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Non-neutral plasma equilibria, trapping, separatrices, and separatrix
crossing in magnetic mirrors
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The equilibria of non-neutral plasmas confined in Penning—Malmberg traps with axial varying
(mirror) magnetic fields exhibit numerous unusual features, including potential differences along
field lines, plasma density variations, trapped particles in both the high and low field regions, and
unusual separatrices between trapped and untrapped particles. Mirror fields play prominent roles in
a number of recent experiments, and overly simplistic models of the equilibria can lead to errors in
the interpretation of experimental results. ZD03 American Institute of Physics.
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I. INTRODUCTION and the high field region:
(a) The velocity-space separatrix bounding the trapped

Many experiments have confined non-neutral plasmas in  and untrapped populations in the low field region is sig-
Penning—Malmberg traps. Typically, radial confinement in  nificantly modified from the standard mirror field sepa-
these traps is provided by a uniform axial magnetic field.  ratrix (see Fig. 1
Recently, the effects of variations in the axial magnetic fields  (b) The velocity-space separatrix bounding the trapped
have come under scrutiny. Effects of such “mirror” fields and untrapped populations in the high field region has no
come into play when transporting trapped plasmas from one analog in the standard mirror field analysis.
trap to another, as is common in anti-matter traps. Moreover,
researchers have speculated that inadvertent mirror fields are For simplicity, | will model a pure-electron plasma
responsible for transport in Penning—Malmberg traps. stored in two uniform magnetic-field regior and By,

The equilibrium properties of non-neutral plasmas inand ignore the transition region in betwe(see Fig. 2 (The
uniform magnetic fields were identified long ayjband mir-  transition region must bg Iong eno_ugh that the magnetic mo-
ror fields in neutral plasmas were extensively studied in thénent of the electrons is adiabatically conserved, and that
fusion community. However there has been little publishedf'€ctrons follow the magnetic-field lingShe results can be
work on the equilibria of non-neutral plasmas in magneticeaS"Y extended to continually varying fleIQS. As with .aII
mirrors. Davidsoret al® considered a rather different geom- Penning—Malmberg traps, the plasma is ultimately confined
etry than the Penning—Malmberg trap: An annular electrorfXially by external electrostatic fields applied to the plasma
layer surrounded by a conducting wall and confined in &"dS:
magnetic mirror. Dubin and O'Neil developed a general  1hroughout the paper | assume that the plasma electrons
framework that encompasses global thermal equilibriunf® N thermal equilibrium along individual field lines,
plasmas in mirror fields, but did not analyze the mirror statedhough not necessarily in global thermal equilibrium. The
closely® Gopalan and Fajans discussed the mirror equilibrigfduilibrium is particularly simple for very cold, flat-top plas-

in Penning—Malmberg traps in several conference pafers Mas: and I. qnalyze this case first. Then the anal_ysis is ex-
and in Gopalan's Ph.D. thesldHere | report some of these tended to finite-temperature, flat-top plasmas, which exhibit

last results, some new analytic results, and descriptions &l t.he signifipant features of the equilibrium. Plasm§1§ V.V“h
the velocity-space separatrix crossings. arbitrary profiles, and plasmas in global thermgl equilibrium
The analysis leads to several surprising conclusions: are_analyzed ne>_<t. Then | discuss trapped particles and Sepa-
ratrices. The main part of the paper concludes by examining
(1) When the plasma is dense and cold, the plasma density igparatrix crossing in these equilibria, and its implications
roughly proportional to the magnetic field. However, for the work in Ref. 2. Finally, the Appendices give two
when the plasma is hot or tenuous, the density becomegerivations not presented earlier. This paper presents only
independent of the magnetic field. theoretical results; there is good experimental evidence for
(2) Inside the plasma, the electrostatic potential is not consome of the results presented here, including conclusions 1
stant along the magnetic-field lines; a potential arisesand 3 above, in Gopalan’s Ph.D. thesis.
which attracts particles into the high field region anng“_ EQUILIBRIA

most, but not all, of the field lines. ) . . . .
(3) In the high field region the plasma is “thinner” than _ Typically, thermal equilibrium qlong field lines is estab-
what one would expect from following the field lines. lished after only a few plasma oscillations. The plasma den-

(4) Different classes of particles are trappecbisththe low Sty then obeys Boltzmann’s relation

Ny(rp)=n.(r )ex —eA¢(rL) (@8]
dE|ectronic mail: joel@physics.berkeley.edu HUTH LUL kT '
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2 v trast, the density would be constant along the field lines in a
- neutral plasma. The compression caused by the converging
field lines is exactly cancelled by reflections from the in-
11 creasing magnetic field.

Thus, the zero temperature, flat-top equilibrium consists
of two columns of constant, but different density, related by
ny=n_(1+ B). The on-axis{=0) potentials of the two col-

I umns must match. If the two columns had outer ragii
linked together along a field line, the on-axis high magnetic-
=t field potential would be too negative by a factor proportional
to In(1+B). Consequently the radius of the high density col-
umn,r,y, must be smaller than the linked radius of the low

-2 density columnT,=r, /y1+B. For smallg, the discrep-
FIG. 1. The “standard” separatrix between trapgetiadetiand untrapped ~ ancy 1—r oy /Ty~ BI[4 In(R,/r,)] is small.
noninteracting particles for the cage=0.5, whereg is the mirror ratio The T—0 equilibria can be easily extended to arbitrary

By /B, — 1. The paralleb, and perpendiculas, temperatures are normal-  radja| profiles by requiring that the density along linked radii

ized to the thermal temperature. . . . . . .
increase by % 8. The potential along field lines will still be
constant inside the plasma, and the high field plasma radius

Here ny(ry,) is the density at radiusy in the high field will be somewhat smaller than the low field linked radius.
H\'H H

region, n (r,) is the density at radius, in the low field
region, e is the electron charge, ark is the electron ther-
mal energy. The temperatufleis assumed constant through- B. Flat-top, finite temperature equilibria
out the plasma. The high field radiug is linked to the low
field radiusr, by the magnetic field lines;y=r /+1+ 8,
where B is the magnetic field increase defined By, = (1

+ B)B_ . The potentialA ¢(r|) is the difference in potential
along the field line that begins at and goes ta,,. Note
that A¢(r.) does not go to zero at the wall, as it is the
difference between potential af =R,, in the low field re-
gion, and the potential at the linked radiys, less thark,,
for >0, in the high field region.

While a flat-top, finite temperature plasma is somewhat
unphysical, such plasmas exhibit all the essential features of
the mirror equilibria and are analytically tractable. A straight-
forward calculation(see Appendix A employing the Boltz-
mann and Poisson equations shows that, in the limit of small
B, the potential difference across linked field lines inside the
plasma is given by

kT

A. Zero temperature equilibria Ag(r)=p-g1=Alo(r /Na)], 2

In the limit T— 0, the potential must be constant along
all field lines inside the plasma. If it is not, then the Boltz-
mann relatiofEq. (1)] predicts that there will be enormous
density changes along the field lines. This does not mean,
however, that the density itself be constant along a field linea= )
Because field lines converge in high field region, the only ~ MdtlAailo(Tpr/Na) +7pula(rpL /g IN(Ry /o) ]
way to make the potential constant along field lines is for the

. . o A typical example is shown in Fig. 3.
lasma density to be proportional to magnetic fi€ld.con- .
b y prop 9 ¢ When r, >\g. (or, equivalently, rpy>Ngy), A

— \/27-rr3pL/)\d§ exp(=rp /Ng)/In(R,/rp) is small, and the on-

—_ — axis potential difference increases by approximajekyl/e
in the high field region. As expected, the central density in-
creases by approximately+]3. A gets larger as\y, ap-
proachesr, , and the on-axis potential difference gets
smaller, eventually approaching zero wheq =r, . Here
the density barely increases in the high field region, as the
plasma essentially behaves like a gas of noninteracting par-
ticles.

Off the axis ¢>0,) the potential difference diminishes.
At the cut-off radiusr , defined by EAly(r. /g, the
potential difference changes sign. For greater radii the den-
sity in the low field region is higher than the density at the
linked radius in the high field region. This has the necessary
FIG. 2. Typical magnetic field, magnetic field lines, and plasma profile in aeﬁeCt of *cutting” the high-field plasma off at some radius

stepped magnetic field. For clarity, the difference betviggnandr , has betweenr. /y1+ g andT,,. Note thatr. is independent
been exaggerated. of B.

where\ 4, is the on-axis Debye length in the low field re-
gion, |y and } are modified Bessel functions, and

NG +ro /4

©)
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FIG. 3. (a) The potential difference along linked field lines, for an initially

flat-top plasma. Before the application of the magnetic field gradient ofFIG. 5. A survey of the normalized potential differens for the density
=0.05, the normalized plasma radius was/R,,=0.5, with wall radius ~ Profile (&). [The profile shown in(@) is the profile obtained 38=0.] For
R, =2 cm. The plasma temperature wis 1 eV, and the resulting densi- 8=0, the Debye length4/R,, is about 0.027 af=0.1 eV, 0.085 afl

ties in the low and high field regions are shown by the solid and dashed lines 1 €V, and 0.27 aT =10 eV. Thus, only at the hottest temperature is the
in (b). For these parameterd=0.107. plasma radius comparable to the Debye length, and does the potential dif-

ference at the origin deviate significantly frdaT In(1+ B)/e.

C. Local and global thermal equilibria
However, there a few trend$i) For cold, dense plasmas,

While no analytic solution exists for finite temperature, _ S o
general radial density profiles, it is easy to find the equilibriaeA¢~kT|n(l+B)' and the high field density increases pro-

numerically by iteratively solving the Boltzmann and Pois- zornonal to :H—'Bf Fo_r very h(_)t or tenuous plasmas o
son equations. A typical solution is shown in Fig. 4. The="p): thg pr(])ter(;Ual difference is rT:UCh sr:nallel_r tHa'TiIn(l_h
wide-ranging parameter scan shown in Fig. 5 demonstrates®): @nd the density increases less than linearly with 1

that all equilibria roughly resemble the one shown in Fig. 4. 8- In this limit the plasma behaves like a column of non-
interacting particles(2) The cut-off radiusr, depends only

weakly onT and g so long as\4<r, andg is not too large.
However, it moves outwards ag—r,.

W@ ] Except whenkq <r,, the density does not quite in-
§0_5 2 ] crease proportional to the magnetic field. Consequently, the
o [ EXB self-rotation frequency of the plasma is not constant
%0.0 . along field lines. However, it is easy to protgee Appendix
< 0 B) that the total rotation frequency, the sum of th B

_0‘5: L : : : L L rotation frequency and the diamagnetic drift rotation fre-

4 =T Ty 3 quency, is constant along field lines.
~ . F ~H ] Nothing presented in this paper requires that the rotation
g 3t \\ 3 frequency be the same on all field lines and at all radii. If it
.\3/ 2 - T\ 3 is, the plasma is in the more restricted state of global thermal
S f \\ ] equilibrium. Formally? the global equilibrium density distri-
' 1 3 \ \ 3 bution function is proportional to ekp-(H—wpy)/kT], where
obL— L L — H is the electron energy amm, is canonical angular momen-

18— T T T ) ] tum. The rotation frequency is everywhere constant. Typi-
o ] cally, global equilibrium is attained via transport across field
51.0 g E lines, and if attained at all, occurs long after local equilib-
- rium along field lines is achieved. It is easy enough to find
E°'5:‘ ] global equilibrium states in mirror fields, but as no new

L/ . . . . ] physics occurs, global equilibrium will not be explored

%0 01 02 03 04 05 06 07 further.

/Ry,

FIG. 4. (a) The potential difference along linked field lines, for a realistic Il. SEPARATRICES AND TRAPPING

profile plasma, in a magnetic field gradient®£1.0. The plasma tempera- '

ture wasT=1 eV, the wall radius oR,=2 cm, and the resulting densities : : : P

in the low and high field regions are shown by the solid and dashed lines in It is We_" kn_own that m_creasmg m_a_gnetlc fields repel
(0. In (c), the low field density profile is multiplied by the weighting factor €l€ctrons with high perpendicular velocities. From conserva-

r, showing that most of the plasma is in the positiveé region. tion of magnetic moment and energy, it is easy to derive a
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FIG. 6. The separatrices between trapgsthded and untrapped noninter- ) )
acting particles fo3=1. The paralleb, and perpendicular temperatures G- 7. The separatrices between trappsfiadedi and untrapped noninter-
are normalized to the thermal temperature. The scale used in all the grapR§ting particles fo3=0.02. Other parameters are identical to those in Fig.
is identical to the scale in the upper right graph. The density profile and®- Note that the separatrices in this figure resemble those in Fig. 6 if,the
potential are identical to those shown in Fig. 4. The appropriate separatrice®is is normalized by/B.
are plotted at the four indicated potentials, corresponding to the indicated
low field radii. There are no trapped particles in the high field region for

ri/Ry>0.43 because thek¢=<0. classic form shown in Fig. 1. Likewise, the high-to-low sepa-

ratrix might disappear entirely. However, E@®) and(3), as

separatrix between particles which are reflected by the inell @s the numeric solutions, predict thek ¢(0)/kT— 5
creasing field and particles which can penetrate into th@SA—0 andr,>Xq. Consequently, the value of the perpen-

higher fields dicular velocity on the separatrix aj=0 [v, {(0;r=0)] is
never far from the thermal velocity. Significant differences
1/, 2eAd between the correct form of the separatrix and the classic
vysU(v)= E(U T ) @ form (A¢=0) persist up to normalized velocities in the vi-

inity of \23.

The qualitative form of the potential differendap(r) is
a displaced exponentiadA ¢(r)/kT remains close tg@ until
r approaches the edge of the plagmeee Fig. 4c)]. Thus, the
inclusion of the potentiah ¢ makes a zeroth-order change to
the separatrix for almost all the particles; the effect\gf
do not go away as8 vanishes. Only whenm <\ will
A #(0)/KT go to zero and , {(O;r =0) approach zero.

where the velocities have been normalized by the therma(f
velocity v+=KT/m. Thus, for a giverv,, particles with
larger perpendicular velocities than, g (v,) will be re-
flected. Whem ¢ is zero, the result is well known; the sepa-
ratrix reduces to the straight lines with slope/1/3 shown
in Fig. 1. Including theA¢ term extends this result to non-
neutral plasma equilibria, and changes the form of the sep
ratrix to a hyperbola.

Equation(4) describes the separatrix for particles tran-
siting from the low to the high field region. K¢ is positive, V- SEPARATRIX CROSSING AND TRAPPED
some particles will be reflected while attempting to transitPARTICLE MODES

the other way, from the high to the low field region. The Recent experiments have proBéde separatrix. The ex-
high-field separatrix is defined by periments examined the damping of trapped particle modes:
1+ B[ 2eA ¢ Diogotron—like modes which rely on populations of trapped
v sH(vp) = \/— — ) (5) particles that cannot travel the length of the plasflighese
B kT modes are damped by velocity-space collisions which trans-
an ellipse; particles with perpendicular enertgss than  port particles across the trapping separatrix. There is strong
v, sp(vy) will be reflected. As no particles are reflected whenexperimental evidence that the damping of these modes is
A¢ is zero or negative, this separatrix does not exist forclosely linked to the hitherto unknown mechanism for global
non-interacting particles or for neutral plasmas. transport in non-neutral plasmadhe dampind' should be
Typical examples of both the high and low separatricegproportional to the value of the distribution function on the
are plotted in Figs. 6 and 7. Particles which are reflected wilseparatrix,f(v,,v,)=f[v,,v, s(v;)]1=fs(v,) wherev ¢ is
be trapped; thus, separate populations of particles are trappéslind from Eq.(4). Thus, the damping rate should depend on
in both the low and high field regions. The fraction of the shape of the separatrix.
population that is trapped in the low field region is slightly The damping can be enhanced by an applied rf drive of
less than one can calculate explicitly for thep=0 case, frequencyf,. The drive kicks particles with a velocity pro-
namely B/(1+ B). The fraction trapped in the high field portional tof,;. (The drive acts over an interaction length
region is typically two to ten times lower. L*, so particles with velocity ,~L* f s will receive a nona-
One might think that the origin of the hyperbolic low-to- diabatic kick inv,.) The shape of the separatrix can be
high separatrix might go to zero g goes to zero(at r probed by varying the drive frequendy;. The authors of
=0); in other words, the separatrix might asymptote to theRef. 1 do not consider the true mirror equilibrium, so they

_ .2
Uy
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ignore all effects ofA¢p#0. Assuming a Maxwellian distri- scribed mirror separatrix. The unusual nature of the separa-
bution, thatg is small, and that\ =0, they find the follow- trices complicates the interpretation of experiments intended
ing expression for the distribution function on the separatrixto explore these separatrices.

[Eq. (5) of Ref. 2:

2
U U
fs(vu)“\/—%ex ——")- (6)  ACKNOWLEDGMENTS

As the authors find excellent experimental agreement with P+ Ramesh Gopalan aided the development of many of
this formula, they would indeed be tracing out the separatri%hese, ideas. | thank Dr. Driscoll, Dr. Dubin, Dr. Kabantsev,
straightforwardly ifA¢ were zero.(Note that they also as- PF- O'Neil, and Dr. Wurtele for their helpful comments.
sume that the number of kicked particles is independent of This work was supported by the Office of Naval Re-

an assumption quite unresolved by the experimgnts. search.
A proper calculation off(v) includes both the direc-

tionality of the kick (alongv;) and the effects oA¢. The

complete formula is APPENDIX A: FLAT-TOP, SMALL GRADIENT

v eA ¢ vﬁ 1+ ) 2eA ¢ EQUILIBRIA

B m) S AR e The equilibrium for a flat-top, finite temperature plasma,
2eA (7) in a small mirror field3=0, can be derived from Poisson’s

0 v”2g _ <€ ¢ and Boltzmann’s equations. A&is small, the density varia-

KT~ tions are small, and Boltzmann’s relation for the density in
Curiously, this equation is proportional to E6) in the limit ~ the low and high field regiofiEq. (1)] can be approximated
B—0 and when the velocity cutoff>—2eA #/kT is satis- 35
fied. Equation(7) should be weighted over the currently un-
known mode profile; since the bulk of the plasma satisfies N (r ):%1_ eAd(ry) +)
the velocity cutoff, Eq(6) and Eq.(7) likely predict similar LoL kT '
damping. Thus, the experiments in Ref. 1 cannot differentiate (A1)
between the separatrix solutions found in this paper and the eA¢g(r)
standard separatrig p=0). NH(ry :w I+ — T )

Note, however, that the velocity cutoff is violated for

large radii where\ ¢<0. Assuming uniform weighting, there where \/is the density wher8=0. From the zero tempera-
are small differences between the two equations that argre limit discussed in Sec. Il A, we know that the density
Compal’able to the resolution of the eXperimentS. If the mOdthrease between the two limits is approximatﬁly'rhusl a

was concentrated at the very edge of the plasma, howevegood starting approximation for the potential difference
there would be significant differences between the equationglong a field line is

Thus, the experiments imply that the mode extends through-
out the bulk. kTB

The proportionality between Eqg) and(7) is, in some Ad(r))=—[1-Ae(rO)], (A2)
sense, coincidental. For instance, for kicks alenginstead
of v, theA$=0 solution resembles the proper solution OnlywhereA¢L(rL~0) is small wherr ;>\
whenv is much larger than the thermal velocity. Likewise,  pacal that the potential difference along a field line is
the mode should also be damped by crossings of the h'gaefined by
field separatrix. The form ofs(v;) on the high field separa-
trix is completely different from Eq¥6) and(7), as it is zero Ab(r ) =du(ru)—d, (r A3
beyond a cut-off velocity comparable iq /3. Finally, the o) () Lro), (A3)

natural mode damping from cqllisions is_ strongly depe“da”fwhere(DL(rL) and®,,(ry,) are the potentials in the low and
on the nature of the separatrix and will not reduce to th%igh field regions as a function of radius, and where, as

A¢=0 limit. usual,r_ andry are linked by a field line. Assuming the
plasma in the low field region resembles a long charge rod,
V. CONCLUSIONS Poisson’s equation can be trivially integrated to give
Because the potential is not constant along field lines,
mirror non-neutral plasma equilibria are quite different from P e (n dr (r
. . ; S . . L(ry)=— — | dFTn(T)
noninteracting particle equilibria or uniform field non-neutral €y T Jo
equilibria. Separate populations of particles are trapped in
both the high and low field regions. The trapped populations n Eln(r&) erLdr (1) (A4)
. . . L .
exist throughout the plasma, not just at the radial edge. There € |\ Ry

is a qualitative change in the form of the separatrices divid-
ing trapped and untrapped particles from the commonly deUsing Egs.(Al) and(A2) reduces this equation to
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1 and
BUr)=— {(1 ,6’/2){ (rE=rp)+ 51 len(rF;’m

0 dr (r
f - JdT”rIO(T/)\d)z)\g[l—Io(rp,_/)\d)], (A12)
pL 0

B JVL dI’J
* 2 drTAeu(™) yields a linear equation foA which is solved by Eq(3).
r r
+1In RLL)J pLdrI’A(pL(I’)H. (A5)
w/ J0 APPENDIX B: ROTATION RATE
Similarly So long as the plasma is in local thermal equilibrium, the
N 1., ., 1 M oH total rotation frequency will be constant along field lines.
Pr(r)=—1 A+B12)| 7 (rh—T1p0) + 5 ronin| & R, The total rotation frequency is the sum of tBe B rotation
frequency, E/rB, and the diamagnetic drift rotation fre-
Bl [ df d" guency kT/eBr)dInn/dr. Equating the rotation frequency
) FTAey() in the low and high fields gives
LE(y 1 KT dinng(r)
+In )f drrA(PH(f)” (A6) r. B, r_eB dr
whereA oy (r) equalsh ¢, (r) at linked radii. With the aid of _ L En(ry) 1 KT dinny(ry) B1)
the identities 'y By 'y €By dry '
FpH whereE, (r.) andEy(ry) are the electric fields in the low
Jo drrAey(r)=(1 ﬂ)f drrAec(r) (A7) and high field regions. UsingBy=(1+8)B., ry
=r_/yJ1+ B, and Boltzmann’s relatiofEg. (1)] this equa-
and tion becomes
nodr redr (v -
f Flamsam=a-p | T amaam, g B KTO L eadtr)
oo FJo Ji+8 e dr, KT
(A8)
subs’Fituting Eqs(AZ?, (AS), ar)d (AB) i'nto Eq. (A3),'and —|n[nL(fL)]], (B2)
keeping only terms linear iB, gives an integral equation for
Ag (1) or
kKT eNTr? redr (r
?[1—A¢L(rL)]=—€—O{%+£ Tfooﬁ“m%("r) EL(rL)_EH(rH):dA(;b(rL)_ B3
pL V1+p .
But this is equivalent to the definition df¢, as can be seen
+
In RW)J drrdec(r). (A9) by differentiating Eq.(A3). Thus, the total rotation rate is

" . . . . constant along field lines in local thermal equilibrium.
Defining \3= e,k T/Ne?, and differentiating this equation g field fines 1 quilibru

twice yields the differential equation for zeroth-order modi-
fied Bessel functions
2 IA. Kabantsev and C. Driscoll, Phys. Rev. L&8, 245001(2002.
. d“Ae (p) dAe(p) 2A. Kabantsev and C. F. Driscoll, Rev. Sci. Instrufd, 1925(2003.
=P 4,2 dp —pAeL(p), (A10) a1 O'Neil and C. Driscoll, Phys. Fluidg2, 266(1979.
4S. A. Prasad and T. M. O'Neil, Phys. Flui@g, 278(1979.
wherep=r_/\4. Discarding the I§ solution because its be- 5R. C. Davidson, A. Drobot, and C. A. Kapetanakos, Phys. FIL|2199

: . : (o (1973,
havior at the origin is not analytic leaves the solution SD. Dubin and T. O'Neil, Rev. Mod. Phyg1, 87 (1999.

A (p)=Alo(p). As Egs.(AS) and(A6) are only valid in- 7 Gopalan and J. Fajans, Bull. Am. Phys. S&2, 1959(1997.
side the plasma, this solution is only valid there as well.  ®R. Gopalan and J. Fajans, Bull. Am. Phys. S48.1804(1998.
Finally, the coefficientA is found by substituting the °R. Gopalan, Ph.D. thesis, University of California, Berkef&998.

] g : 10 . . N
solutionAly(r, /\g) into Eq.(A9), and evaluating the result- A. Kabantsev, C. Driscoll, T. Hilsabeck, T. O'Neil, and J. Yu, Phys. Rev.

Lett. 87, 225002(200D.

ing equation at, =0. Employing the identities "Note that the authors of Ref. 2 cannot measure the damping rate directly,
; but with very good experimental eviden¢Bef. 1), they assert that the
f dTTIo('F/)\d)=)\dr|1(r/)\d) (A11) ?;rgpmg rate is closely coupled to the observed bulk plasma expansion
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