally, we note that while

this example demonstrates the utility of the Vlasov code, and illuminates some interesting

nonlinear physics, there are important differences in the case of a driven wave, as is relevant
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to Raman backscatter. In this case, there is an external source of energy for the phase-

mixing, so that the damping decreases to zero even for very small waves after times of

order one bounce period.

4.2 Comparison of the Langmuir envelope model to driven

Vlasov and particle simulations

As the first step in verifying our extended three-wave model, we tested the simplified

kinetic model of the plasma wave, namely the Langmuir envelope equation (3.106c) with

its dynamic, nonlinear damping and frequency given by (3.107) and (3.108). To this end,

we performed a number of single-wavelength particle and Vlasov simulations using the

following prescribed ponderomotive drive:

c2k2
2

2ωLω2
p

[
a0(τ)a1(τ)∗ei(ζ+ωLτ) + c.c.

]
=

c2k2
2

ωLω2
p

a0(τ)a1(τ) cos(ζ + ωLτ)

≡ V(τ) cos(ζ + ωLτ), (4.3)

where V(τ) is slowly-varying with respect to the time 1/ωL, typically taken to slowly ramp

from zero to a fixed value that is much less than unity. We then compare the evolution of

the Langmuir wave in these fully kinetic simulations to that obtained with the envelope

equation (3.106c).

4.2.1 Small amplitude Langmuir waves in a strongly damped plasma

We first tested our model for very weakly-driven Langmuir waves in a warm plasma,

for which sufficiently high levels of (constant) Landau damping are expected to disrupt the

Raman instability. In this, the strong damping limit, the Langmuir wave becomes entrained

to the ponderomotive drive; neglecting the derivatives from the envelope equation (3.106c)

in comparison with the damping, the Langmuir wave becomes an algebraic function of the
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laser amplitudes:[
∂

∂τ
+ i(ωr − ω2) + ν`

]
G → ν` G =

c2k2
2

2ωLω2
p

a0a
∗
1e
i(ω2−ωr) =

V
2ωL

ei(ω2−ωr). (4.4)

Under this simplification, the standard three-wave model is reduced to two, for which Chu

and Karney [92] determined closed form solutions. As we have discussed, however, since

the Landau damping is not a constant, but rather dynamically decreases as the particles

phase-mix in the Langmuir wave (and develop the velocity-space plateau), (4.4) cannot

hold for arbitrarily long times. The subsequent increase in Langmuir wave amplitude and

concomitant laser scatter beyond the linear, strong damping prediction has become known

in the inertial confinement fusion community as “kinetic inflation” [61, 62] or “kinetic

enhancement” [71], and has been seen in a variety of experiments [93, 15]. Because these

researchers are looking to maximize laser fluence on target, the potential increase in laser

scatter due to these kinetic effects could pose serious difficulties for ignition.

To properly determine the degree to which Raman scattering deleteriously affects the

on-target laser power, one must consider a number of additional effects. Although it is not

the purpose of this thesis to address this overarching question facing the fusion community,

we will include a few basic ideas to try and put our model in some perspective. In inertial

confinement fusion, the laser-plasma interactions of interest take place in a “hot-spot” of

the drive laser, which can be thought of as a high intensity filament within which the

laser-plasma couplings tend to be largest. Within this hot-spot, our 1D assumptions are

largely valid (see, e.g., [35]), the main difference arising from those particles that leave or

enter the hot-spot along the transverse directions (referred to as “side-loss”). Since the

surrounding region essentially contains a Maxwellian reservoir of plasma, these transverse

effects tend to thermalize the plasma, thereby providing a competing effect to the phase-

mixing and subsequent decrease in Landau damping that we have discussed. Our analysis

will not address the impact of this competition, but is rather focused on trying to properly

model just the latter component, i.e., the decrease of Landau damping and commensurate

increase in Langmuir wave amplitude, which may then saturate via the nonlinear detuning
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Parameter σ ν` ωr ωL ω2 V

Description kλD Landau
damping

“Resonant”
Landau
frequency

BGK/
Vlasov
frequency

Driving
frequency

Driving
amplitude

Value 0.352 0.0354 1.223 1.214 1.223 10−5−10−4

Table 4.1: Plasma and drive parameters for the weakly-driven, warm plasma simulations
testing the disappearance of Landau damping and subsequent saturation through detuning
from the resonant ponderomotive drive.

from the resonant ponderomotive drive.

The essential physics intrinsic to the “kinetic enhancement” of Langmuir wave evolu-

tion is modeled by the changing Landau damping coefficient (3.107a) and (3.108a) of the

Langmuir wave envelope. Thus, testing our envelope model in situations when the plasma

wave is strongly damped provides a test both of the maximal, nonlinear damping coeffi-

cient νmax and of the manner in which we model the phase-mixing, namely, the ratio of the

damped to incoherent energy Λ ≡ Udamp/Uincoh from (3.107c). Since these comparisons

involve small perturbations in the tails of the velocity distribution, for which particle codes

tend to suffer from excessive levels of noise, we used the single wavelength Vlasov code as

our reference kinetic model for comparison.

We used a weakly-driven, strongly damped set of plasma parameters adopted from

[71]; a summary of the relevant numbers is given in Table 4.1. In this table, the saturated

Langmuir wave amplitude |G|steady is obtained by solving (4.4), and is given by

|G|steady =
V

2ωLν`
. (4.5)

Of course, (4.5) assumes that the Landau damping coefficient is constant.

We present a comparison of the Vlasov simulation with that of our Langmuir wave

envelope equation in Fig. 4.3. In Fig. 4.3(a) we plot the evolution of the potential (density

perturbation) as a function of time ωpt for three different drive strength, obtained both

from the Vlasov simulation (dotted lines) and the extended three-wave model (solid lines).

We see that the growth of φ1 slows after some time, and that the duration of this plateau
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Figure 4.3: Evolution of the Langmuir wave for a strongly damped plasma, with ν` ≈
0.035ωp. In (a), we compare the evolution in physical units for the Vlasov simulation
(dotted lines) and the extended three-wave model (solid lines) for three different drive
strengths. The model reliably predicts the final amplitude about which the Vlasov evo-
lution oscillates, from which we conclude that the final saturation is due to the nonlinear
frequency shift from the resonant drive. We re-plot the evolution in (b), but with time
scaled by the bounce frequency and the electrostatic amplitude by the theoretical steady
state value (4.5). The Langmuir wave evolution plateaus near the theoretical value |G|steady,
but after a time of order the bounce period begins to increase, consistent with O’Neil’s the-
ory. Furthermore, the extended three-wave model well predicts the initial strong-damping
saturation and subsequent rise as the Landau damping vanishes due to particle trapping
and phase-mixing.
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increases with decreasing drive strength (and, therefore, decreasing Langmuir wave am-

plitude). Rather than saturating, however, after some period of time, ωpt ∼ 100 − 300,

the plasma wave begins to grow again, only to saturate at some rather larger value. Fur-

thermore, the extended three-wave model captures the critical physics involved in the

saturation (or lack thereof): it predicts an initial plateau in the Langmuir wave growth,

followed by subsequent amplification to larger amplitudes. After the initial linear Landau-

damping-induced plateau, the extended three-wave model accurately predicts the later

saturation observed with the Vlasov code, which we can now attribute to the nonlinear

frequency shift from the resonant drive due to the trapped and near-trapped particles.

To further illuminate this dynamical process, we plot the same data in Fig. 4.3(b),

only in this case1 we scale the time τ = ωpt by the bounce frequency ωB =
√
φ1, while we

normalize the electrostatic amplitude by the strong damping, steady state value |G|steady

given by Eq. 4.5. In this case, the physics becomes clear: the “plateau” in the growth of

φ1 is at an amplitude given by the steady state value, and the duration of this plateau is

approximately a few bounce periods. After this time, Landau damping has been decreased

through the process of particle phase-mixing, and the driven wave can grow to larger

amplitudes. In this case, the Langmuir wave saturates at a value three or four times that

predicted by the strongly damped limit (4.5).

Additionally, while the extended three-wave model accurately portrays the generic

behavior of the evolution, the Vlasov simulations indicate some oscillations about the

reduced model predictions. From Fig. 4.3(b), we see that these oscillations have a frequency

of order the bounce frequency, and we therefore interpret these effects as being related to

trapped oscillations of electrons in the Langmuir wave. Since the envelope model has

effectively averaged over this bounce time scale, we do not expect it to reproduce these

amplitude oscillations.
1We thank D. J. Strozzi for communicating his finding that this scaling causes the disparate curves to

collapse onto a nearly universal form, thus clearly illuminating the physics.
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σ = kλD ν` ωr ωL ω2 V

0.4 0.066 1.285 1.256 ωr 0.01

0.3 0.0126 1.156 1.158 ωr 0.01

0.2 5.5× 10−5 1.064 1.064 ωr 0.01

0.1 10−14 1.015 1.015 ωr 0.01

Table 4.2: Plasma and drive parameters for the weakly-driven, warm plasma simulations
used to compare the Langmuir wave evolution predicted by our Vlasov and extended
three-wave codes. These parameters are used in the runs shown Figs. 4.4 and 4.6, while
the results in Fig. 4.7 use drive amplitudes of twice and one-half that given here.

4.2.2 Saturation of large amplitude Langmuir waves via nonlinear fre-

quency shifts

In the previous section, we presented evidence that our simple model for the dynamic

damping in a plasma yields the basic evolution of a driven plasma wave. This indicates

that for a given electrostatic amplitude φ1, the linear Landau damping smoothly goes to

zero as the damped energy approaches that required to sustain a phase-mixed, BGK-type

wave with potential φ1, and that it does so in a manner consistent with a simple, tanh-type

interpolation given by Eq. (3.105). We also saw evidence that the subsequent saturation

of the Langmuir wave amplitude can be associated with detuning from the resonant drive

due to the nonlinear frequency shift of the wave. To test this final saturation mechanism

further, we performed additional simulations using larger amplitude ponderomotive drives

over a wide range of temperatures, as summarized in Table 4.2.

We present in Fig. 4.4 the amplitude evolution for large amplitude driven Langmuir

waves in a plasma with temperature such that 0.1 ≤ kλD ≤ 0.4. For these simulations,

we slowly turn on the drive near τ = 0 to a constant value V = 0.01; as a result, the

plasma wave grows to some maximum amplitude, from which it subsequently performs

(slightly damped) oscillations. We compare in Fig 4.4 the reduced model (red) and the

Vlasov evolution (blue) for times up to ωpt = 350, corresponding to many bounce periods

(approximately 80 for kλD = 0.4, and nearly 250 for kλD = 0.1). The reduced model
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Figure 4.4: Comparison of the extended three-wave model (red curve) and Vlasov simula-
tion (blue curves) for the evolution of the Langmuir wave amplitude using four different
temperatures. We see that the Langmuir wave saturation level is well-predicted by the
reduced model for 0.1 ≤ kλD ≤ 0.4. Since the dominant saturation mechanism occurs
via detuning from the fixed-frequency drive, this indicates that the dynamic, nonlinear
frequency shift is well represented up to saturation. After the maximum amplitude is
reached, the subsequent dynamics are qualitatively reproduced by the reduced model,
with quantitative agreement for the middle range of temperatures near kλD = 0.3.
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accurately predicts both the initial evolution and the Langmuir wave saturation amplitude

over the entire range of temperature 0.1 ≤ kλD ≤ 0.4. Furthermore, the amplitude and

average value of the subsequent oscillations predicted by the reduced model agree quite

well with those seen in the Vlasov simulations, although the frequency of these oscillations

is more poorly represented. We believe that most of this discrepancy after wave saturation

is due to the fact that as the Langmuir wave amplitude becomes smaller, the once-trapped

particles again cross the separatrix. While the majority of these particles were trapped from

the bulk (and initially above the separatrices), once phase-mixing has taken place they exit

the trapping region symmetrically, as predicted by slow separatrix crossing theory [47, 46].

As a result, some particles that were initially above the separatrices will subsequently

populate the region below the separatrices, and the corresponding form of the BGK-type

action distribution will be flatter around the trapping region than that of a purely growing

wave of the same amplitude, as shown in Fig. 4.5(a). Here, we imagine that the potential

has decreased from its maximal value corresponding to the separatrix action Jpeak
sep to the

present level. For a symmetric de-trapping of the particles, the distribution below the

separatrices (−Jpeak
sep ≥ J ≥ Jsep) gets an excess of particles from the bulk, as indicated in

Fig. 4.5(a). We note that this distribution will be disrupted by collisions, and may cause

additional instabilities2, and therefore will only be a useful description over some limited

time-scale.

Because the distribution of the shrinking Langmuir wave in Fig. 4.5(a) is different

than that of the purely growing wave, the associated frequency shift δω is not a single

valued function of φ1, as shown in Fig. 4.5(b). To include hysteresis in δω, we solve the

iterated equations (2.21) for the mean action J̄ , but with the distribution chosen to be

symmetric about the separatrices for those particles that were at one time trapped in

the wave. Since this necessarily requires knowledge of the peak amplitude of the wave,

we presently have no means of determining a simple curve fit as was presented for δω
2Unlike spatially uniform plasmas, for which the Penrose criterion can be used to determine stability,

the nonlinear stability of BGK-type modes has no general theory.
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Figure 4.5: Physics associated with a shrinking Langmuir wave. In (a), we schematically
plot the distribution in J for a decreasing Langmuir wave, for which the maximal electro-
static potential had the associated separatrix action Jpeak

sep . As the wave shrinks, symmetric
de-trapping leads to an excess of particles below the separatrices that were originally in
the plasma bulk. This leads to hysteresis in the nonlinear frequency shift δω, as shown for
a plasma with kλD = 0.2 in (b).

in (3.108b), but rather calculate the hysteresis effect within the envelope model. As an

example of the hysteresis in δω, we plot the frequency shift as a function of the amplitude

in Fig. 4.5(b) for kλD = 0.2. One general finding is that the frequency shift is a nearly

single-valued function of φ1 for warm plasmas, in agreement with the findings of Bénisti

and Gremillet [42], while there can be considerable hysteresis as kλD becomes small. We

leave improvements and simplifications for future work.

To properly couple the laser and plasma modes, prediction of the Langmuir amplitude

is insufficient, as one must also properly model the phase of the Langmuir mode G(ζ, τ).

Mathematically, we compare the real part of G with the cosine transform of φ(ζ), while

the imaginary part of G corresponds to the sine transform of φ(ζ). Physically, this divides

the plasma response into two quadrature components: the absorptive component that is

π/2 out of phase with the drive (the real/cosine part), and the elastic component that is

in phase with the drive (the imaginary/sine part). Since the energy transfer to the plasma

is given by

JPMEz ∼ a2∂φ1

∂ζ
∼ V cos(ωLτ)

∂φ

∂ζ
, (4.6)
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Figure 4.6: Comparison of the driven Langmuir wave phase evolution in the extended
envelope model to that of particle simulations. The real part of the Langmuir mode G is
plotted in blue (dark blue for the particle simulation, cyan for the reduced description),
while the imaginary part of G is in red (dark red for the particle result, magenta for the
reduced model). We see that up to saturation, the real and imaginary parts are in good
agreement, especially for kλD ≤ 0.3. After that, the dynamics are complicated by the
subsequent trapping and de-trapping in the evolving Langmuir wave. Nevertheless, the
simplified envelope equations still yield reasonable agreement.
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we see that the absorptive plasma response (π/2 out of phase with the drive) will tend to

extract energy from (or return it to) the drive, whereas the in-phase portion will typically

result in no time-averaged energy transfer, but is associated with the frequency shift of

the Langmuir wave.

We plot in Fig. 4.6 the real and imaginary parts of the Langmuir response G for pa-

rameters identical to those of Fig. 4.4, and compare these to the cosine and sine transforms

of the electrostatic potential φ1. As was found in Fig. 4.4 for the amplitude, Fig. 4.6 shows

that the extended envelope model well describes the phase of the Langmuir wave up to

saturation. Furthermore, the growth of the imaginary (in-phase) response is correlated to

the wave saturation, and hence is further indication that the Langmuir wave saturation is

due to the nonlinear frequency shift of the wave.

After saturation, the envelope model only captures the generic features of the sub-

sequent oscillations of the in-phase (elastic) and out-of-phase (absorptive) components.

At the high end of the temperatures measured here, kλD = 0.4, the envelope model ne-

glects some small residual damping of the wave while predicting a large-scale oscillation

frequency about 15% larger than that seen in the particle simulation. On the other end

of the temperature scale, the extended envelope model yields a post-saturation oscillation

frequency that is approximately 50% that seen in the particle code for kλD = 0.1, while

correctly predicting its amplitude. Between these two extremes, the oscillation frequency

and damping are more closely represented by the extended envelope equation, so that for

kλD = 0.3, the waveforms are nearly identical.

Finally, we plot the Langmuir wave amplitude for two different magnitudes of the

ponderomotive drive in Fig. 4.7: one for which V is twice that of Figs. 4.4 and 4.6, while

the other that is one-half its size. Again, we see that the extended three-wave model

accurately predicts the saturation amplitude of the Langmuir wave, while having similar

deficiencies predicting the subsequent post-saturation oscillations for hot and cold plasmas

as previously discussed. Furthermore, while increasing the drive strength significantly

changes the final saturation amplitude for the warm plasmas, its influence decreases as
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Figure 4.7: Comparison of the reduced envelope model and full particle simulations for
the same plasma parameters as Fig 4.4, but with different drive amplitudes. The red
is Langmuir wave amplitude evolution obtained from the particle simulation with V =
0.02 (twice that previously) while the magenta is that predicted by the envelope model.
Similarly, the dark blue line gives the electrostatic evolution obtained from the particle
simulation for V = 0.005, to be compared with the reduced model plotted in cyan. We can
see that in all cases the agreement is quite good.
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kλD decreases, such that for kλD = 0.1 the saturated plasma wave amplitude is nearly

independent of the drive strength. We interpret this result as follows. For very cold

plasmas, we recall from Fig. 2.7 that the nonlinear frequency shift remains small over a

broad range of wave amplitudes, beyond which it steeply dives toward large negative values.

Therefore, the Langmuir wave is detuned from the drive at the nearly same electrostatic

amplitude regardless of the drive strength. One may wonder if this is in some way related

to wave-breaking in the plasma. For nonrelativistic plasma oscillations, Coffey [28] used

the water bag model to show that the wave-breaking amplitude is given by

max |φ| =
√

1− 3
2σ

2 − 8
33/4

√
σ + 2

√
3σ . (4.7)

For σ = 0.1, Coffey’s formula (4.7) gives max |φ| ≈ 0.47. Note that this is close to,

but actually less that the wave amplitude seen in Fig. 4.7, which has max |φ| ≈ 0.55.

Furthermore, while “wave-breaking” is usually associated with a sudden and dramatic loss

of wave coherence, this does not appear to happen to our driven plasma waves.

4.3 Raman amplification in a plasma: numerically modeling

the Princeton experiment

In this section we present a brief application of our extended three-wave model to

recent experiments at Princeton University on Raman laser amplification by Fisch, Suck-

ewer, and co-workers [30, 94]. The idea is to transfer energy from a long, low-amplitude

pump laser to a short, high-amplitude, down-shifted seed pulse using Raman backscatter

in an under-dense plasma. Under appropriate initial conditions, the three-wave equations

lead to solutions in which nearly all the pump energy can be transfered into the seed pulse

whose energy and inverse width increases linearly with interaction distance (the so-called

“transient regime,” see, e.g., [29, 65, 95, 96]). Applying this transient regime of Raman

scatter to a plasma, Malkin, Shvets, and Fisch [29] find that under certain conditions such

an amplification scheme may become competitive with the standard chirped pulse ampli-
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fication [97], particularly at smaller wavelengths, and may obviate the need for some large

and costly gratings.

4.3.1 The theory of pulse compression in a plasma

The basic theory derives from the three-wave equations in a cold plasma; we will only

give the briefest review; for more detailed analysis see [98] and the references cited therein.

To make the presentation more concise, we introduce the wave action amplitudes for the

pump, seed, and plasma wave, along with the coupling W:

a ≡
√

ω0
ωp
a0 b ≡

√
ω1
ωp
a1 (4.8a)

ρ ≡ ωp
ck2

G√
2

W ≡ ck2

2
√

2ω0ω1
. (4.8b)

Next, we employ coordinates co-moving with the seed pulse (along +ẑ with velocity c),

and scale these coordinates with the linear Raman growth rate given by W ā, where ā is

some characteristic (or average) value of the pump:

T ≡ W ā
(
ωpt− ωp

c z
)

= W ā
(
τ − ωp

ck2
ζ
)

Z ≡ W ā
ωp

c z = W ā
ωp

ck2
ζ (4.9)

In terms of the variables (4.8) and coordinates (4.9), the three-wave equations (3.106) with

ν = ugr = (ω − ω2) = ∇⊥ = 0 are

2
∂a

∂T
− ∂a

∂Z
= +bρ

∂b

∂Z
= −aρ∗ ∂ρ

∂T
= −ab∗. (4.10)

In the highly nonlinear regime of pulse amplification, the pump develops a sharp

leading edge in the moving frame as it becomes nearly depleted; in this case ∂Ta � ∂Za

and we can negect the Z-derivative in the pump equation from (4.10); this approximation

together with the plasma wave equation leads to a simplified Manley-Rowe conservation

equation
∂

∂T

[
|a|2 + 1

2 |ρ|
2
]

= 0. (4.11)

We assume that the pump is initially flat, which in our variables scaled by ā implies

a(T → −∞) = 1, and that the plasma wave is initially zero, i.e., ρ(T → −∞) = 0. Noting
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this, the conservation law (4.11) implies that we can make the definitions

a = cos(u/2) ρ =
√

2 sin(u/2).

By defining u to be proportional to the integrated area under the seed pulse, namely

u(T,Z) ≡
√

2

T∫
−∞

dT ′ b(T ′, Z), (4.12)

we find that the integrated seed area u obeys the sine-Gordon equation

∂2u

∂T ∂Z
− sin(u) = 0. (4.13)

There are many well-known solutions of the sine-Gordon equation. As suggested by the

work in [65], we will look for a particular “self-similar” solution of (4.13) that is a function

only of the coordinate η ≡ 2
√
TZ. At the end of the calculation, we will also find that these

solutions will satisfy our assumption ∂Ta � ∂Za. Making the substitution η ≡ 2
√
TZ in

(4.13), we now have the ordinary differential equation

d2u

dη2
+

1
η

du

dη
− sin(u) = 0. (4.14)

Qualitatively, (4.14) is a damped pendulum equation with a nonlinear damping coefficient

1/η. Here, the values u = 2nπ, n ∈ R represent the unstable fixed points (a physical

pendulum pointing up), while u = (2n + 1)π are the stable fixed points (a pendulum

hanging down). Thus, we expect u to oscillate about its fixed point u = π, approaching

it slowly as η → ∞. We also note that as u → π, the pump a → 0, and is completely

depleted. Examples of the solutions to (4.14) are plotted in Fig. 4.8. On the left are scaled

intensities of the pump, plasma wave, and seed in terms of the similarity variable, while

the right panel of Fig. 4.8 is a realization of the pulses in the co-moving variable after some

particular propagation distance. As this distance increases, the seed energy can be seen to

increase while the width decreases. This can be understood by considering the location of

the similarity variable η = ηM at which the seed reaches a maximum. Converting to the

physical variables, the seed duration D is approximately given by

η2
M(ζ) ≡ 2(τ − ζ)Mζ ∼ Dζ ⇒ D ∼

η2
M

ζ
, (4.15)
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Figure 4.8: Self-similar solution of an amplifying, shortening pulse in the three-wave model.
The left panel shows the scaled pump, plasma, and seed intensities in terms of the similarity
variable η. In a frame comoving with the seed, these solutions appear as those given in
the right panel. The seed energy increases linearly with the interaction length while the
width is inversely proportional to this same distance.

and the pulse length scales as the inverse interaction length. Furthermore, because the

complete wave action transfer occurs over an ever-decreasing spatial extent, the integrated

Manley-Rowe relations ∫
dζ
(
|a|2 + |b|2

)
= constant (4.16)

imply that the amplified seed pulse energy is proportional to the interaction length (i.e.,

that all the pump energy has been swept up by the seed).

4.3.2 The Princeton experiment on Raman amplification

As numerous theoretical studies [72, 99, 100] have demonstrated the apparent robust-

ness of the plasma-based Raman amplifier, an experimental effort to demonstrate pulse

amplification and compression in an physical device was begun by the Suckewer group at

Princeton University. The first significant experimental result was obtained using a broad-

band seed pulse, for which energy gains of order 50-100 were observed [94]. However, since

only a small fraction of the broad-band seed was actually resonant with and amplified by

the plasma, the overall efficiency was very low. Since that time, a narrow band, resonant

seed pulse has been implemented, and significant pulse amplification ∼1-5×103 has been
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Plasma
Density n0 = 1019 cm−3 ωp/γR = 70
Length 2-3 mm 15-25 gain lengths

Temperature 50 eV kλD = 0.25
Pump laser Seed laser

Wavelength 800 nm ω0/ωp = 12 870 nm ω0/ωp = 13
Intensity 1014 W/cm2 a0 = 0.005 1012 W/cm2 a1 = 0.0005
FWHM 15 ps 30 gain lengths 500 fs 1 gain length
Spot 50 µm 30 c/ωp 40 µm 25 c/ωp

Table 4.3: Representative parameters for the Princeton experiment, in both physical and
scaled units.

achieved for very small amplitude seed pulses, while larger amplitude lasers experienced

gain of order 60. The efficiency was still rather low, however, ∼ 1-2 %. In order to help

guide the experiment to improve this figure of merit, a more complete account of physics

beyond the resonant three-wave model is required. By properly understanding such effects

as density fluctuations, thermal and kinetic physics, and transverse effects in simulations

and experiments, one can hope to benchmark codes and design future experiments and

devices.

Typical parameters for the laser amplification experiment are given in Table 4.3, where

we include both the physical parameters of the experiment and the normalized quantities

that we have introduced. We see that the experimental parameters have been chosen such

that the laser frequency is much greater than the plasma frequency which, in turn, is much

greater than the Raman growth length. While the temperature is not large, it is also not

negligible; furthermore, while the transverse spot size is large enough to justify a nearly

one-dimensional approach, diffraction and the transverse variation in the growth length

are probably not negligible. Thus, a two-dimensional simulation including kinetic effects

is probably required to properly model the experiment.

We have performed an initial study to address these issues, starting with the averaged

particle-in-cell code aPIC [69] and now with the extended three-wave model. We plot the

results of the energy amplification for the approximate parameters of Table 4.3 in Fig. 4.9.
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Figure 4.9: Comparison of the aPIC and extended three-wave code for parameters relevant
to the Princeton laser amplification experiment [30]. We plot in (a) the energy gain as a
function of the interaction length, for which similar results are predicted by both models.
The experimental data indicate an amplification of ∼ 60, which would correspond to an
effective one-dimensional plasma length of 1.75mm as predicted by aPIC, while 1.5 mm as
measured for the three-wave model. In (b) we plot the intensity profiles of the seed pulses
assuming that the interaction proceeds for the full 2 mm of plasma. In this case, the energy
gain is predicted to be 95 and 105 by aPIC and the three-wave model, respectively, while
both models predict a final seed intensity larger than that of the pump. At this point in
the interaction, the local energy depletion of the pump is ∼ 40%.

We see that the two curves approximately follow each other, and note that they consistently

over-estimate the actual amplification seen in the experiment. For the approximately 2-3

mm plasma, 4.9(a) indicates gain of the order 100-300, while that observed in the experi-

ment is ∼60. We see that this corresponds to an effective one-dimensional plasma length

of order 1.5-1.75 mm. Furthermore, significant discrepancy is found with the standard

three-wave model (4.10), which predicts gain that is 2-5 times greater still than that seen

in either the aPIC or extended three-wave simulations. Nevertheless, determining which

of the various limiting factors (thermal, plasma inhomogeneities, or transverse effects) is

dominant requires additional investigation. We leave such analysis, including extensions

to two dimensional dynamics, to future work.
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Chapter 5

Some aspects of plasma fluid

models in one dimension

In this chapter, we describe some aspects of one-dimensional plasma fluid models that

have arisen during our study of basic plasma processes. We begin with a new (to our

knowledge) canonical and Hamiltonian warm fluid description of a plasma, in which the

coordinates are standard fluid variables (the velocity and electric fields). We then apply

this Hamiltonian formulation to cold plasma waves, showing that the canonical action of

a nonlinear, nonrelativistic plasma wave is proportional to its energy, verifying that the

dependence of the natural frequency of the Langmuir wave on its amplitude arises solely

from thermal and relativistic effects1, as previous analyses have indicated [80, 64].

In the next section, we present a careful analysis of the Langmuir wave in Eulerian

(fixed frame) variables, arriving at an intuitive, geometric description of the velocity field,

from which the fluid variables in a nonlinear wave have analytic (but parametric) repre-

sentations. We identify the velocity field as a curtate cycloid whose amplitude depends

upon the field strength, while the electric field is described by a closely related curve that,
1This is an unusual state of affairs, in that the convective derivative nonlinearity from the continuity

equation is cancelled by that of the force equation when determining the oscillation frequency, while the
fields themselves are not purely sinusoidal.
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to our knowledge, does not have a name. We then use the parametric representation of

the potential to calculate the frequency of test particles moving in the Langmuir wave po-

tential, for which we find a family of orbits (that we call the cold orbits) whose frequency

is independent of the particle energy. These orbits are parameterized by the electrostatic

amplitude and have a canonical action that is proportional to their energy. We conclude

by showing that the electrostatic fields described by the cold theory closely approximates

those that dynamically arise in the slowly driven thermal plasmas of Ch. 2. This suggests

that warm plasmas also have an evolving orbit whose frequency is energy-independent, in

accord with our finding in Ch. 2 that the mean action of the distribution function evolves

as the plasma wave grows.

Although both Hamiltonian fluid theories and Langmuir waves have been studied

extensively and for a long time, we have failed to find these results in any of the literature.

We believe that the former has a simple explanation - the Hamiltonian formulation of

a warm plasma found here is specific to one dimension. While one may consider this is

to be rather restrictive constraint, many basic plasma phenomena were first detailed and

described using one-dimensional approximations, and we have found that this additional

Hamiltonian structure has made some of these calculations much simpler to perform.

5.1 Canonical Hamiltonian warm fluid theory for Eulerian

plasmas in one dimension

The Hamiltonian structure of fluid models is well known (see, for example, the re-

view by Morrison [101] and references cited therein). While material, or Lagrangian, fluid

variables often permit canonical Hamiltonian structures (see, e.g., [102]) Eulerian descrip-

tions of infinite-dimensional systems in terms of physically meaningful variables generally

involve non-canonical formulations. Examples include the KdV equation [103], the one di-

mensional compressible fluid [104], and three dimensional plasma-fluid dynamics [105, 106].

Associated with these degenerate, noncanonical structures are Casimir invariants, which
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are kinematic invariants built into the phase space evolution under consideration, and, as

such, limit the dynamics to what are referred to as sympletic leaves. In the charged-fluid

example under consideration, one of these Casimirs leads to the continuity equation, and

as such may be related to the constrained variational principles for the associated La-

grangian given by Brizard [107]. In what follows, we present a one-dimensional, Eulerian

Hamiltonian for a warm plasma that is both described in terms of physical variables and

fully canonical.

To obtain our Hamiltonian model, we begin by taking velocity moments of the Vlasov

equation. The first two moments yield the Eulerian fluid equations

∂

∂t
ne +

∂

∂z
(nevz) = 0 (5.1a)

∂

∂t
(nevz) +

∂

∂z
(nev2

z) +
∂

∂z
P +

Fz
me

ne = 0, (5.1b)

where ne, vz, and P are the fluid density, velocity, and pressure defined respectively as

the zeroth, first, and centered second-order moment of the electron distribution function

fe with respect to the velocity:

ne ≡
∫
dv fe(v, z; t), nevz ≡

∫
dv fe(v, z; t)v, P ≡

∫
dv fe(v, z; t)(v − vz)2. (5.2)

The force Fz is given by the sum of the electric and ponderomotive forces

Fz = −eEz +
e2

2m2
ec

2

∂A2
⊥

∂z
, (5.3)

which in turn evolve according to Maxwell’s equations

∂E
∂z

= 4πe(n0 − ne) (5.4a)[
∂2

∂t2
− c2

∂2

∂z2

]
A⊥ = −4πe2

me
neA⊥. (5.4b)

As it stands, the equations are not complete, as the pressure P is given in terms of

higher order velocity moments of the distribution function. In gas dynamics, closure is

typically achieved via the Chapman-Enskog-type expansion assuming that the dynamics
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is dominated by collisions. In certain laser-plasma interactions, however, the typical col-

lision relaxation time can be much longer than the relevant time-scales for the processes

of interest, so that collisional closures are inappropriate. One alternative is to invoke an

equation of state P = P(ne, Te), typically taken to be either isothermal (P = neTe/me)

or adiabatic
[
P = n3

eTe/
(
n2

0me

)]
; another common method is to close the system with the

so-called “water-bag” model [108, 109], in which the incompressible phase-space distribu-

tion function is taken to be a constant between two boundaries (that depend on z and t),

while zero outside of this region. In this case fe is parametrized by only two numbers at

every point in z (the water bag centroid and its width, i.e., mean velocity and pressure),

which closes the fluid equations. A final scheme, the “warm fluid” model [110, 111], is an

asymptotic closure based on the assumption that the distribution is, in some sense, narrow

in width, so that the higher order centered moments (third, fourth, etc.) can be neglected.

Interestingly, in the nonrelativistic limit, the last three closure methods (adiabatic, water

bag, and warm fluid) all give the same expression for the pressure:

P = v2
th

n3
e

n2
0

, (5.5)

where mev
2
th ≡ Te. We will use the closure (5.5). To simplify the equations, we normalize

time by the plasma frequency, τ ≡ ωpt, and the longitudinal coordinate by some charac-

teristic wavevector2 k, so that ζ ≡ kz. These dimensionless coordinates lead naturally to

the normalized field variables

δn

n0
≡ ne − n0

n0
u ≡ ωp

k
vz (5.6a)

E ≡
meω

2
p

ek
Ez a⊥ ≡

e

mec2
A⊥, (5.6b)

2Two “natural” choices for the wavevector k are the inverse collisionless skin depth ωp/c or that as-
sociated with the Debye length, 2π/λD; since our previous chapters normalized z using the laser beat
wavevector k2, for now we will choose to leave k unspecified.
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and the Maxwell-fluid system (5.1)-(5.4) becomes

∂

∂τ

δn

n0
+

∂

∂ζ

[
u

(
1 +

δn

n0

)]
= 0 (5.7a)

∂u

∂τ
+ u

∂u

∂ζ
+ 3σ2

[
1 +

δn

n0

]
∂

∂ζ

δn

n0
= E +

c2k2

2ω2
p

∂

∂ζ
a2
⊥ (5.7b)

∂

∂ζ
E = −δn

n0
(5.7c)[

∂2

∂τ2
− c2

∂2

∂ζ2

]
a⊥ = −

(
1 +

δn

n0

)
a⊥. (5.7d)

To put the system (5.7) into a form from which we can deduce the canonical coordinates

and the generating Hamiltonian, we use the Poisson equation (5.7c) to eliminate the density

perturbation from the continuity equation (5.7a):

∂

∂ζ

[
∂E
∂τ

+ u
∂E
∂ζ

− u

]
= 0 ⇒ ∂E

∂τ
+ u

∂E
∂ζ

− u = h(τ), (5.8)

where h(τ) is some spatially uniform function of time; consistency with the longitudinal

component of the Ampère-Maxwell Law implies h(τ) = 0:

∂E
∂τ

=
(

1 +
δn

n0

)
u = u− u

∂E
∂ζ
. (5.9)

Thus, our system reduces to

∂u

∂τ
+ u

∂u

∂ζ
= −E + 3σ2

[
1− ∂E

∂ζ

]
∂2E
∂ζ2

− 1
2
∂a2

⊥
∂ζ

(5.10a)

∂E
∂τ

+ u
∂E
∂ζ

= u (5.10b)[
∂2

∂τ2
− ∂2

∂ζ2
+ 1
]

a⊥ = a⊥
∂E
∂ζ
. (5.10c)

In one dimension, the warm, nonrelativistic charged fluid system of equations (5.10)

has a canonical Hamiltonian structure. While this is readily apparent for the electro-

magnetic fields, to our knowledge this is the first time a canonical Hamiltonian has been

identified with the warm plasma response in “physical” Eulerian coordinates. In this case,

the electric field E is identified with the fluid generalized coordinate, while the velocity u

is its conjugate momentum. Thus, we define the phase space coordinates

(
p; q

)
=
(
p,π⊥; E ,a⊥), (5.11)
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with π⊥ the conjugate to the vector potential a⊥. In terms of the phase space variables

(5.11) the warm electrodynamic fluid system (5.10) can be derived from the functional

Hamiltonian

H
[
p(ζ, τ); q(ζ, τ)

]
=
∫
dζ ′ H

(
p(ζ ′, τ); q(ζ ′, τ)

)
(5.12)

where the Hamiltonian density H (p(ζ ′, τ); q(ζ ′, τ)) is given by

H (p, π⊥; E ,a⊥) =
1
2
p2 +

1
2
E2 +

3σ2

2

(
∂E
∂ζ

)2

− 1
2
p2∂E
∂ζ

+
σ2

2

(
∂E
∂ζ

)3

+
1
2
π2
⊥ +

1
2

(
∂a⊥
∂ζ

)2

+
1
2
a2
⊥

− 1
2
E
∂a2

⊥
∂ζ

,

(5.13)

and the evolution of any phase space observable Z is given by Hamilton’s equations with

the canonical Poisson bracket {· , ·}:

∂

∂τ
Z(ζ, τ) =

∫
dζ ′
{
Z(ζ, τ), H

(
p(ζ ′, τ); q(ζ ′, τ)

)}
(5.14a){

E(ζ, τ), E(ζ ′, τ)
}

=
{
p(ζ, τ), p(ζ ′, τ)

}
= 0 (5.14b){

E(ζ, τ), p(ζ ′, τ)
}

= δ(ζ − ζ ′). (5.14c)

The Hamiltonian density naturally divides into four pieces

H = H 0
p + H 1

p + H 0
EM + H couple

p,EM , (5.15)

where H 0
p is that of the warm, linear plasma wave, H 1

p describes the fluid and thermal

nonlinearities, H 0
EM gives the electromagnetic radiation (with the 1

2a2
⊥ yielding the linear

change in dispersion due to the plasma), and H couple
p,EM describes the ponderomotive coupling

between the lasers and the plasma.

As a simple application of this formalism, we use the Lagrangian associated with

(5.13) to investigate the cold, nonrelativistic plasma wave. Although this has been well-

studied, we feel that we might offer a modest addition with respect to understanding how
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the (seemingly) nonlinear Eulerian plasma wave has a frequency that is independent of its

amplitude in the cold case. To this end, we first write the Hamiltonian density for a cold

plasma (σ ≡ kλD = 0)

H (p, π⊥; E ,a⊥) =
1
2
p2 +

1
2
E 2 − 1

2
p2∂E
∂ζ

+
1
2
π2
⊥ +

1
2

(
∂a⊥
∂ζ

)2

+
1
2
a2
⊥ −

1
2
E
∂a2

⊥
∂ζ

. (5.16)

Note that (5.16) has an appealing interpretation as the energy density: grouping the first

and third terms together we have 1
2

(
1− ∂E

∂ζ

)
p2 = 1

2np
2, i.e., the kinetic energy density,

while the second term 1
2E

2 is the electrostatic energy density. Although one could construct

the Lagrangian density L associated with H in terms of the coordinates E and a⊥, we

find it convenient to first make a canonical transformation that exchanges the roles of p

and q for the plasma wave (i.e., the velocity u and the electric field E). Denoting the new

variables with háčeks, we use the mixed generating function [52]

F (q1, q2; q̌1, p̌2) = E q̌ + a⊥π̌⊥, (5.17)

which, through the relations

p =
∂F

∂E
= q̌, p̌ = −∂F

∂q̌
= −E ,

π⊥ =
∂F

∂a⊥
= π̌⊥, ǎ⊥ =

∂F

∂π̌⊥
= a⊥,

has the effect of exchanging the position and momentum roles of the plasma coordinates,

while keeping the laser coordinates fixed. Dropping the háčeks on the “new” laser variables,

and making substitution of the generalized coordinate q̌ = u we have

H (p̌, π⊥; u,a⊥) =
1
2
p̌2 +

1
2
u2 − p̌u

∂u

∂ζ
+

1
2
π2
⊥ +

1
2
a2
⊥ +

1
2

(
∂a⊥
∂ζ

)2

+
1
2
p̌
∂a2

⊥
∂ζ

. (5.18)

The Lagrangian density associated with (5.18) is found via the Legendre transform. We

have

L =
∂q

∂τ
· p−H

∂q

∂τ
=
∂H

∂p
, (5.19)



Section 5.2. The cold, nonrelativistic plasma frequency 116

so that

L =
1
2

(
∂u

∂τ

)2

− 1
2
u2 + u

∂u

∂ζ

∂u

∂τ
+

1
2
u2

(
∂u

∂ζ

)2

+
1
2

[(
∂a⊥
∂τ

)2

−
(
∂a⊥
∂ζ

)2

− a2
⊥

]
+

1
2

(
∂u

∂τ
+ u

∂u

∂ζ

)
∂a2

⊥
∂ζ

,

(5.20)

which, again, can be divided into the linear and nonlinear pieces associated with the free

plasma wave, the free electromagnetic piece (with the linear renormalization due to the

plasma medium), and the ponderomotive coupling between the two.

5.2 The cold, nonrelativistic plasma frequency

Up to this point, we have used Eulerian variables to describe the plasma response. This

basically amounts to considering the fluid quantities (such as density, velocity, pressure,

etc.) to be defined at fixed locations in space, so that the governing equations describe

the local fluxes and time rates of change. In this way, the Eulerian viewpoint is analogous

to sitting on the bank of a river and watching the flow proceed. Generally, we find these

variables to be the most convenient, but there is one case in which the alternate, Lagrangian

perspective leads to the most transparent analysis, namely, in determining the frequency

of a cold plasma.

In the Lagrangian viewpoint, one follows individual fluid elements as they are sub-

jected to forces. In this way, the Lagrangian perspective is more analogous to a boat riding

with the flow, and thus complementary to the Eulerian river-bank approach. From the

Lagrangian perspective it is easy to show that, neglecting relativity, the local force on each

plasma electron is proportional to its displacement (below wave-breaking), so that each

electron undergoes simple harmonic motion with constant frequency given ωp [49]. Since

this piece of physics must be independent of the means of analysis, it must also be true that

an Eulerian analysis of the Langmuir wave reveals an amplitude independent frequency

ωp. Since in the Eulerian perspective the fluid fields are governed by nonlinear equations

(specifically, they include the convective derivative d
dτ + u d

dζ ), it is not obvious that the



Section 5.2. The cold, nonrelativistic plasma frequency 117

nonlinear solutions have amplitude-independent frequencies.

In fact, various analyses of the cold, Eulerian fluid equations have given rise to conflict-

ing results in the literature. The first such analyses, pioneered by Akhiezer and Lyubarskii

[112] and Akheizer and Polovin [113], were quasi-static, in which the wave is assumed to

depend only on the variable co-moving at the plasma wave phase velocity. These papers

showed that changes to the Langmuir wave frequency were due solely to relativistic effects,

in agreement with the Lagrangian analyses. Nevertheless, in the mid 1980’s perturbation

expansions of the one-dimensional fluid equations resulted in several differing formulae

for the nonlinear frequency of Langmuir waves. Using a consistent expansion, the source

of these various discrepancies was finally resolved by McKinstrie and Forslund [81], who

recovered the result of [113].

In this section, we use the Eulerian, Hamiltonian formulation of a cold, one-dimensional

plasma to demonstrate the constancy of the frequency in a nonlinear, nonrelativistic Lang-

muir wave. Furthermore, these equations yield a simple, geometric picture of the nonlinear

fields, clearly relating them to the single-particle (Lagrangian) motion. Finally, we calcu-

late the frequency of an electron moving in the cold fields, showing that it is independent

of the Langmuir wave amplitude for the fluid orbit of a cold plasma, as required.

5.2.1 Cold plasma in the Lagrangian viewpoint

In a one-dimensional cold plasma, the only force acting of individual fluid elements is

the local electrostatic field, so that Newton’s third law for a fluid element is given by

d2

dt2
z(z0, t) = − e

me
Ez[z(z0, t), t]. (5.21)

Here we have parametrized each fluid element by its initial position z0 at time t = 0.

Assuming that these one-dimensional charge sheets do not cross (i.e., that the fluid motion

remains below wave-breaking), this parameterization is unique. The self-consistent electric

field evaluated at z = z(z0, t) at time t is determined via Poisson’s equation:

d

dz
Ez = −4πe [ne(z, t)− n0] . (5.22)



Section 5.2. The cold, nonrelativistic plasma frequency 118

z0

L

ions
︷ ︸︸ ︷

electrons
︷︸︸︷

z0 + ξ(z0, t)

Ez(z, t) = 4πQ/A = 4πen0

[
(L + ξ) − L

]

= 4πen0ξ(z0, t)

Figure 5.1: Gauss’s Law for a Lagrangian element in a cold plasma below wave-breaking.
The electric field is proportional to the displacement ξ(z0, t) from equilibrium.

In the Lagrangian viewpoint we follow individual fluid elements that may deform (being

stretched or squeezed in the z direction), but always contain the same fluid. This is

encapsulated by the particle conservation equation

ne[z(z0, t), t]dz = ne(z0)dz0 ≡ n0 dz0. (5.23)

Solving (5.23) for the density ne and using this in the Poisson equation (5.22), we find

d

dz
Ez = 4πen0

[
1− dz0

dz

]
. (5.24)

In this form, we see that for a cold, one dimensional plasma below wave-breaking, the

Poisson equation can be trivially integrated:

Ez[(z(z0, t), t] = 4πen0[z(z0, t)− z0] ≡ 4πen0 ξ(z0, t), (5.25)

where we have introduced the electron displacement ξ ≡ z − z0. From (5.25), we see that

the electric field is proportional to the fluid displacement from its equilibrium position.

This can be understood as a consequence of Gauss’s Law from the stationary ion column;

because the electron charge sheets are assumed not to cross, in this geometry the dis-

placement of a fluid element results in a capacitor-like charge separation, as depicted in

Fig. 5.1. A simple application of Gauss’s Law as in Fig. 5.1 results in (5.25); this model of

one-dimensional electron charge sheet moving in a stationary, neutralizing background was

introduced by Dawson [49], and is valid below cold wave-breaking, i.e., for Ez ≤ E0 ≡ mcωp

e ,

beyond which the electron displacement is greater than the characteristic wavelength, and

the charge sheets cross.
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Since the restoring force is proportional to the displacement, using (5.25) in the force

equation (5.21) results in the simple harmonic oscillator equation

d2

dt2
ξ(z0, t) + ω2

p ξ(z0, t) = 0. (5.26)

In general, one might expect the natural frequency of the plasma to have nonlinear con-

tributions as the plasma wave grows, but as indicated in (5.26), the nonrelativistic one-

dimensional plasma has no such frequency shift. Indeed, the relativistic counterpart to

(5.26), for which the momentum d
dtξ → γ d

dtξ was used by Rosenbluth and Liu [20] to

show that the nonlinear dependence of the frequency on the amplitude arises solely from

relativistic corrections in the cold plasma.

The Lagrangian perspective clearly shows that each fluid element undergoes simple

harmonic motion. It is not obvious, however, that the nonlinear Eulerian fluid equations

similarly yield this result. Indeed, this created some confusion and controversy in the

literature, with some published results in conflict with the Lagrangian conclusions. While

more careful perturbation expansions have resolved this conflict in the weakly nonlinear

regime and numerical solutions indicates no (nonrelativistic) nonlinear frequency shift,

there as yet seems no general analytic proof (other than appeals to Lagrangian-Eulerian

equivalence). In the next section, we derive two such proofs, hopefully illuminating the

somewhat unusual Eulerian nature of this independence fluid fields.

5.2.2 The cold plasma in the Eulerian perspective

In this section, we investigate the cold plasma waves discussed in the previous section,

only through the use of Eulerian coordinates. This will necessarily involve some transfor-

mations and subsequent approximations; to manifestly preserve the Hamiltonian/Lagrangian

structure discussed in Sec. 5.1, we apply all such simplifications directly to the Lagrangian

density (5.20) rather than directly to the equations of motion. Since we will look for trav-

eling wave solutions, we make a Galilean coordinate change to a frame moving at the phase
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velocity of the wave using the coordinates

θ ≡ τ + ζ ≡ ωp[t+ z/vp], τ ≡ ωpt, (5.27)

where vp ≡ ωp/k is the phase velocity of the wave. Assuming that there is no laser field,

the Lagrangian density (5.20) can be expressed in terms of the coordinates θ and τ as

L =
1
2
(1 + u)2

(
∂u

∂θ

)2

− 1
2
u2 +

[
1
2
∂u

∂τ
+ (1 + u)

∂u

∂θ

]
∂u

∂τ
. (5.28)

To find the (stationary) traveling wave solutions, we take the quasi-static limit of (5.28),

for which we assume that the dynamics are essentially independent of time τ in the frame

moving at the wave phase velocity. Thus, in the quasi-static approximation we neglect

the time derivatives in (5.28), in which case we find that the quasistatic Langmuir wave

equation can be obtained from the Lagrangian

L(u, u′) = 1
2(1 + u)2u′2 − 1

2u
2, (5.29)

where we denote the co-moving derivative d
dθu = u′. Again, we note that the linearization

of L(u, u′) yields the Lagrangian of a simple harmonic oscillator 1
2(u′2 − u2). Applying

the Euler-Lagrange equations to (5.29), we obtain the second-order nonlinear oscillator

equation for the velocity field:

(1 + u)2u′′ + (1 + u)u′2 + u = 0. (5.30)

The nonlinearity in (5.30) derives from the convective derivative ∂
∂τ + u ∂

∂ζ which, in the

co-moving frame under the quasi-static approximation, is simply (1 + u) ddθ .

This equation is straightforward to solve numerically, assuming the normalized velocity

|u| < 1. We show some numerical solutions to the equations (5.30) in Fig. 5.2, where we

have determined the electric field via the definitions (5.9):

E = −(1 + u)u′. (5.31)

Note that while the nonlinearities do give rise to steepening velocity fields and sawtooth

electric field profiles as umax increases, they do not appear to yield any shift in the natural

frequency, in agreement with the analysis in Lagrangian (or material) coordinates.
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θ θ

E(θ)u(θ)

umax = 0.2 umax = 0.5 umax = 1.0

Figure 5.2: Nonlinear Eulerian velocity and electric field profiles for three different ampli-
tudes. Note that although the profiles steepen as umax increases, their wavelength remains
constant.

To make this analytically aparent, we first calculate the canonical action of the plasma

wave, and then show that the frequency is independent of the wave amplitude. While this

result is sufficient to show the Eulerian-Lagrangian correspondence, it does not (in our

opinion) illuminate the connection between the simple harmonic motion observed in the

Lagrangian perspective and the nonlinear Eulerian fields of Fig. 5.2. To better understand

the dynamics, we conclude this section with a parameterization of the nonlinear fields that

makes explicit the connection between the two viewpoints.

The Langmuir wave action

To determine the canonical action of the Langmuir wave, we use the Legendre trans-

formation to obtain the Hamiltonian associated with the Lagrangian (5.29):

p ≡ ∂L
∂u′

= (1 + u)2u′, H(p, u) = pu− L[u′(p, u), u], (5.32)

from which we obtain

H(p, u) =
p2

2(1 + u)2
+
u2

2
. (5.33)

Neglecting nonlinear terms, the Hamiltonian (5.33) is that of a simple harmonic oscillator,

and the frequency is constant. What is less obvious, however, is that the frequency is

independent of the amplitude even when one includes the nonlinear terms. To show this
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fact, we calculate the canonical action of the plasma wave:

J (H) =
1
2π

∮
du p(u,H) =

1
2π

∮
du (1 + u)

√
2H − u2, (5.34)

where the integral is evaluated along the particle orbit with energy H. To calculate (5.34),

note that p = 0 at the turning points u±, so that u± = ±
√

2H. The action integral is then

J (H) =
1
π

√
2H∫

−
√

2H

du (1 + u)
√

2H − u2 =
2H
π

π/2∫
−π/2

dθ cos2 θ(1 + sin θ) = H. (5.35)

Thus, in canonical action-angle variables, the Hamiltonian H(J ,Ψ) = J , and the fre-

quency (the time derivative of the angle) is equal to unity:

d

dθ
Ψ =

∂H
∂J

= 1. (5.36)

The canonical formalism shows that the frequency is independent of the Langmuir wave

amplitude for arbitrary levels of excitation, just as was found in the Lagrangian analysis.

While this is the desired explicit confirmation of what logic dictated must be true, it

does not further illuminate the correspondence between the simple harmonic motion of any

one plasma electron (or Lagrangian fluid element) and the manifestly nonlinear Eulerian

fields shown in Fig. 5.2. We remedy this in the following section.

Geometrical picture of the Eulerian fields

The second-order system (5.30) is analytically solvable, although only in an implicit

manner that does not immediately illuminate the nature of the problem. With a little

physical intuition, however, this solution can be sensibly interpreted. To aid this intuition,

we begin by writing two first-order equations for the fluid velocity and electric field. Using

the equation for the electric field (5.31), we see that the second order oscillator equation

(5.30) is equivalent to the system

du

dθ
= − E

1 + u
(5.37a)

dE
dθ

=
u

1 + u
. (5.37b)
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Multiplying (5.37a) by u and (5.37b) by E , adding the two equations and integrating yields

the first integral

u2 + E2 = u2
max. (5.38)

Using (5.38) to eliminate E from (5.37a), we find

1 + u√
u2

max − u2
du = −dθ. (5.39)

Integrating this equation, the velocity field u(θ) is given by the implicit relation√
1− u2

u2
max

− sin
(

u

umax

)
= θ. (5.40)

In general, such a formal solution is not particularly helpful. However, in this case (5.40)

describes a curtate cycloid, where the ratio between inner and outer radius is umax, as

shown in Fig. 5.3. Furthermore, at the wave-breaking limit, where the charge sheets are

just about to cross, umax = 1 and the velocity field is precisely a cycloid. By analogy,

increasing the amplitude beyond wave-breaking results in a prolate cycloid for which the

velocity is double-valued near umax = −1. This would violate the assumptions inherent in

the cold plasma model.

The cycloidic nature of the nonlinear plasma wave also clearly emerges from the La-

grangian picture, in which each particle undergoes simple harmonic motion with amplitude

umax in the (stationary) laboratory frame. In the Eulerian frame moving at the phase ve-

locity of the wave, this simple harmonic motion is given parametrically by

θ(s) = s + umax sin s (5.41)

u(s) = umax cos s. (5.42)

These are the parametric equations for a curtate cycloid and therefore for the Eulerian

velocity field. We note that there is a clear correspondence between the time τ for any

Lagrangian fluid element in the co-moving frame and the parameterization of the Eulerian

fields by s above. Since the electric field is out of phase with the “displacement” θ, the



Section 5.2. The cold, nonrelativistic plasma frequency 124

umax

θ

θ

u(θ)

u(θ)

(a)

(b)

Figure 5.3: Phase space trajectory of a charged particle in the moving Eulerian frame. In
this frame, (a) shows that the plasma electrons map out a curtate cycloid, with the ratio
to the inner and outer radius given by the ratio of the maximum velocity to the phase
velocity, umax ≤ 1. At wave breaking (umax = 1) the motion is on a cycloid as in (b).

parametric solutions for the Eulerian velocity and electric fields are given by

θ(s) = s + umax sin s (5.43a)

u(s) = umax cos s (5.43b)

E(s) = umax sin s. (5.43c)

This parametric representation trivially satisfies (5.37):

(1 + u)
du

dθ
= (1 + u)

du
ds
dθ
ds

= (1 + umax cos s)
−umax sin s

1 + umax cos s
= −umax sin s = −E(s)

(1 + u)
dE
dθ

= (1 + u)
dE
ds
dθ
ds

= (1 + umax cos s)
umax cos s

1 + umax cos s
= umax cos s = u(s).

We note that parametric equations for the nonlinear Langmuir wave similar to these were

discussed by [114], but this simple interpretation was not realized3. In this way, we have

determined an exact, parametric set of equations giving the Eulerian velocity field u(θ) and

electric field E(θ) for the nonlinear, nonrelativistic plasma wave. Plotting the parametric

equations (5.43) faithfully reproduce the nonlinear fields in Fig. 5.2.
3Their resulting equations were in terms of infinite sums, obtained using the Bessel-Anger equality.

Further investigation is required to determine to what extent these are equivalent.
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5.2.3 Canonical action in the nonlinear Langmuir wave potential

The phase of a particle in the weakly-driven plasma wave satisfies the equations of

motion

d

dτ
θ =

∂

∂p

p2

2
,

d

dτ
p =

∂

∂θ

[
φ(θ, τ)− V(τ) sin θ

]
. (5.44)

The system of equations (5.44) can be obtained from the Hamiltonian

H(p, θ; τ) =
1
2
p2 − φ(θ, τ) + V(τ) sin θ. (5.45)

To make contact with the Lagrangian description discussed previously, we determine the

period of the unperturbed (V → 0) Hamiltonian associated with the undriven Langmuir

wave. The period is obtained from the canonical action J in the usual manner

T (H) =
2π
ω(H)

= 2π
∂J

∂H
=

∂

∂H

∮
dθ p(θ,H) =

∮
dθ

1√
2 [H + φ(θ)]

(5.46)

We use the parametric representation for the Eulerian fields (5.43) given in the previous

section to calculate T (H). From the equation for the electric field (5.43c), the potential is

∂φ

∂θ
=
ds

dθ

dφ

ds
=

1
1 + umax cos s

dφ

ds
= −E(s) = −umax sin s

⇒ φ(s) = umax cos s + 1
2u

2
max cos2 s− 1

2

(
1 + u2

max

)
, (5.47)

where the constant term is added for future convenience. Furthermore,

dθ

ds
= 1 + umax cos s, (5.48)

and the period (5.46) is given by

T (H) =
∮
dθ

1√
2 [H + φ(θ)]

=
∮
ds

dθ

ds

1√
2 [H + φ(s)]

= 2

π∫
0

ds
1 + umax cos s√

2
[
H − 1

2(1 + u2
max) + umax cos s + 1

2u
2
max cos2 s

] . (5.49)
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To calculate the integral (5.49), we change variables to x ≡ cos s, and factor the term

under the square root, obtaining

T (H) =
2

umax

1∫
−1

dx
1 + umaxx√

2 [(1− x)(x+ 1)(x− x+)(x− x−)]
, (5.50)

where the roots x± are defined as

x± ≡
1

umax

[
−1±

√
2 + u2

max − 2H
]
. (5.51)

The integral (5.50) can be evaulated analytically using Gradshteyn and Ryzhik [53, pp

242-3]:

T (H,umax) =
4√

(1− x+)(−1− x−)

{(
1

umax
+ x−

)
K (β) + (1− x−) Π(α, β)

}
, (5.52)

with

β ≡

√
2(x+ − x−)

(1− x+)(−1− x−)
, α ≡ −2

−1− x−
, (5.53)

and the elliptic integral of the third kind defined as usual by

Π(α, β) ≡
π/2∫
0

dx
1(

1 + α sin2 x
)√

1− β2 sin2 x
. (5.54)

The cold plasma orbit is characterized by the energy H = 1 + 1
2u

2
max, with corresponding

roots x+ = x− = −1/umax. For this family of orbits, we have

β = 0, α = − 2umax

1− umax
, (5.55a)

K (β) =
π

2
, Π(α, β) =

√
1− umax

1 + umax
, (5.55b)

and the period reduces to a constant:

T (H) = 2π. (5.56)

Thus, we have again explicitly demonstrated what was previously determined in the La-

grangian formalism: the cold plasma has a period (or frequency) that is independent of

the energy. From the canonical equations

1 = ω(H) ≡ dΨ
dτ

=
∂H
∂J

, (5.57)
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Figure 5.4: Comparison of the cold cycloidic electric field (5.43c) and electrostatic potential
(5.47) to the simulation results of a slowly driven warm plasma which are taken from the
particle code of Ch. 2. (a) shows a plasma with kλD = 0.3 and φ1 ≈ 0.15, while (b) has
kλD = 0.1 and φ1 ≈ 0.45. The differences in both cases are too small to see here, of order
a few percent.

we see that for this orbit H = J , and changing the energy of the orbit requires a commen-

surate change in the action. Although this may appear to be a very specific finding, in

Fig. 5.4 we compare the cold electrostatic potential and electric field with that measured

in the driven simulation examples of Ch. 2. As shown in Fig. 5.4, the cold electrostatic

fields closely approximate those of a warm plasma. This indicates that the warm plasma

also has a (dynamically evolving) orbit for which the action is directly proportional to

the energy, namely, the orbit whose energy is H = 1 + 1
2u

2
max. While this orbit does not

necessarily correspond to that of the warm fluid velocity, its presence indicates that the

distribution action changes under slow evolution, as found in Ch. 2.
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Chapter 6

Conclusions and outlook

The central results of this thesis concerned the nonlinear, BGK-type distribution func-

tion describing weakly-driven Langmuir wave, and its application to devising a reduced

model of kinetic effects in Raman scatter: the so-called extended three-wave model of

Raman backscatter. We showed that the distribution function of a weakly-driven plasma

is approximately invariant in the action-angle plane, but with small translations in J to

self-consistently support the electrostatic potential. We then calculated both the nonlin-

ear frequency and the incoherent energy associated with the particle phase-mixing in the

wave, and used these to model a dynamic frequency and damping of the Langmuir wave

appropriate for an envelope model of the Langmuir wave. Finally, we presented some novel

aspects of one-dimensional warm fluid models and Langmuir waves.

There remain several questions and extensions of this work for future study. We

suggest some here, starting with the more straightforward extensions and proceeding with

more speculative applications.

The distribution as the wave shrinks: While we have indicated how the distribution

evolves as the Langmuir wave decreases in amplitude, we have not performed a careful

study and have only included its effect in the extended three wave model in a very

rudimentary manner. Therefore, while it should be rather straightforward, a more



129

detailed analysis of this effect is warranted.

Collisional effects: Collisions lead to diffusion in velocity-space that will tend to destroy

the BGK-type nonlinear distribution function and return the plasma to a Maxwellian

equilibrium. In this way, a competition will arise between the formation of the

nonlinear wave and the relaxation of the distribution to equilibrium. This in turn

will lead to heating of the plasma, modifying the distribution further. We think

this could lead to a rich interplay of additional physics that might nonetheless be

tractable to further analysis.

Trapped particle instability: The oscillations of the trapped particles in the electro-

static well can give rise to the growth of side-bands whose frequency is basically

ωp ± ωB, with ωB the bounce frequency in the wave. This instability leads to co-

alescence of neighboring phase-space buckets and a break-up of the plasma wave.

On the one hand, this is yet another competing mechanism for Raman scatter sat-

uration as proposed in Ref. [70], whose relative import must be compared with the

effects discussed in this thesis. On the other hand, our description of the nonlinear

BGK-type wave might form the basis for a more quantitative theory of the trapped

particle instability. The present analytical predictions of the instability growth rate

are based on a very crude model [26] for which the trapped particles are treated

as one macro-particle1. As has been noted Ref. [115], experimental measurements

of this instability in non-neutral plasmas were only in qualitative agreement with

the predictions of [26]. The BGK-type waves presented in Ch. 2 could be used as

an equilibrium distribution from which a perturbative analysis may yield a more

quantitatively predictive theory.

Nonlinear saturation of instabilities: Our results may find applications in extending

the work of Dewar regarding the saturation of general plasma instabilities through

nonlinear phase mixing. This is a rather vague suggestion, based on the success in
1This was also the paper that first described this effect theoretically.
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extending O’Neil’s theory on nonlinear Landau damping and on the fact that in the

small amplitude limit, we reproduced Dewar’s predictions.

Hamiltonian analysis: To our mind, we have only laid out the Hamiltonian framework,

and some work remains to expound its features. First, one might be able to make

the Lagrangian-to-Eulerian coordinate transformation explicit, thereby illuminated

to what extent this might be generalizable. Further, there is a cold relativistic

Hamiltonian formulation, and some indications that Eulerian Hamiltonians can be

generalized to include relativistic effects. We speculate there may be a warm fluid

Hamiltonian in Eulerian coordinates that is fully relativistic.

Relativistic plasma waves: There may be analogs of the nonlinear distribution includ-

ing relativity that may have relevance to the large amplitude, high phase-velocity

waves used to accelerate particles. In this case, they may be useful to illuminate some

aspects of particle self-trapping, dark current, and wave-breaking in these plasma-

based acceleration structures.

Nonlinear Landau damping as a “critical phenomenon”: There have been a num-

ber of fairly recent papers [88, 89, 90, 91] discussing the possibility of describing

nonlinear Landau damping as a critical phenomenon. In this case, the critical pa-

rameter is the initial electric field: if the electrostatic field begins below some critical

value Landau damping prevails and the asymptotic electric field vanishes, while if it

above this parameter the field attains some final, steady state value. We speculate

that the asymptotic, BGK-type distribution and its associated phase-mixed energy

may provide some additional insight into this subject.
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Appendix A

“Adiabatic” separatrix crossing

In this appendix we summarize and clarify the work by various authors [46, 47, 48, 116,

117, 118] on the slow crossing of separatrices, collecting various findings in a (hopefully)

more transparent manner and, in some cases, completing and correcting some results. In

style of presentation, we follow the recent work of Chow and Young [116], but use some ideas

and results from the first publication of general separatrix crossings given by Neishatdt

[46] and, independently and at the same time, by Cary, Escande, and Tennyson [47, 117].

Similar results and findings have also been published by Hannay [48], and Henrard [118];

the first work on slow separatrix crossing (for the symmetric case) was by Timofeev [45].

First, we present how near-separatrix motion can be analytically described in slowly-

varying systems. We then use this description (referred to in [41] as neo-adiabatic motion)

to calculate the change in the action of a particle as it slowly approaches, crosses, and

finally retreats from a separatrix. Furthermore, we will include some results regarding its

phase, for which there have been some discrepancy (between, for example, the paper of

Cary and Skodje [40] and that of Elskens and Escande [41]). Finally, we apply these results

to the slowly-varying pendulum, and discuss how this relates to particles being trapped in

a slowly-varying Langmuir wave (our focus in Chapters 2 and 3).

The style of this appendix is comprehensive: while many of the results have been
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published elsewhere, we felt a careful collection of the details involved in these calculations

might be of general use. Those readers interested in the physics without getting bogged

down in various manipulations might do well to basically skip sections A.3.3 through A.3.5.

The central results of relevance to slow crossing in symmetric Hamiltonians (i.e., the case

for particles being trapped in Langmuir waves) are given in Eqs. (A.103) and by Fig A.3.

A.1 Slow separatrix crossing: an introduction

Our discussion centers on a non-autonomous, one degree of freedom Hamiltonian

system. We parametrize the time dependence with the order one parameter λ, setting

λ ≡ εt for some small ε such that 0 ≤ ε� 1. Thus, the dynamical system is described by

the Hamiltonian function H(p, q;λ), and the equations of motion are given by

d

dt
q ≡ q̇ =

∂H
∂p

d

dt
p ≡ ṗ = −∂H

∂q

d

dt
H ≡ Ḣ = ε

∂H
∂λ

(A.1)

Although our presentation owes much to [46, 47, 116], this Appendix will consider

a general Hamiltonian with a “cat-eye” phase portrait as shown in Fig. A.1, rather than

the typical figure-eight separatrix. While the resulting phase spaces are topologically

equivalent (with our “trapped region” corresponding to that outside of the figure eight

separatrices), our choice is more directly relevant for the trapping calculations of the

Langmuir wave discussed in Ch. 2

To further simplify our discussion, we choose a specific realization of separatrix cross-

ing, from which generalized results are easily obtainable. Much like the bulk of particles

in the Langmuir wave of previous chapters, we assume that trajectories begin above the

separatrices in region a of Fig. A.11, and that the separatrices slowly increase in size, such

that eventually the separatrix intersects the initial, unperturbed orbit. When this hap-

pens, the period logarithmically diverges and traditional adiabatic theory breaks down, so

that “near-separatrix” or “neo-adiabatic” motion must be considered. The basic physics
1This is an unfortunate change in notation from the previous chapters, but due to other numerical sub-

and superscripts introduced here, we feel that it is unavoidable.
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of approximating the motion when traditional adiabatic theory breaks down is contained

in the following two statements:

1. The motion near the x-point is described by a hyperbolic Hamiltonian system with

linear equations of motion.

2. The motion outside of the linearized region near the x-point approximately proceeds

along the separatrix.

In what follows, we quote a few rigorous proofs relevant to the previous two statements.

We then use these results to determine the action evolution and the asymptotic distribu-

tion in canonical angle (assuming that it is initially uniform) as one nears and crosses a

separatrix. We have found the analysis and derivation given by Chow and Young [116] to

be pedagogically appealing, although their actual results are not completely correct nor

generalizable. Nevertheless, we keep our presentation much in their spirit, and explain

how this work relates to the physics literature [40, 41, 46, 47, 48], and clear up a few

discrepancies therein.

A.1.1 Near-separatrix motion in the autonomous system

We begin by applying the formalism of near-separatrix motion to the autonomous

(ε = 0) system. In this case, of course, the system is integrable and λ is merely a constant

parameterizing the system; this presentation serves primarily as an introduction to our

notation. We take as convention that the energy is negative between the separatrices

and positive outside, such that the energy increases as the orbits explore larger regions

of phase space. In some small neighborhood of the hyperbolic equilibrium of Fig A.1, we

can describe the dynamics as a linear system in the usual way. We align the coordinate

axes along the stable and unstable directions: the y-axis along the unstable eigenvector

with eigenvalue +µ(λ), and the x-axis along the stable eigenvector with eigenvalue −µ(λ).

Using this construction, there exists a canonical transformation H(p, q;λ) → h(x, y;λ)
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such that the Hamiltonian is given locally about the x-point by

h(x, y;λ) = µ(λ)xy, (A.2)

with linearized equations of motion

ẏ =
∂h

∂x
= µy ẋ = −∂h

∂y
= −µx. (A.3)

Within this locally linear neighborhood, we make the following convenient construc-

tion. First, we inscribe the square D as shown in Fig A.1, within which the linear equations

(A.3) hold. The boundary of D , denoted Σ, is given by

Σ :
{(
y = ±d, |x| ≤ d

)
∪
(
x = ±d, |y| ≤ d

)}
. (A.4)

The absolute value of the energy at the corners of the square is

H ≡ max
D

|h| = µd2. (A.5)

Inside D , the dynamics is simple hyperbolic motion. The trajectories join adjacent seg-

ments of the boundary Σ along hyperbolae of constant h. For each trajectory there is a

point of closest approach, defined as the point along the flow whose Euclidean distance to

the x-point is a minimum [in terms of (x, y)]. Using the equations of motion (A.3), one

can easily show that the set of points of closest approach form the lines |x| = |y|, and are

represented as the dotted lines in Fig A.1 labeled C; these lines are defined via

C :
{(
x = y, µx2 ≤ H

)
∪
(
x = −y, µx2 ≤ H

)}
. (A.6)

Armed with this construction (the linearized region D with boundary Σ and the lines

of closest approach C), we proceed to describe the dynamics of the trajectories near the

separatrix. Inside the region D , the physics we require is captured by two maps induced

by the flow: the map from the boundary Σ to the line of closest approach C, and the

subsequent map from C to Σ. Since energy is conserved by the linearized system, these

maps are functions of the single parameter h, denoted by

LΣ→C(h) : Σ → C at constant h LC→Σ(h) : C → Σ at constant h. (A.7)
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Figure A.1: Autonomous dynamics near a “cat-eye” (pendulum-like) separatrix. L maps
points through the linearized region D , while the unperturbed global map G0

a maps points
between the boundaries Σ about the separatrix.

As an example, in Fig A.1, the map LΣ→C(h) takes the point (d, y) to the point
(√
dy,

√
dy
)
,

the energy being h = µyd at both points. Similarly, LC→Σ(h) maps the point
(√
dy,

√
dy
)

to (y, d). Another property of the linear maps L that we require is the time it takes the

flow to be mapped according to (A.7). This can easily be determined by integrating the

equations of motion (A.3) for the transition (d, y) 7→
(√
dy,

√
dy
)
; due to symmetry, the

other transit times will be equal. Integrating the hyperbolic equations of motion, we find

that the period for the maps L describing the linearized motion (A.7) are both

TL(h) =
1
µ

ln

√
d

y
=

1
2µ

ln
µd2

µdy
=

1
2µ

ln
H

|h|
. (A.8)

At this stage there is no apparent reason not to concatenate the linear maps L into

one mapping amongst the boundaries Σ → Σ (indeed, this is done by [116]). However, as

tacitly recognized in the physics literature [46, 47], defining the maps between the points

of closest approach is the simplest way in which to include the order ε correction to the

action near the separatrix. This correction is crucial for deriving consistent results.

Outside of the region D , the flow proceeds close to the separatrix. In this case, we

content ourselves with the mapping amongst the boundaries Σ. For ε = 0, conservation

of energy again implies that points along one boundary are mapped to the next at an
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identical distance from the axes. In Fig. A.1, a point beginning at (d, y) is mapped to the

point (y, d) by the flow. Since energy is not conserved in the non-autonomous system, we

define the unperturbed global maps G0
r , with the superscript indicating that ε = 0, and

the subscript denoting the region in which the orbit lives, to be given by

G0
a : (x, d) 7→ (d, x) G0

b : (−x,−d) 7→ (−d,−x). (A.9)

The period of a global circuit of the separatrix will depend on the particular form of the

Hamiltonian H(p, q;λ). For now, we will use the function TGr(h, λ) to denote the transit

time required for the trajectories to map a point about the separatrix according to G0
r .

Later, we will relate the function TGr to quantities involving the unperturbed Hamiltonian.

Next, we construct the mappings that describe one closed orbit in phase space, i.e.,

those that increase the canonical angle by 2π. We take these revolution maps R to start

and end on the line of closest approach C, the form of which differ depending on the sign

of the energy h. For h > 0, the orbit is either above or below the separatrices; for a circuit

in region a or b the map is formed by composing the maps L and G0
r in the following way

R0
a(h) : LΣ→C(h) ◦G0

a(h) ◦ LC→Σ(h) r = a, b (A.10a)

R0
b(h) : LΣ→C(h) ◦G0

b(h) ◦ LC→Σ(h). (A.10b)

When h < 0, the orbit traces along both separatrices, but may start by first revolving near

region a or b depending upon which half of C it originated. Thus, these maps are given by

the following compositions of the maps from (A.10)

R0
ab(h) : R0

b(h) ◦R0
a(h) R0

ba(h) : R0
a(h) ◦R0

b(h). (A.11)

Note that the map Rab(h) first traces the orbit along the separatrix between region c and

a, and then between region c and b, while the opposite is true for the map Rba(h). Later,

we will refer to the maps depicting one nearly (for ε 6= 0) periodic orbit, (A.10) and (A.11),

as one revolution or step. Using the periods TL and TGr of the maps composing (A.10)
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and (A.11), we see that the period T (h) of the motion is given by

TRr(h > 0) = TGr +
1
µ

ln
H

|h|
(A.12a)

TR(h < 0) = TGa + TGb
+

2
µ

ln
H

|h|
. (A.12b)

Finally, we calculate the action J(h) associated with a near-separatrix orbit of energy h.

To begin, we use the identity

dJ

dh
=
dJ

dt

dt

dh
=
∂h

∂θ

(
∂h

∂t

)−1

=
(
dθ

dt

)−1

=
1

ω(h)
=

1
2π
T (h), (A.13)

from which we obtain a differential equation for the action J(h):

dJ

dh
=

1
2π
T (h). (A.14)

Using the period of the unperturbed system (A.12), we can easily integrate the differential

equation (A.14) from the separatrix to an orbit of energy h. For h > 0, we have

I∫
Yr

dJ ′ =
1
2π

h∫
0

dh′ TRr(h
′) ≈ 1

2π

[
hTGr +

h

µ

(
1 + ln

H

|h|

)]
. (A.15)

The case with h < 0 is similarly derived. Rearranging the expression above, we find that

the action associated with an orbit of energy h of near-separatrix motion is:

J(h > 0) = Yr(λ) +
h

2π

[
TGr +

1
µ

(
1 + ln

H

|h|

)]
, r = a or b (A.16a)

J(h < 0) = Ya(λ) + Yb(λ) +
h

2π

[
TGa + TGb

+
2
µ

(
1 + ln

H

|h|

)]
(A.16b)

A.2 Near-separatrix motion in the drifting system

Having introduced our notation and some aspects of near-separatrix motion using the

autonomous system, we now permit H(p, q;λ) to be a slow function of time, assuming

that λ̇ = ε for some small but non-zero ε. In this case, one might expect the motion to

be similarly separable into a linearized system near the hyperbolic equilibrium and near-

separatrix motion far from the x-point, and this is indeed the case. Although neither the
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Figure A.2: Diagram of near-separatrix motion in the drifting (ε 6= 0) system. The linear
maps L give the transit through region D at constant h, while the global map Ga about
the separatrix changes the energy by the amount ∆ha.

stable and unstable manifolds nor the locally linear coordinates in the perturbed system

will, in general, be identical to those for which ε = 0, linear equations of motion similar

to (A.3) still hold inside an analogous region D , and locally linear maps L with identical

properties can be constructed, as indicated in Fig A.2. Since the energy is no longer

conserved outside of the region D , however, motion along the separatrix will not return to

D with the same energy. Thus, the distance from the axes will change due to a revolution

along the separatrix, as indicated by the offset δ in Fig A.2, and the perturbed maps Gr

will have different properties than the unperturbed G0
r .

First, we address the motion near the x-point, where we expect locally linear and

hyperbolic motion. To be more rigorous, we include a statement of a theorem proved by

Chow and Young [116] (similar results were also derived in [41, 47, 118]):

Theorem 1 Suppose that for each λ of the unperturbed (ε = 0) Hamiltonian H(p, q;λ)

there exists hyperbolic equilibria at the x-points (p∗λ, q
∗
λ) with associated eigenvalues ±µ(λ).

Then, there exists a finite neighborhood about the perturbed x-points (p∗λ, q
∗
λ) for which a

smooth canonical coordinate change and reparametrization of time puts H into the locally

hyperbolic form: H(p, q;λ) → h(x, y;λ) = µ(λ)xy.
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While this theorem does not, in and of itself, indicate how one might perform the

required transformation2, it does tell us that we can apply the results for the autonomous

system to the time-dependent case near the hyperbolic equilibrium. Thus, in the region

D , the expressions for the locally linear maps L and the periods TL are:

LΣ→C(h) : Σ → C at constant h TL(h) =
1
2µ

ln
H

|h|
(A.17a)

LC→Σ(h) : C → Σ at constant h TL(h) =
1
2µ

ln
H

|h|
. (A.17b)

On the other hand, the motion away from the hyperbolic region D changes for the

drifting Hamiltonian, as does the form of the maps Gr between boundaries. Since the

energy is no longer conserved, the maps Gr will no longer close upon themselves. Instead,

Gr will depend, in general, on ε and λ. Likewise, the periods TGr for the motion along the

separatrix will also become functions of ε and λ. Thus, the maps and the transit times for

the global motion take the form

Ga : (d, y) 7→ (y − δ(ε, λ), d) TGa = TGa(h, ε, λ) (A.18a)

Gb : (−d,−y) 7→ (−y + δ(ε, λ), −d) TGb
= TGb

(h, ε, λ). (A.18b)

As it now stands, the results obtained for the autonomous system do not appear to be

directly applicable. Nevertheless, it was shown in [46, 47, 116] that the mapping Gr and

the functions TGr in (A.18) can be considered constant to lowest order in ε during the

separatrix crossing. We summarize the series of proofs in [116] with the theorem:

Theorem 2 Suppose that the action of the separatrix is given by Y , with slow variation

given by Ẏ = ε d
dλY . Then, the following limit holds:

lim
ε→0

δ(ε, λ)
ε

= −2π
µd

dY

dλ
(A.19)

Furthermore, in the limit ε → 0, the size of the domain D vanishes, so that in this limit,

the functions δ(ε, λ), d
dλY , and TG(h, λ, ε) can be considered constant during the approach,

cross, and departure from the separatrix.
2Henrard [118] describes how such a transformation can be affected in a general system. He finds that

the error terms in the transformation H → h scale as |h|2 � |h|; in this work we will not concern ourselves
with error analysis, concentrating instead on the lowest order results.
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The boundaries of the global return maps Gr are identified with the Hamiltonian

h = µxd. In this way, a change in the coordinate x by δ due to the map G has an

associated change in the energy given by ∆h = −µdδ. Thus, we see that in the limit

ε→ 0, the global return maps Gr result in a change in energy given by

Ga : Σ → Σ such that ∆h ≡ ∆ha = −2πε
dYa
dλ

(A.20a)

Gb : Σ → Σ such that ∆h ≡ ∆hb = −2πε
dYb
dλ

. (A.20b)

Note that the sign in (A.20) is such that for separatrices increasing in size, the energy

decreases. Thus, orbits initially rotating in region a, for example, will slowly lose energy

until they are trapped and librate in region c. Furthermore, the result (A.20) corresponds

to the energy change given by Eq. (4) from [46]. It also identical to Eq. (45a) from [47],

while the constancy of the parameters agrees with Eq. (56)3.

A.2.1 Revolution mappings in the drifting system

As the separatrix changes size, we assume that trajectories will eventually enter the

region D near the corner with energy H ≥ |h| > H − |∆h|. The near-separatrix motion

proceeds via a series of revolutions about the separatrix. Following previous authors, we

will refer to these as steps, with each step starting and ending on the line of closest approach

C (the dotted lines in Fig. A.2 where |x| = |y|). In this way, we have four different steps,

corresponding to the simple generalizations of (A.10) and (A.11):

Ra(h > 0) : LΣ→C(h+ ∆ha) ◦Ga(h) ◦ LC→Σ(h) : C
[
h
]
7→ C

[
h+ ∆ha

]
(A.21a)

Rb(h > 0) : LΣ→C(h+ ∆hb) ◦Gb(h) ◦ LC→Σ(h) : C
[
h
]
7→ C

[
h+ ∆hb

]
(A.21b)

Rab(h < 0) : Rb(h+ ∆ha) ◦Ra(h) : C
[
h
]
7→ C

[
h+ ∆ha + ∆hb

]
(A.21c)

Rba(h < 0) : Ra(h+ ∆hb) ◦Rb(h) : C
[
h
]
7→ C

[
h+ ∆ha + ∆hb

]
. (A.21d)

Note that the change in energy ∆hr resulting from the global map Gr is reflected in the

definitions (A.21). Furthermore, (A.21) represents an important departure from the work
3In [47] Cary et al. express everything in terms of areas rather than actions; some later work by the

same authors change this convention.
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of Chow and Young [116]. They defined a step as the map between the boundaries Σ;

for example, in our notation, they would have Ra(h) begin with the map LΣ→C(h). As

alluded to earlier this difference (reflected in the physics literature [46, 47]), while subtle,

is important to obtain consistent [to O(ε)] results. Finally, we include the transit time of

the revolution map Rr(h). This is simply a sum of the composing maps from (A.21):

TRr = TL(h) + TGr + TL(h+ ∆hr) =
1
2µ

ln
H

|h|
+ TGr +

1
2µ

ln
H

|h+ ∆hr|
. (A.22a)

TRab
=

1
2µ

ln
H

|h|
+ TGa +

1
µ

ln
H

|h+ ∆ha|
+ TGb

+
1
2µ

ln
H

|h+ ∆ha + ∆hb|
(A.22b)

TRba
=

1
2µ

ln
H

|h|
+ TGb

+
1
µ

ln
H

|h+ ∆hb|
+ TGa +

1
2µ

ln
H

|h+ ∆hb + ∆ha|
(A.22c)

A.2.2 The adiabatic invariant through order ε

We will find that as a trajectory approaches, crosses, and departs from a separatrix,

there in an induced shift of the action by an amount O(ε). In order to be consistent, we

must therefore calculate the adiabatic invariant through order ε, i.e., we must find the

lowest order correction to the action. By neglecting such a correction, the work of Chow

and Young [116] is not directly applicable to general Hamiltonians, while their expressions

for the change in action due to either the approach or the departure are incorrect even for

symmetric Hamiltonians. In this case, they find that the action changes by an amount ∼

lnN , where N is the number of steps, while we find no such dependence4. This discrepancy

arises because the authors in Ref. [116] calculate the change in the action between successive

intersections of the boundary Σ, rather than the line of closest approach C as we (and the

works [46, 47]) do. While in the symmetric Hamiltonian the O(ε) correction to J vanishes

along C, it does make a contribution along the boundary Σ that is neglected in [116].

To calculate the adiabatic invariant through first order in ε, we use the results of Cary,

Escande, and Tennyson [47] who, in their Appendix A, show how the first order correction

is related to the unperturbed Hamiltonian. Rather than repeat their arguments, we just
4The terms ∼ ln N from the approach and departure cancel in [116], so that their expression for the

total change in action is correct.
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quote the result, with the appropriate factors of 2π to change their areas to actions; the

improved invariant J at the point of closest approach C is given by

J = J + επ
∂J

∂h

∂J

∂λ
− ε

2π

∮
dq

∂p

∂h
(q, h;λ)

q∫
qC

dq′
∂p

∂λ
(q′, h;λ), (A.23)

where the integrals proceed along the unperturbed flow, the lower limit qC has been chosen

to be the coordinate along the line of closest approach, and the momentum is obtained by

solving the unperturbed Hamiltonian H(p, q;λ) = EY + h, with EY equal to the energy of

the separatrix. The expression (A.23) can be simplified according to whether the trajectory

is untrapped/rotating (h > 0) or trapped/librating (h < 0). For this calculation, we will

find it convenient to introduce the coordinate qs, defined to be the “half-way point” such

that the action mapped out by the unperturbed orbit between the point of closest approach

qC and qs is one-half the action of the unperturbed orbit:

1
2π

qs∫
qC

dq p =
1
2π

qC∫
qs

dq p =
1
4π

∮
dq p ≡ 1

2
J(h, λ). (A.24)

Using this definition, the expression for J in (A.23) can be simplified by breaking up the

loop integral into two “halves” as

1
2π

∮
dq

∂p

∂h

q∫
qC

dq′
∂p

∂λ
=

1
2π

qs∫
qC

dq
∂p

∂h

q∫
qC

dq′
∂p

∂λ
+

1
2π

qC∫
qs

dq
∂p

∂h

q∫
qC

dq′
∂p

∂λ
. (A.25)

The second integral in (A.25) can be simplified outside the separatrices by noting that

1
2π

qC∫
qs

dq
∂p

∂h

q∫
qC

dq′
∂p

∂λ
=

1
2π

qC∫
qs

dq
∂p

∂h

qC∫
qC

dq′
∂p

∂λ
− 1

2π

qC∫
qs

dq
∂p

∂h

qC∫
q

dq′
∂p

∂λ

≡ π
∂J

∂h

∂J

∂λ
− 1

2π

qC∫
qs

dq
∂p

∂h

qC∫
q

dq′
∂p

∂λ
, (A.26)

where we used the definition of qs (A.24) and J . With the simplifications (A.25) and

(A.26), the expression for the improved adiabatic invariant becomes

J = J − ε

2π

qs∫
qC

dq
∂p

∂h

q∫
qC

dq′
∂p

∂λ
+

ε

2π

qC∫
qs

dq
∂p

∂h

qC∫
q

dq′
∂p

∂λ
. (A.27)
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We see that the first integral in (A.27) is over the first “half” of the orbit, while reversing

the limits of the second integral yields the same integration, only over the second orbit

“half.” Thus, the correction to the action between the separatrices is given by a number

that is non-zero only if some asymmetry causes the two integrals in (A.27) to be different.

The final simplification can be made by setting h = 0 in the integrals in (A.27), which

implies the integration proceeds along the separatrix, so that qC = 0. Cary et al. have

shown that this introduces a small error of O(h), consistent with Theorem 2. Thus, in

regions a and b, the invariant can be written through O(ε) as

r = a, b : Jr = Jr + εDr, (A.28)

where Dr is a constant obtained by integrating along the flow:

Dr = − 1
2π

qr∫
0

dq
∂p

∂h
(q, h = 0;λ)

q∫
0

dq′
∂p

∂λ
(q′, h = 0;λ)

+
1
2π

0∫
qr

dq
∂p

∂h
(q, h = 0;λ)

0∫
q

dq′
∂p

∂λ
(q′, h = 0;λ),

(A.29)

In the trapped region c, the expression for the invariant is given by (A.23) with the

action Jc being the sum along the two separatrices. Furthermore, we include the fact that

region c has two points of closest approach qC with subscripts 1 and 2, and assume for the

present that the flow proceeds from qC1→ qC2 adjacent to region b, while the flow qC2→ qC1

is along region a. This will be what we require for a crossing from region a into region c.

Between the separatrices, (A.23) is

J = Ja + Jb + επ

(
∂Ja
∂h

+
∂Jb
∂h

)(
∂Ja
∂λ

+
∂Jb
∂λ

)

− ε

2π

∮
dq

∂p

∂h
(q, h;λ)

q∫
qC1

dq′
∂p

∂λ
(q′, h;λ).

(A.30)

We simplify the integral in (A.30) by breaking it up over the two (upper and lower) halves.

Remembering that the integral from qC1 → qC2 is along region b while qC2 → qC1 is along
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region a, we have, suppressing the dependence of p on q, h and λ,

∮
dq

∂p

∂h

q∫
qC1

dq′
∂p

∂λ
=

qC2∫
qC1

dq
∂p

∂h

q∫
qC1

dq′
∂p

∂λ
+

qC1∫
qC2

dq
∂p

∂h

q∫
qC1

dq′
∂p

∂λ

=

qC2∫
qC1

dq
∂p

∂h

q∫
qC1

dq′
∂p

∂λ
+ (2π)2

∂Ja
∂h

∂Jb
∂λ

+

qC1∫
qC2

dq
∂p

∂h

q∫
qC2

dq′
∂p

∂λ
. (A.31)

The integrals in (A.31) can be simplified in the same manner as was done for trajectories

outside region c, resulting in the following expression for J in the trapped region

Jc = Ja + Jb + ε

[
π

(
∂Jb
∂h

∂Ja
∂λ

− ∂Ja
∂h

∂Jb
∂λ

)
+Da +Db

]
. (A.32)

The formula (A.32) can be further evaluated by using the expressions for the near separatrix

actions (A.16). At lowest order, (A.16) yields the following:

∂Jr
∂h

=
1
2π

[
TGr +

1
µ

ln
H

|h|

]
∂Jr
∂λ

=
dYr
dλ

(A.33)

which can be inserted into (A.32). Collecting the results for the improved [to O(ε)] invari-

ant both outside the separatrices [(A.28) and (A.29)], and between the separatrices [(A.32)

and (A.33)], with the near-separatrix actions (A.16), we have

J (h > 0) = Yr(λ) +
h

2π

[
TGr +

1
µ

(
1 + ln

H

|h|

)]
+ εDr (A.34a)

J (h > 0) = Ya(λ) + Yb(λ) +
h

2π

[
TGa + TGb

+
2
µ

(
1 + ln

H

|h|

)]
+

ε

2µ
dYa
dλ

[
µTGb

+ ln
H

|h|

]
− ε

2µ
dYb
dλ

[
µTGa + ln

H

|h|

]
+ ε(Da +Db),

(A.34b)

with the constant Dr defined by the following integrals along the flow:

Dr = − 1
2π

qr∫
0

dq
∂p

∂h
(q, h = 0;λ)

q∫
0

dq′
∂p

∂λ
(q′, h = 0;λ)

+
1
2π

0∫
qr

dq
∂p

∂h
(q, h = 0;λ)

0∫
q

dq′
∂p

∂λ
(q′, h = 0;λ).

(A.35)

These results are in agreement with those of Neishtadt [46], who parametrizes (A.34) with

the letters a, bi, and di, (corresponding to our quantities µ, TGr , and Dr, respectively).
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A.2.3 Definitions and notation for the separatrix crossing

To analyze the approach and crossing of the separatrix, we take as initial conditions a

particle with a given action J = J− and variable canonical angle Ψ before the trajectory

enters the region D . Once the energy |h| ≤ H, the evolution proceeds according to the

aforementioned near-separatrix motion. In this case, we track how the invariant J evolves

as a trajectory successively intersects the line of closest approach C. In other words, we

calculate the change in action J from each step of the revolution map Ra (or Rb, Rab,

Rba). Furthermore, we will (approximately) calculate the final phase of the particle.

According to (A.20), a trajectory experiences a change in energy equal to ∆ha after

one revolution in region a. Thus, each orbit first crosses the line of closest approach C in

D with energy H − |∆ha| ≤ h < H. Furthermore, we see that a set of trajectories whose

initial energies span an interval of |∆ha| along C is mapped by Ra to an adjacent interval

along C, also of size ∆ha. For this reason, we will find it useful during the approach to

separate the energy of a trajectory into its whole and fractional parts of ∆ha:

h−n ≡ (n+ ξ)∆ha, n ∈ Z+, ξ ∈ (0, 1], (A.36)

and set the maximal energy to be an integral multiple of ∆ha

H ≡ (N + 1) |∆ha| , N ∈ Z � 1. (A.37)

From the definitions (A.36) and (A.37), we see that a trajectory approaching the separatrix

first crosses C with energy given by h−N = −(N+ξ)∆ha. Furthermore, after N revolutions

(corresponding to N steps of the map Ra), the set of first crossings with energies in the

range given by h−N will be mapped to the interval right near the separatrix: |∆ha| ≥ |h0| =

ξ |∆ha| > 0. In the next step, these trajectories will cross; the specifics are described by

the parameter ξ ∈ (0, 1]. For this reason, we refer to ξ as the crossing parameter. We will

also see that the crossing parameter is related to the initial phase of the trajectory, and

hence we refer to quantities that depend on ξ as phase-dependent.
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In the spirit of the definition (A.36), we use subscripts of negative integers and zero

to label quantities during the approach, while positive integral subscripts label steps of

the departure. These all depend on the crossing parameter ξ [see, e.g., (A.36)]. When

possible, however, we wish to express the various calculations in terms of ξ-independent

(i.e., phase-independent) quantities. For this reason, we define the pseudo-crossing time tx

as the time when the action of the separatrix equals that of the initial trajectory. Another

phase-independent quantity is the initial action J (t−) = J−, while we will show that the

asymptotic action J+ at the “end” of the crossing depends on ξ. As some examples of the

notation, we include:

tx : Ya(tx) = J(t−) = J−

t− < t−N < t−(N−1) < · · · < t−1 < t0 < tx < t1 < · · · < tN < t+

hn = h(tn), Jn = J (hn), λn = εtn,
{
n ∈ Z : −N ≤ n ≤ N

}
.

Note that quantities subscripted by integers depend on the crossing parameter, while

J−, Ya(tx), and tx do not. Further, for n ∈ [1, N ], after N − n revolutions a trajectory

with initial energy h−N is mapped to one of energy h−n:

Ra
(
h−(n−1)

)
◦Ra

(
h−(n−2)

)
◦ · · · ◦Ra

(
h−N

)︸ ︷︷ ︸
N−n times

: C
[
h−N

]
7→ C

[
h−n

]
. (A.38)

To simplify our derivation of the change in the adiabatic invariant, we separate the

crossing into the approach to the separatrix, the crossing of the separatrix, and the depar-

ture from the separatrix. Thus, for the total change in the action ∆J , we have

∆J ≡ J+ − J− = (J+ − JN )︸ ︷︷ ︸
match final

+(JN − J1)︸ ︷︷ ︸
depart

+(J1 − J0)︸ ︷︷ ︸
cross

+(J0 − J−N )︸ ︷︷ ︸
approach

+(J−N − J−)︸ ︷︷ ︸
match initial

.

We will show that the first and last “matching” terms are negligible, while the approach

and departure depend on ξ and are of order ε. The crossing term is also ξ-dependent,

and is O(ε) or, in the asymmetric case, O(ε ln ε). Finally, we will determine the degree to

which an initially phase-mixed distribution remains phase-mixed. We do this by relating



Section A.2. Near-separatrix motion in the drifting system 147

the time required for the crossing to the angle; in analogy with the action, we determine

∆t ≡ tN − t− = (tN − t1)︸ ︷︷ ︸
depart

+(t1 − t0)︸ ︷︷ ︸
cross

+(t0 − t−N )︸ ︷︷ ︸
approach

+(t−N − t−)︸ ︷︷ ︸
initial

.

We will see that the time difference determines, to zeroth order, the degree to which an

initially uniform in canonical angle distribution of trajectories remains uniform in angle.

A.2.4 The period TGr , the maximal energy H, and previous work on slow

crossing theory

To conclude the introductory remarks, we will make a few comments on the heretofore

unspecified quantities: the global period TG and the maximal energy H. While the physics

literature makes some reference to TG (these are the bi parameters of Neishtadt [46], they

are specified as an integral by Cary et al. [47]), no clear reference is made to the energy H.

Furthermore, the number of steps N is either not clearly denoted (as in [46]) or taken to

infinity (by [47]). In this section we express these quantities in terms of the unperturbed

Hamiltonian H, and then relate them to the various definitions in [46] and [47].

We express the number of steps N in terms of H by summing the changes in energy

over the N steps of the approach and the one step of the crossing. Since we assume the

parameters to be constant, summing (A.20) yields

2πε
N∑
n=0

∣∣∣∣dYadλ
∣∣∣∣ = 2πε(N + 1)

∣∣∣∣dYadλ
∣∣∣∣ = N+1∑

n=1

|∆ha| = (N + 1)|∆ha| ≡ H

Thus, we see that

N + 1 =
1
2π

∣∣∣∣dYadλ
∣∣∣∣−1(H

ε

)
, (A.39)

and the number of steps is O(H/ε). Neishtadt indicates that H ∼ O(
√
ε/ ln ε), implying

that N ∼ O(ln ε/
√
ε) � 1, while Elskens and Escande take N ∼ O(ε−1/3), and Cary et

al. claim N ∼ O(ε−1/5), although we do not agree with Cary’s error analysis.

Rather than determine an expression for the global period TG(h), we use the fact (to

be demonstrated) that the period TG and the number of steps N appear in final expressions



Section A.2. Near-separatrix motion in the drifting system 148

Description This work Neishtadt Cary et al.

Separatrix actions Yr
1
2πSi

1
2πYα

Linearized frequency µ a ω

Global period TGr bi ???

Period of R(h > 0) TRr Ti Tα

O(ε) correction Dr di gα

∆J parameter HeµTGr ??? hα ≡ lim
h→0

heTα(h)

Crossing parameter ξ ∈ (0, 1] ξi, ξ∗ Mα

Table A.1: Comparison of parameter definitions for slow separatrix crossing

in the following manner:

∆J ∼ ε
[
ln(N + 1) + µTGa

]
= ε ln

[
(N + 1)eµTGa

]
= ε ln

(
HeµTGa

)
− ε ln

(
2πε

∣∣ d
dλYa

∣∣) ,
where we have used (A.39). Thus, only the combination HeµTG is required to express the

change in the invariant. Since the period for small h diverges as ln |h|, we could follow

Cary et al. and define the O(1) parameter hα as they do hα ≡ limh→0 he
µTGα , but we feel

like this obscures the physics in our discussion. For now we leave it unspecified, but note

that the period can be obtained using

2π
TGa

=
∂H
∂J

∣∣∣∣
H=EYa−H

2π
TGb

=
∂H
∂J

∣∣∣∣
H=EYb

−H
, (A.40)

where EY is the energy the separatrix. Finally, we gather in Table A.1 the various quanti-

ties that arise in our work and that of Neishtadt [46] and Cary et al. We denote by (???)

those quantities that either do not arise (in the case of [46]), or, are defined in terms of

other things that we have not specified (as in Ref. [47]).

Thus far, our discussion has been general in that it will serve to describe separatrix

crossing from one region to another due to an arbitrary combination of the separatrices

along region a and b slowly growing or shrinking. We have found that to continue down

this path of full generality leads to a confusion of notation that only obscures the physics
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and subsequent results. Therefore, we choose to analyze the particular case of a trajectory

beginning in region a that crosses the separatrix to become trapped in region c due to a slow

growth of both separatrices. The generalizations to other configurations is straightforward,

but omitted.

A.3 Action-angle evolution as trajectories approach, cross,

and depart from the separatrix

In this section we calculate the change in the action and the angle due to a slow

separatrix crossing. Here, we assume that trajectories begin in region a, and that both

separatrices increase in time such that as t → +∞, all orbits are trapped in region c.

The order of the calculation is as follows. First, we discuss the change in the invariant

J due to one revolution in region a, and the corresponding time over which this occurs.

Second, we use these results to show that the invariant changes negligibly as one enters the

near-separatrix region (matching to J to J−), and show that the initial canonical angle

is linearly related to the crossing parameter. Third, we sum the changes in the invariant

and calculate the time elapsed during the approach to the separatrix. Fourth, we calculate

the invariant change due to the crossing of the separatrix, along with the required time for

such a crossing. Fifth, we sum the changes in the invariant and calculate the time elapsed

over the departure from the separatrix. Adding the changes to J gives the final action,

while the elapsed time yields the distribution in the canonical angle.

A.3.1 Change in the invariant and time elapsed from one step by Ra

Here, we discuss how the invariant of a trajectory changes due to one step in region a,

i.e., the change in J (h) due to the revolution map Ra(h). The invariant of a frozen orbit is

given by (A.34a). As indicated by (A.38), an orbit with initial energy h−N has an energy

h−n along C after (N − n) steps of the map Ra. Using this frozen energy, along with the

definitions (A.36) and (A.37), we see that (N − n) revolutions result in a trajectory with
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frozen first order invariant given by

J (h−n) = Ya(λ−n)− (n+ ξ)
∆ha
2πµ

[
µTGa + 1 + ln

N + 1
n+ ξ

]
+ εDa

= Ya(λ−n) + (n+ ξ)
ε

µ

dYa
dλ

[
µTGa + 1 + ln

N + 1
n+ ξ

]
+ εDa, (A.41)

where we have used (A.20) to eliminate ∆ha in favor d
dλYa. After an additional revolution,

J is given by (A.41), with n→ (n− 1):

J
(
h−(n−1)

)
= Ya

(
λ−(n−1)

)
+ (n− 1 + ξ)

ε

µ

dYa
dλ

[
µTGa + 1 + ln

N + 1
n− 1 + ξ

]
+ εDa. (A.42)

Furthermore, the action of the separatrix Ya after step (N − n + 1) above can be related

to that of step (N − n) by Taylor expansion:

Ya
(
λ−(n−1)

)
= Ya(λ−n) + ε

[
t−(n−1) − t−n

] dYa
dλ

. (A.43)

This equation can be simplified by noting that the time difference in (A.43) is simply the

period of revolution for an orbit starting with energy h−n. In other words, it is the transit

time of the map Ra(h−n) given by (A.22a):

t−(n−1) − t−n = TRa(h−n) =
1
2µ

[
ln
N + 1
n+ ξ

+ ln
N + 1

n− 1 + ξ

]
+ TGa . (A.44)

Next, we calculate the change in invariant due to the (N − n + 1)st step. To do this, we

subtract the invariant after step (N −n) given by (A.41) from that of the subsequent step,

given by (A.42) with the Taylor expansion (A.43) and the time difference (A.44). Thus,

we find that associated with the change in energy h−n → h−(n−1) from the step N −n+1,

we have the change in the adiabatic invariant J given by

∆J−(n−1) ≡ J
(
h−(n−1)

)
− J (h−n) =

ε

µ

dYa
dλ

[
−1 +

(
n− 1

2 + ξ
)
ln

n+ ξ

n− 1 + ξ

]
. (A.45)

Note that the terms of (A.45) are O(1/N2) for large n (for which |h| ≈ H), implying

that the sum of terms, i.e., the total change in the action during the approach, will be

convergent. This is different from the result in Ref. [116], in that their terms are O(1/N),

and their sum diverges as ε lnN . As stated earlier, this is related to their choice of definition

of a step and neglect of the higher order correction (in their work, the Da evaluated on

the boundary Σ is not constant, and, hence, also contributes).
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A.3.2 Matching to the invariant action and initial canonical angle

As a necessary step in calculating the total change in the invariant, we must match

J− to the invariant in region D . Furthermore, this illuminates the phase evolution across a

separatrix, and yields the distribution of the canonical phase. Before we do that, we show

that the change in the J for the first step, ∆J−(N−1), is negligible in the limit N � 1.

From the expression (A.45), we have

∆J−(N−1) =
ε

µ

dYa
dλ

[
−1 +

(
N − 1

2 + ξ
)
ln

N + ξ

N − 1 + ξ

]
≈ 1
N2

ε

µ

dYa
dλ

[(
13
4 − ξ

)
+O

(
1
N

) ]
.

Thus, in the limit N � 1, J is still a good invariant for the first few revolutions. In

terms of the canonical action-angle coordinates, our initial conditions are the phase point

with coordinates (J−,Ψ−), where J− = J(h−) and Ψ ∈ (−2π, 0], chosen such that Ψ = 0

corresponds to the first crossing of C. Defining the initial time t− to be that when the

frozen orbit just touches the corner of the region D , i.e., when the energy of the frozen

orbit |h−| = H, we have J− ≈ J (h−N ). This observation permits us to relate the crossing

parameter ξ to the initial phase Ψ−. Using the near separatrix formula (A.41), we have

J (h−N ) = Ya(λ−N ) + ε(N + ξ)
1
µ

dYa
dλ

[
µTGa + 1 + ln

N + 1
N + ξ

]
+ εDa, (A.46)

while our choice for t− such that h− = −(N + 1)∆ha implies

J− = Ya(λ−) + ε(N + 1)
1
µ

dYa
dλ

[
µTGa + 1

]
+ εDa. (A.47)

The initial action of the separatrix can be related to its value when the particle reaches

the first crossing of the line C by Taylor expansion

Ya(λ−) = Ya(λ−N ) + ε
dYa
dλ

(t− − t−N ). (A.48)

Furthermore, since the invariant J is conserved [to O(1/N2)] for the energy h−N , the

canonical action-angle variables are described by the equations of motion

J (t) = J− Ψ(t) = Ψ− +
2π
T

(t− t−) .
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When the phase point first intersects the line of closest approach C, the time is t−N and

the angle Ψ(t−N ) = 0. Furthermore, the orbit period T = TGa + TL(h−N ), so that

(t− − t−N ) =
Ψ−
2π

[
TGa +

1
2µ

ln
N + 1
N + ξ

]
. (A.49)

Finally, we set the invariant J (h−N ) = J−, i.e., we equate (A.46) with (A.47), and use

the expressions for the Taylor expansion (A.48) and (A.49) to obtain

(1 + µTGa) ξ + (N + ξ) ln
N + 1
N + ξ

= 1 +
[
µTGa + 1

2 ln
N + 1
N + ξ

]
Φ−
2π

. (A.50)

Expanding the logarithms for large N , we find

[
2π
(
ξ − 1

)
−Ψ−

][
µTGa + 1

2N (1− ξ)
]

+O
(

1
N2

)
= 0.

Thus, the initial phase of the canonical angle is proportional to the crossing parameter:

−2π(1− ξ) = Ψ− : {Ψ− ∈ (−2π, 0], ξ ∈ (0, 1]}. (A.51)

A.3.3 Approach to the Separatrix

During the approach to the separatrix, there are N steps of the map Ra, taking the

energy from h−N = −(N + ξ)∆ha to h0 = −ξ∆ha. Furthermore, each step yields an

associated change in the invariant J ; that due to step (N − n + 1) is given by (A.45).

Summing these over the N steps of the approach, the total change in action is

N∑
n=1

∆J−(n−1) =
ε

µ

dYa
dλ

[
−N +

N∑
n=1

(
n− 1

2 + ξ
)
ln

n+ ξ

n− 1 + ξ

]
. (A.52)

We simplify the sum in expression (A.52) as follows. First, we write the log of the quotient

as the difference of the logs, and then rearrange the sums to find

N∑
n=1

(
n− 1

2 + ξ
)
ln(n+ ξ)−

N−1∑
n=0

(
n+ 1

2 + ξ
)
ln(n+ ξ)

=
(
N − 1

2 + ξ
)
ln(N + ξ)−

(
1
2 + ξ

)
ln ξ −

N−1∑
n=1

ln(n+ ξ).

(A.53)
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The final sum in (A.53) can be written in terms of the Gamma function, and approximated

for large N using Stirling’s approximation:

N−1∑
n=1

ln(n+ ξ) = ln
N∏
n=1

(n+ ξ) = ln
[
Γ(N + ξ)

]
− ln

[
Γ(1 + ξ)

]
≈
(
N − 1

2 + ξ
)
ln(N − 1 + ξ)− (N − 1 + ξ) + ln

√
2π

Γ(1 + ξ)
.

Combining this with (A.53) and (A.52), we find that, during the approach to the separatrix,

the change in the invariant J is given by

N∑
n=1

∆J−(n−1) =
ε

µ

dYa
dλ

[
ξ −

(
1
2 + ξ

)
ln ξ + ln

Γ(1 + ξ)√
2π

]
. (A.54)

We also calculate the time required to approach the separatrix, which will be used to

determine the asymptotic phase distribution. Summing the periods of the maps Ra(h)

(A.44):

N∑
n=1

[
t−(n−1) − t−n

]
=

N∑
n=1

TRa(hh) =
N∑
n=1

[
TGa +

1
2µ

ln
N + 1
n+ ξ

+
1
2µ

ln
N + 1

n− 1 + ξ

]
= NTGa +

1
µ

[
N ln(N + 1) +

1
2

ln
Γ(ξ)Γ(1 + ξ)

Γ(N + 1 + ξ)Γ(N + ξ)

]
= NTGa +

1
µ

[
N ln(N + 1)− 1

2
ln[ξ(N + ξ)] + ln

Γ(1 + ξ)
Γ(N + ξ)

]
, (A.55)

where we have used the Gamma function identities

Γ(N + 1 + ξ) = (N + 1)Γ(N + ξ) Γ(ξ) =
Γ(1 + ξ)

ξ
.

Using Stirling’s approximation for the Gamma function, the approach time (A.55) becomes

t0 − t−N = NTGa +
1
µ

[
N ln

N + 1
N + ξ

− ξ ln(N + ξ) +N + ξ + ln
Γ(1 + ξ)√

2πξ

]
. (A.56)

A.3.4 The separatrix crossing

After the N steps of the approach, the next revolution sends the trajectory across the

separatrix, mapping the point with energy h0 = −ξ∆ha on the line of closest approach C

inside region a to a point with energy h1 = (1− ξ)∆ha along C between the separatrices.
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During the crossing, the invariant J has a discontinuous jump from the change in orbit

topology, since the area of the frozen trajectory now has a contribution as it traces along

the separatrix of region b. This jump in J can be seen in the formulae (A.16); in terms of

the aforementioned energies h1 and h0, we have

J (h0) = Ya(λ0) + ξ
ε

µ

dYa
dλ

[
1 + µTGa + ln

N + 1
ξ

]
+ εDa (A.57a)

J (h1) = Ya(λ1) + Yb(λ1) + ε(ξ − 1)
dYa
dλ

[
TGa + TGb

+
2
µ

+
2
µ

ln
N + 1
1− ξ

]
+ ε(Da +Db) +

ε

2

[
TGb

dYa
dλ

− TGa

dYb
dλ

+
1
µ

(
dYa
dλ

− dYb
dλ

)
ln
N + 1
1− ξ

]
= Ya(λ0) + Yb(λ0)−

ε

2µ
dYb
dλ

[
TGa + ln

N + 1
1− ξ

]
+ ε(Da +Db)

+
ε

µ

(
dYa
dλ

+
dYb
dλ

)[
µTGa +

1
2

ln
N + 1
1− ξ

+
1
2

ln
N + 1
ξ

]
+
ε

µ

dYa
dλ

[
(ξ − 1)(2 + µTGa) +

(
ξ − 1

2

)(
µTGb

+ 2 ln
N + 1
1− ξ

)]
,

(A.57b)

where we use the time difference (t1 − t0) from (A.44) to Taylor expand the separatrix

actions Y (λ1). To obtain the change in J , we subtract (A.57a) from (A.57b), yielding

∆J1 = Yb(λ0) +
ε

2µ
dYb
dλ

[
µTGa + ln(N + 1)− ln ξ

]
+ εDb

+
ε

µ

dYa
dλ

[
ξ − 2 +

(
ξ − 1

2

)(
µTGb

+ ln
N + 1
1− ξ

+ ln
ξ

1− ξ

)]
.

(A.58)

As written, the quantity Yb(λ0) in (A.58) depends on the crossing parameter ξ in a way

that has yet to be determined. To rectify this situation, we write Yb in terms of the

ξ-independent pseudo-crossing time tx5. We start with the simple expansion

Yb(λ0) = Yb(λx)− ε(tx − t0)
dYb
dλ

. (A.59)

Now, we have shifted the difficulty to calculating the time difference (tx − t0). This can

be done by relating the separatrix action Ya at the pseudo-crossing time with that at the
5We find the literature to be confusing regarding this point; although we believe such a calculation is

required, it does not seem to appear in previous work.
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beginning of the crossing:

Ya(tx)− Ya(t−N ) = ε
dYa
dλ

[
(tx − t0) + (t0 − t−1) + · · ·+

(
t−(N−1) − t−N

)]
= ε

dYa
dλ

(tx − t0) + ε
dYa
dλ

N∑
n=1

(
t−(n−1) − t−n

)
. (A.60)

We eliminate the separatrix action Ya(t−N ) by rearranging the equation (A.46) for the

invariant J (t−N ), finding that

Ya(t−N ) = J(t−N )− (N + ξ)
ε

µ

dYa
dλ

[
µTGa + 1 + ln

N + 1
N + ξ

]
. (A.61)

Using the definition of the pseudo-crossing time, Ya(tx) = J(t−N ), the equations (A.60)

and (A.61) imply that

µ(tx − t0) = (N + ξ)
[
µTGa + 1 + ln

N + 1
N + ξ

]
−

N∑
n=1

µ
[
t−(n−1) − t−n

]
. (A.62)

The sum over the periods of successive mappings by Ra is given by (A.56), namely, the

time required to approach the separatrix. Substituting (A.56) in the expression (A.60), we

see that the difference between the pseudo-crossing time and the time of last crossing C is

µ(tx − t0) = µTGaξ + ξ ln(N + ξ)− ln
Γ(1 + ξ)√

2π
+

1
2

ln ξ. (A.63)

Finally, we use the expansion (A.59) with time difference (A.63) in the expression (A.58).

Using the definition of N in terms of H (A.39), we find that the change of the invariant

J due to the separatrix crossing is

∆J1 = Yb(λx) +
ε

µ

dYa
dλ

[
ξ − 2 + (1− 2ξ) ln(1− ξ) +

(
ξ − 1

2

)
ln ξ
]

+
ε

µ

dYb
dλ

[
ln Γ(1 + ξ)− ln

√
2π − ln ξ

]
+
(
ξ − 1

2

) ε
µ

[
dYa
dλ

ln
HeµTGb

2πε
∣∣ d
dλYb

∣∣ − dYb
dλ

ln
HeµTGa

2πε
∣∣ d
dλYa

∣∣
]

+ εDb

(A.64)

Finally, although we have already used the crossing time in the Taylor expansion to arrive

at (A.57b), we write its explicit expression here:

t1 − t0 = TGa +
1
2µ

[
ln
N + 1
ξ

+ ln
N + 1
1− ξ

]
. (A.65)
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A.3.5 The Departure

After the trajectory crosses the separatrix, it alternately follows the two separatrices

during the departure, first along b, then along a, and so on. Thus, the mapping of an orbit

back to the same line of closest approach C is accomplished by the map Rba from (A.21d),

starting with Rba(h1) and proceeding, for n ∈ Z+, as

Rba(hn) ◦Rba(hn−1) ◦ · · · ◦Rba(h2) ◦Rba(h1)︸ ︷︷ ︸
n times

: C
[
h1

]
7→ C

[
hn+1

]
(A.66)

The values of h in (A.66) are given by adding to the initial energy, h1 = (1− ξ)∆ha, to the

net increase ∆ha + ∆hb, corresponding to successive maps adjacent to region b and then

region a. For n ∈ Z+, the values of the energy are given by

hn ≡ (n− ξ)∆ha + (n− 1)∆hb. (A.67)

Using the equation for the adiabatic invariant (A.34b) with the energy (A.67), J is given

at each step by

J (hn) = Ya(λn) + Yb(λn) +
hn
2π

[
TGa + TGb

+
2
µ

(
1 + ln

H

|hn|

)]
+
ε

2

[
TGb

dYa
dλ

− TGa

dYb
dλ

+
1
µ

(
dYa
dλ

− dYb
dλ

)
ln

H

|hn|

]
+ ε(Da +Db),

so that the change in action for each step of Rba during the departure is

∆Jn+1 ≡ J (hn+1)− J (hn) =
[
Ya(λn+1) + Yb(λn+1)

]
−
[
Ya(λn) + Yb(λn)

]
+
hn+1 − hn

2π

[
TGa + TGb

+
2
µ

(
1 + ln

H

|hn+1|

)]
+
hn
πµ

ln
hn
hn+1

+
ε

2µ

(
dYb
dλ

− dYa
dλ

)
ln
hn+1

hn
.

(A.68)

The first line of (A.68) can be evaluated by Taylor expansion:

Ya(λn+1)− Ya(λn) + Yb(λn+1)− Yb(λn) = ε(tn+1 − tn)
(
dYa
dλ

+
dYb
dλ

)
, (A.69)

where the time difference (tn+1− tn) is nothing more than the transit time TRba
(hn) of the

map Rba(hn); from (A.22c),

TRba
(hn) =

1
2µ

ln
H

|hn|
+ TGb

+
1
µ

ln
H

|hn + ∆hb|
+ TGa +

1
2µ

ln
H

|hn+1|
. (A.70)
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The term in brackets from the second line of (A.68) can be simplified by noting that during

the departure the change in energy after one step is ∆ha + ∆hb, and by relating the step

in energy to the change in the separatrix action [from (A.20)]:

hn+1 − hn = ∆ha + ∆hb = −2πε
(
dYa
dλ

+
dYb
dλ

)
. (A.71)

Finally, the first term on the second line of (A.68) can be written, using the definition

(A.67) as
hn
πµ

ln
hn
hn+1

=
ε

µ

[
2(n− ξ)

dYa
dλ

+ 2(n− 1)
dYb
dλ

]
ln
hn+1

hn
. (A.72)

The change in the adiabatic invariant (A.68) is then

∆Jn+1 =
ε

µ

dYa
dλ

[
−2 + 2

(
n− ξ

)
ln
hn+1

hn
+ ln

hn+1

hn + ∆hb

]
+
ε

µ

dYb
dλ

[
−2 + 2

(
n− 1

2

)
ln
hn+1

hn
+ ln

hn+1

hn + ∆hb

]
.

(A.73)

Calculating the amount by which J changes as it moves away from the separatrix is

a messy endeavor; to simplify notation, we define the ratio ρ of the energy steps, and the

energy in terms of ρ, by

ρ ≡ ∆hb
∆ha

=
d
dλYb
d
dλYa

hn = ∆ha(1 + ρ)
(
n− ξ + ρ

1 + ρ

)
. (A.74)

Using (A.74), Eq. A.73 becomes

∆Jn = (1 + ρ)
ε

µ

dYa
dλ

[
−2 +

(
2n− 2ξ + ρ

1 + ρ

)
ln
n+ 1−ξ

1+ρ

n− ρ+ξ
1+ρ

+ ln
n+ 1−ξ

1+ρ

n− ξ
1+ρ

]
. (A.75)

To obtain the total shift in the invariant, we must sum (A.75) over the N/2 steps

of the departure. This calculation is rather long, and we therefore attack the problem in

pieces. First, we evaluate the sum over the term ∼(ξ + ρ) lnn:

−2ξ + ρ

1 + ρ

N/2∑
n=1

ln
n+ 1−ξ

1+ρ

n− ρ+ξ
1+ρ

= −2ξ + ρ

1 + ρ

N/2∑
n=1

[
ln
(
n+ 1− ρ+ξ

1+ρ

)
− ln

(
n− ρ+ξ

1+ρ

)]
= −2ξ + ρ

1 + ρ

[
ln
(

1
2N + 1−ξ

1+ρ

)
− ln

(
1−ξ
1+ρ

)]
. (A.76)
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Next, we calculate the sum over the term ∼n lnn from (A.75). This yields
N/2∑
n=1

2n ln
n+ 1−ξ

1+ρ

n− ρ+ξ
1+ρ

=
N/2∑
n=1

[
2(n+ 1) ln

(
n+ 1− ρ+ξ

1+ρ

)
− 2 ln

(
n+ 1−ξ

1+ρ

)
− 2n ln

(
n− ρ+ξ

1+ρ

)]

= (N + 2) ln
(

1
2N + 1−ξ

1+ρ

)
− 2 ln

(
1−ξ
1+ρ

)
−

N/2∑
n=1

2 ln
(
n+ 1−ξ

1+ρ

)
. (A.77)

Combining the sum in (A.77) with the final sum from (A.75), we evaluate the following:
N/2∑
n=1

[
− ln

(
n− ξ

1+ρ

)
− ln

(
n+ 1−ξ

1+ρ

)]
= ln

[
Γ
(

1+ρ−ξ
1+ρ

)]
− ln

[
Γ
(

1
2N + 1− ξ

1+ρ

)]
+ ln

[
Γ
(

2+ρ−ξ
1+ρ

)]
− ln

[
Γ
(

1
2N + 1 + 1−ξ

1+ρ

)]
≈ ln

[
Γ
(

1+ρ−ξ
1+ρ

)]
+ ln

[
Γ
(

1−ξ
1+ρ

)]
+ ln

(
1−ξ
1+ρ

)
+N +

1− 2ξ
1 + ρ

− ln 2π

−
(

1
2N + 1+ρ−2ξ

2(1+ρ)

)
ln
(

1
2N − ξ

1+ρ

)
−
(

1
2N + 1+ρ−2ξ

2(1+ρ)

)
ln
(

1
2N − ξ

1+ρ

)
,

(A.78)

where we have used Stirling’s formula and the gamma function identity

Γ
(

2+ρ−ξ
1+ρ

)
= Γ

(
1 + 1−ξ

1+ρ

)
=
(

1−ξ
1+ρ

)
Γ
(

1−ξ
1+ρ

)
.

The last term in the sum (A.75) is constant, and gives the contribution
N/2∑
n=1

(−2) = −N. (A.79)

Now, we collect the various sums to evaluate the total change in the invariant during the

departure. We add (A.78) to the first part of (A.77), along with the contribution of the

constant term (A.79). The result is
N/2∑
n=1

∆Jn = (1 + ρ)
ε

µ

dYa
dλ

{(
1
2N + 1+ρ−2ξ

2(1+ρ)

)
ln

(
1 + 2

N
1−ξ
1+ρ

1− 2
N

ξ
1+ρ

)
+

1− 2ξ
1 + ρ

+
2ξ − 1
1 + ρ

ln
(

1−ξ
1+ρ

)
+ ln

[
1
2πΓ

(
1−ξ
1+ρ

)
Γ
(

2−ξ
1+ρ

)]}

≈ (1 + ρ)
ε

µ

dYa
dλ

{
2(1− ξ)
1 + ρ

+
2ξ − 1
1 + ρ

ln
(

1−ξ
1+ρ

)
+ ln

[
1
2πΓ

(
1−ξ
1+ρ

)
Γ
(

2−ξ
1+ρ

)]}
(A.80)

In a more straightforward notation, the change in the action during the departure is
N/2∑
n=1

∆Jn =
ε

µ

dYa
dλ

[
(2− 2ξ) + (2ξ − 1) ln

(
1−ξ
1+ρ

)]
+
ε

µ

(
dYa
dλ

+
dYb
dλ

)
ln
[

1
2πΓ

(
1−ξ
1+ρ

)
Γ
(

2−ξ
1+ρ

)] (A.81)
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Finally, we calculate the time required for the departure, obtained by summing the

periods of the map Rba given in (A.70). To do this properly, we need an improved expres-

sion for the number of steps of the map Rba (note that this was not required for ∆J since

(A.81) is independent of the number of steps, provided that N � 1). We want N ′ steps

to take the energy from h1 to hN ′+1. Requiring H ≥ |hN ′+1|, (A.67) implies that

H = (N ′ + 1) |∆ha|+N ′ |∆hb| ⇒ N ′ =
N

1 + ρ
. (A.82)

Note that in the symmetric case, ρ = 1 and N ′ = N/2; if ρ = 0 only one separatrix is

changing, and N ′ = N while if ρ ≤ −1, so that Yb is shrinking as fast as Ya is growing,

there are no steps in region c since all the trajectories escape to region b. Summing the

transit times (A.70) over N ′ steps, the departure time is

N ′∑
n=1

TRba
= N ′ (TGa + TGb

)+
1
2µ

N ′∑
n=1

[
ln
N ′ + 1

1+ρ

n− ρ+ξ
1+ρ

+ 2 ln
N ′ + 1

1+ρ

n− ξ
1+ρ

+ ln
N + 1

1+ρ

n+ 1−ξ
1+ρ

]
. (A.83)

The middle term of the sum can be expressed in a manner similar to that used to determine

the approach time, namely

N ′∑
n=1

ln
N ′ + 1

1+ρ

n− ξ
1+ρ

=
1
2

N ′∑
n=1

[
ln

N ′ + 1
1+ρ

n+ 1+ρ−ξ
1+ρ

+ ln
N ′ + 1

1+ρ

n− 1 + 1+ρ−ξ
1+ρ

]
+

1
2

ln
N ′ + 1+ρ−ξ

1+ρ

1− ξ
1+ρ

. (A.84)

The sum in (A.84) is of the same form as the approach (A.55), with N → N ′ − ρ
1+ρ

and ξ → 1+ρ−ξ
1+ρ . Similarly, the first and last terms in the sum for the departure (A.83)

can be obtained from (A.55), with N → N ′ − ρ
1+ρ and ξ → 1−ξ

1+ρ . Thus, the calculation for

the departure time is much the same as that for the approach; using the gamma function

identity Γ(x+ 1) = xΓ(x) and N [from (A.82)], we find that

tN ′ − t1 =
N

1 + ρ
(TGa + TGb

) +
1
µ

N

1 + ρ
ln

(N + 1)(N + 1)
(N + 1− ξ)(N + 1 + ρ− ξ)

− 1
µ

[
1 + ρ− 2ξ
2(1 + ρ)

ln(N + 1 + ρ− ξ) +
1− ξ

1 + ρ
ln(N + 1− ξ)

]
+

1
µ

[
2N + 2 + ρ− 2ξ

1 + ρ
+

1− 2ξ
1 + ρ

ln(1 + ρ)− ln 2π
]

+
1
µ

ln
[
(1− ξ)1/2 Γ

(
1

1+ρ −
ξ

1+ρ

)
Γ
(
1− ξ

1+ρ

)]
.

(A.85)
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A.3.6 Matching to the final canonical action and angle

Asymptotically matching the action JN to the value outside of the linearized region D

J+ proceeds much as the initial matching in Sec. A.3.2. Again, we see that the difference

induced by the final step, ∆JN/2 from (A.75) is negligible (in the limit N � 1):

∆JN/2 = (1 + ρ)
ε

µ

dYa
dλ

−2 +
(
N − 2ξ + ρ

1 + ρ

)
ln
N + 2(1−ξ)

1+ρ

N − 2(ρ+ξ)
1+ρ

+ ln
N + 2(1−ξ)

1+ρ

N − 2ξ
1+ρ


≈ ε

N2

dYa
dλ

[
2(1− ρ+ ρ2)
3µ(1 + ρ)3

+O
(

1
N

)]
. (A.86)

To obtain information about the canonical angle, we invoke the equations of motion away

from the separatrix. Setting the origin of the canonical angle in region c to be at the line

C intersected at time tN ′ , we have

Ψ(t) =
2π
T

(t− tN ′) =
2π

TGa + TGb

[
t− (tN ′ − t−N ) + (t− − t−N )− t−

]
=

2π (t− t−)
TGa + TGb

+
TGa

TGa + TGb

Ψ− +
2π

TGa + TGb

(tN ′ − t−N ). (A.87)

The terms in (A.87) have a simple interpretation: the first being the time evolution of

the angle (t− is ξ-independent); the second corresponding to a rigid mapping of the angle

in region a to that in region c, evenly distributed according to the ratio of the length of

the separatrix dividing region a and c to that dividing region c from both regions a and

b; the third represents the degree of phase mixing, in that if it is independent of ξ the

final angle evenly fills the fraction of phase space given by TGa
TGa+TGb

(that then rotates in

region c), while strong phase mixing results if this term takes initially close values of ξ to

widely disparate final times. We will find that for symmetric Hamiltonians the situation

is generically between these two extremes.

A.4 Separatrix crossing for the symmetric Hamiltonian

In the symmetric case, where the two “halves” of the trapped region are of the same

size and grow at the same rate, the expressions for both the change in action and the total
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crossing time simplify dramatically. In this case, during the approach the action changes

according to
N∑
n=1

∆J−(n−1) =
ε

µ

dYa
dλ

[
ξ −

(
1
2 + ξ

)
ln ξ + ln

Γ(1 + ξ)√
2π

]
. (A.88)

The change in J (A.64) due to crossing the separatrix is

∆J1 = Ya(λx) +
ε

µ

dYa
dλ

[
ξ − 2 + (1− 2ξ) ln(1− ξ) +

(
ξ − 3

2

)
ln ξ + ln

Γ(1 + ξ)√
2π

]
. (A.89)

And the change in the invariant due to the departure of the separatrix (A.81)

N/2∑
n=1

∆Jn =
ε

µ

dYa
dλ

[
2− 2ξ + (2ξ − 1) ln

1− ξ

2
+ 2 ln

Γ
(
1− 1

2ξ
)
Γ
(

1
2 −

1
2ξ
)

2π

]
. (A.90)

We can simplify (A.90) by using the duplication formula of the gamma function

Γ(2x) =
4x

2
√
π

Γ(x)Γ
(

1
2 + x

)
⇒ Γ

(
1
2 −

1
2ξ
)
Γ
(
1− 1

2ξ
)

=
2
√
π

21−ξ Γ(1− ξ), (A.91)

so that (A.90) becomes

N/2∑
n=1

∆Jn =
ε

µ

dYa
dλ

[
2− 2ξ + (2ξ − 1) ln(1− ξ) + 2 ln

Γ(1− ξ)√
2π

]
. (A.92)

Adding the symmetric expression for the change in the action (A.88), (A.89), and (A.92)

expressions, we see that the total change in the action in the symmetric case is

N/2∑
n=−N

∆Jn = Ya(λx) + 2
ε

µ

dYa
dλ

ln
Γ(1− ξ)Γ(1 + ξ)

2π ξ
. (A.93)

Using the gamma function identities

Γ(−x)Γ(1 + x) =
π

sin(−πx)
, Γ(1− x) = xΓ(−x), (A.94)

we see that

Γ(1− ξ)Γ(1 + ξ) = ξΓ(−ξ)Γ(1 + ξ) =
π ξ

sin(πξ)
, (A.95)

so that the final action is

J+ = J− + Ya(λx)−
2ε
µ

dYa
dλ

ln
[
2 sin(πξ)

]
. (A.96)
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Calculating the crossing time proceeds in a similar manner. Adding the times as-

sociated with the approach (A.56), crossing (A.65), and departure (A.85) with ρ = 1,

TGa = TGb
, and expanding the logarithms assuming N � 1, we obtain

tN ′ − t−N = (2N + 1)TGa +
2N + 2
µ

− ξ

µ
ln 2 +

1
µ

ln
Γ
(

1
2 −

ξ
2

)
Γ
(
1− ξ

2

)
Γ(1 + ξ)

2(π)3/2ξ
(A.97)

The expression for the total crossing time (A.97) can be simplified using the duplication

formula (A.91) and the identity (A.95). We find that

tN ′ − t−N = (2N + 1)TGa +
1
µ

(2N + 2)− 1
µ

ln
[
2 sin(πξ)

]
. (A.98)

The first thing to note about the time (A.98) is that it indicates where the separatrix

crossing theory breaks down: when this time becomes O(1/ε), our assumption that the

parameters of the Hamiltonian are constant is violated, for which

εµ(tN ′ − t−N ) = L < ε(2N + 1)µTGa + 2εµ(N + 1)− ε ln
[
2 sin(πξ)

]
, (A.99)

where L ∼ O(1). The first two terms vanish as ε → 0 (although slowly), so that the

separatrix crossing theory does not hold for particle such that

sin(πξ) < e−L/εeC/ε
α
, (A.100)

where L, C ∼ O(1) and, depending on whose error analysis one trusts, 1
3 . α . 1

2 <
4
5 .

Thus, we see that for slow evolution, the separatrix crossing theory applies for all particles

except the exponentially few whose crossing parameters are very close to 1 or 0. These

are the particles that pass very close to the hyperbolic equilibrium, spending arbitrary

amounts of time tracing the stable manifolds.

The final conclusion we obtain from the crossing time (A.98) is the final canonical

angle of the particles from (A.87):

Ψ(t) =
π(t− t−)
TGa

+ π(ξ − 1) + π(2N + 1) +
2π(N + 1)
µTGa

− π

µTGa

ln
[
2 sin(πξ)

]
. (A.101)

The first term in (A.101) gives the dynamic evolution; the second results in the rigid

mapping of evenly spaced particles over 2π above the separatrices to half that between the
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separatrices; the third and fourth are uniform displacements in the angle for all particles

due to the crossing; while the final term yields the degree to which the particles have phase-

mixed. Since the period TGa ∼ ln |H| ∼ ln ε, this term does, strictly speaking, vanish in

the ε→ 0, but too slowly to be neglected for most of physical situations, and certainly for

any of the scenarios envisioned in Ch. 2 (for which 0.1 & ε & 0.0001). Thus, we are led

to the conclusions that although the results in Elskens and Escande [41] (who claim that

the particles are essentially rigidly mapped across the separatrix as ε → 0) are formally

correct, the analytical and numerical work of Cary and Skodje [39, 40] (indicating that

there is some residual phase mixing as ε→ 0) is more useful from a practical standpoint.

To illuminate these results on the evolution of the canonical action and angle under

slow separatrix crossing, we have performed some numerical simulations of the slowly-

varying pendulum, with Hamiltonian

H(p, q;λ) =
1
2
p2 + φ(λ)

[
1− cos(q)

]
. (A.102)

As we have seen in Chapter 2, this Hamiltonian is qualitatively similar to that describing

electrons in a slowly growing wave, and therefore can yield some insight on the evolution

of the canonical action and angle as the particles cross the separatrix. Rewriting the

expressions (A.96) and (A.101), we have the following expressions for the action and angle

after a symmetric separatrix crossing:

J = J− + Ya(λx)−
2ε
µ

dYa
dλ

ln
[
2 sin(πξ)

]
(A.103a)

Ψ = Ψ0 + π(ξ − 1)− π

µTGa

ln
[
2 sin(πξ)

]
, (A.103b)

with Ψ0 an unspecified constant. We compare the analytic expressions (A.103) with sim-

ulations of the slowly-varying pendulum in Fig. A.3, for ε = 0.005. In the simulations, we

initialize a number of particles uniformly over Ψ, with the potential φ(0) = 0. We then

slowly increase the amplitude of the potential, saving the final particle positions at a time

after the particles have crossed, and moved a certain distance away from, the separatrix.

In Fig. A.3(a), we compare the resulting final positions in the Ψ-J plane of this initially
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Figure A.3: Final distribution after crossing the separatrix of a set of particles that is
initially distributed uniformly over Ψ, for ε = 0.005. In (a), we compare the resulting set
of particles from the slowly-varying simulation (red crosses), to that predicted by (A.103).
We see that the change in action is confined to O(ε), with the J of some particles increasing
and others decreasing, while the distribution in the canonical angle Ψ is not uniform. To
make this more concrete, we present in (b) the phase-space density in Ψ, integrated over
the action. We see a cusp that is associated with the “folding over” near Ψ = 3π/2 in
panel (a), while the remainder of the distribution is spread across the rest of 2π. We note
that this structure only slowly changes as ε→ 0.

uniform set of particles from the slowly-varying simulation (red crosses), to that predicted

by (A.103). We see that final positions of the particles is well-predicted by the theory

(note that the absolute phase Ψ0 is not determined by the theory, and must be fit to the

simulation). Furthermore, the change in action is confined to a narrow width ∼ O(ε), with

the J of some particles increasing and others decreasing, such that the average ∆J over

all the particles is observed to be approximately zero.

Additionally, the distribution in the canonical angle Ψ is not uniform. We show this

more definitively in Fig. A.3(b), in which we plot the integrated (in J) phase-space density

of the particles in the canonical angle Ψ. We see a sharp enhancement in the density near

Ψ = 3π/2 that is associated with the “folding over” in J of the set of particles in panel

(a). The density decreases monotonically from Ψ = 3π/2, but remains nonzero for all

0 ≤ Ψ < 2π. We note that since this structure only vanishes logarithmically as ε → 0,

it remains the dominant feature for ε & 10−9. For our problems of interest, this implies
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that from a practical standpoint the distribution is neither uniformly distributed over the

entire range 2π in Ψ in the trapped region (full phase-mixing), nor is it evenly spread over

only π (the “primitive” result as indicated by [41]).
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