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Non-neutral plasma equilibria, trapping, separatrices, and separatrix
crossing in magnetic mirrors
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The equilibria of non-neutral plasmas confined in Penning–Malmberg traps with axial varying
~mirror! magnetic fields exhibit numerous unusual features, including potential differences along
field lines, plasma density variations, trapped particles in both the high and low field regions, and
unusual separatrices between trapped and untrapped particles. Mirror fields play prominent roles in
a number of recent experiments, and overly simplistic models of the equilibria can lead to errors in
the interpretation of experimental results. ©2003 American Institute of Physics.
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I. INTRODUCTION

Many experiments have confined non-neutral plasma
Penning–Malmberg traps. Typically, radial confinement
these traps is provided by a uniform axial magnetic fie
Recently, the effects of variations in the axial magnetic fie
have come under scrutiny. Effects of such ‘‘mirror’’ field
come into play when transporting trapped plasmas from
trap to another, as is common in anti-matter traps. Moreo
researchers have speculated that inadvertent mirror field
responsible for transport in Penning–Malmberg traps.1,2

The equilibrium properties of non-neutral plasmas
uniform magnetic fields were identified long ago,3,4 and mir-
ror fields in neutral plasmas were extensively studied in
fusion community. However there has been little publish
work on the equilibria of non-neutral plasmas in magne
mirrors. Davidsonet al.5 considered a rather different geom
etry than the Penning–Malmberg trap: An annular elect
layer surrounded by a conducting wall and confined in
magnetic mirror. Dubin and O’Neil developed a gene
framework that encompasses global thermal equilibri
plasmas in mirror fields, but did not analyze the mirror sta
closely.6 Gopalan and Fajans discussed the mirror equilib
in Penning–Malmberg traps in several conference pape7,8

and in Gopalan’s Ph.D. thesis.9 Here I report some of thes
last results, some new analytic results, and description
the velocity-space separatrix crossings.

The analysis leads to several surprising conclusions:

~1! When the plasma is dense and cold, the plasma dens
roughly proportional to the magnetic field. Howeve
when the plasma is hot or tenuous, the density beco
independent of the magnetic field.

~2! Inside the plasma, the electrostatic potential is not c
stant along the magnetic-field lines; a potential ari
which attracts particles into the high field region alo
most, but not all, of the field lines.

~3! In the high field region the plasma is ‘‘thinner’’ tha
what one would expect from following the field lines.

~4! Different classes of particles are trapped inboth the low

a!Electronic mail: joel@physics.berkeley.edu
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and the high field region:
~a! The velocity-space separatrix bounding the trapp
and untrapped populations in the low field region is s
nificantly modified from the standard mirror field sep
ratrix ~see Fig. 1!.
~b! The velocity-space separatrix bounding the trapp
and untrapped populations in the high field region has
analog in the standard mirror field analysis.

For simplicity, I will model a pure-electron plasm
stored in two uniform magnetic-field regionsBL and BH ,
and ignore the transition region in between~see Fig. 2!. ~The
transition region must be long enough that the magnetic m
ment of the electrons is adiabatically conserved, and
electrons follow the magnetic-field lines.! The results can be
easily extended to continually varying fields. As with a
Penning–Malmberg traps, the plasma is ultimately confin
axially by external electrostatic fields applied to the plas
ends.

Throughout the paper I assume that the plasma elect
are in thermal equilibrium along individual field lines
though not necessarily in global thermal equilibrium. T
equilibrium is particularly simple for very cold, flat-top plas
mas, and I analyze this case first. Then the analysis is
tended to finite-temperature, flat-top plasmas, which exh
all the significant features of the equilibrium. Plasmas w
arbitrary profiles, and plasmas in global thermal equilibriu
are analyzed next. Then I discuss trapped particles and s
ratrices. The main part of the paper concludes by examin
separatrix crossing in these equilibria, and its implicatio
for the work in Ref. 2. Finally, the Appendices give tw
derivations not presented earlier. This paper presents
theoretical results; there is good experimental evidence
some of the results presented here, including conclusion
and 3 above, in Gopalan’s Ph.D. thesis.9

II. EQUILIBRIA

Typically, thermal equilibrium along field lines is estab
lished after only a few plasma oscillations. The plasma d
sity then obeys Boltzmann’s relation

nH~r H!5nL~r L!expS eDf~r L!

kT D . ~1!
9 © 2003 American Institute of Physics
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1210 Phys. Plasmas, Vol. 10, No. 5, May 2003 J. Fajans
Here nH(r H) is the density at radiusr H in the high field
region, nL(r L) is the density at radiusr L in the low field
region,e is the electron charge, andkT is the electron ther-
mal energy. The temperatureT is assumed constant throug
out the plasma. The high field radiusr H is linked to the low
field radiusr L by the magnetic field lines:r H5r L /A11b,
where b is the magnetic field increase defined byBH5(1
1b)BL . The potentialDf(r L) is the difference in potentia
along the field line that begins atr L and goes tor H . Note
that Df(r L) does not go to zero at the wall, as it is th
difference between potential atr L5Rw in the low field re-
gion, and the potential at the linked radiusr H , less thanRw

for b.0, in the high field region.

A. Zero temperature equilibria

In the limit T→0, the potential must be constant alon
all field lines inside the plasma. If it is not, then the Bolt
mann relation@Eq. ~1!# predicts that there will be enormou
density changes along the field lines. This does not me
however, that the density itself be constant along a field l
Because field lines converge in high field region, the o
way to make the potential constant along field lines is for
plasma density to be proportional to magnetic field.~In con-

FIG. 1. The ‘‘standard’’ separatrix between trapped~shaded! and untrapped
noninteracting particles for the caseb50.5, whereb is the mirror ratio
BH /BL21. The parallelv i and perpendicularv' temperatures are normal
ized to the thermal temperature.

FIG. 2. Typical magnetic field, magnetic field lines, and plasma profile i
stepped magnetic field. For clarity, the difference betweenr̃ pH and r pH has
been exaggerated.
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trast, the density would be constant along the field lines i
neutral plasma. The compression caused by the conver
field lines is exactly cancelled by reflections from the i
creasing magnetic field.!

Thus, the zero temperature, flat-top equilibrium cons
of two columns of constant, but different density, related
nH5nL(11b). The on-axis(r 50) potentials of the two col-
umns must match. If the two columns had outer radiir p

linked together along a field line, the on-axis high magne
field potential would be too negative by a factor proportion
to ln~11b!. Consequently the radius of the high density c
umn, r pH , must be smaller than the linked radius of the lo
density column,r̃ pH5r pL /A11b. For smallb, the discrep-
ancy 12r pH / r̃ pH'b/@4 ln(Rw /rpL)# is small.

The T→0 equilibria can be easily extended to arbitra
radial profiles by requiring that the density along linked ra
increase by 11b. The potential along field lines will still be
constant inside the plasma, and the high field plasma ra
will be somewhat smaller than the low field linked radius

B. Flat-top, finite temperature equilibria

While a flat-top, finite temperature plasma is somew
unphysical, such plasmas exhibit all the essential feature
the mirror equilibria and are analytically tractable. A straigh
forward calculation~see Appendix A! employing the Boltz-
mann and Poisson equations shows that, in the limit of sm
b, the potential difference across linked field lines inside
plasma is given by

Df~r L!5b
kT

e
@12AI0~r L /ldL!#, ~2!

whereldL is the on-axis Debye length in the low field re
gion, I0 and I1 are modified Bessel functions, and

A5
ldL

2 1r pL
2 /4

ldL@ldLI0~r pL /ldL!1r pLI1~r pL /ldL!ln~Rw /r pL!#
. ~3!

A typical example is shown in Fig. 3.
When r pL@ldL ~or, equivalently, r pH@ldH), A

→A2pr pL
3 /ld

3 exp(2rpL /ld)/ln(Rw /rpL) is small, and the on-
axis potential difference increases by approximatelybkT/e
in the high field region. As expected, the central density
creases by approximately 11b. A gets larger asldL ap-
proachesr pL , and the on-axis potential difference ge
smaller, eventually approaching zero whenldL*r pL . Here
the density barely increases in the high field region, as
plasma essentially behaves like a gas of noninteracting
ticles.

Off the axis (r .0,) the potential difference diminishes
At the cut-off radiusr cL , defined by 15AI0(r cL /ldL), the
potential difference changes sign. For greater radii the d
sity in the low field region is higher than the density at t
linked radius in the high field region. This has the necess
effect of ‘‘cutting’’ the high-field plasma off at some radiu
betweenr cL /A11b and r̃ pH . Note thatr cL is independent
of b.

a
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C. Local and global thermal equilibria

While no analytic solution exists for finite temperatur
general radial density profiles, it is easy to find the equilib
numerically by iteratively solving the Boltzmann and Po
son equations. A typical solution is shown in Fig. 4. T
wide-ranging parameter scan shown in Fig. 5 demonstr
that all equilibria roughly resemble the one shown in Fig.

FIG. 3. ~a! The potential difference along linked field lines, for an initial
flat-top plasma. Before the application of the magnetic field gradien
b50.05, the normalized plasma radius wasr p0 /Rw50.5, with wall radius
Rw52 cm. The plasma temperature wasT51 eV, and the resulting densi
ties in the low and high field regions are shown by the solid and dashed
in ~b!. For these parameters,A50.107.

FIG. 4. ~a! The potential difference along linked field lines, for a realis
profile plasma, in a magnetic field gradient ofb51.0. The plasma tempera
ture wasT51 eV, the wall radius ofRw52 cm, and the resulting densitie
in the low and high field regions are shown by the solid and dashed line
~b!. In ~c!, the low field density profile is multiplied by the weighting facto
r , showing that most of the plasma is in the positiveDf region.
Downloaded 02 Jun 2003 to 169.229.38.242. Redistribution subject to A
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However, there a few trends:~1! For cold, dense plasmas
eDf&kT ln(11b), and the high field density increases pr
portional to 11b. For very hot or tenuous plasmas (ld

*r p), the potential difference is much smaller thankT ln(1
1b), and the density increases less than linearly with
1b. In this limit the plasma behaves like a column of no
interacting particles.~2! The cut-off radiusr c depends only
weakly onT andb so long asld,r p andb is not too large.
However, it moves outwards asld→r p .

Except whenldL!r p , the density does not quite in
crease proportional to the magnetic field. Consequently,
E3B self-rotation frequency of the plasma is not consta
along field lines. However, it is easy to prove~see Appendix
B! that the total rotation frequency, the sum of theE3B
rotation frequency and the diamagnetic drift rotation fr
quency, is constant along field lines.

Nothing presented in this paper requires that the rota
frequency be the same on all field lines and at all radii. I
is, the plasma is in the more restricted state of global ther
equilibrium. Formally,4 the global equilibrium density distri-
bution function is proportional to exp@2(H2wpu)/kT#, where
H is the electron energy andpu is canonical angular momen
tum. The rotation frequencyv is everywhere constant. Typi
cally, global equilibrium is attained via transport across fie
lines, and if attained at all, occurs long after local equil
rium along field lines is achieved. It is easy enough to fi
global equilibrium states in mirror fields, but as no ne
physics occurs, global equilibrium will not be explore
further.

III. SEPARATRICES AND TRAPPING

It is well known that increasing magnetic fields rep
electrons with high perpendicular velocities. From conser
tion of magnetic moment and energy, it is easy to deriv

f

es

in

FIG. 5. A survey of the normalized potential difference~b! for the density
profile ~a!. @The profile shown in~a! is the profile obtained atb50.# For
b50, the Debye lengthld /Rw is about 0.027 atT50.1 eV, 0.085 atT
51 eV, and 0.27 atT510 eV. Thus, only at the hottest temperature is t
plasma radius comparable to the Debye length, and does the potentia
ference at the origin deviate significantly fromkT ln(11b)/e.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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separatrix between particles which are reflected by the
creasing field and particles which can penetrate into
higher fields

v'sL~v i!5A1

b S v i
21

2eDf

kT D , ~4!

where the velocities have been normalized by the ther
velocity vT5AkT/m. Thus, for a givenv i , particles with
larger perpendicular velocities thanv'sL(v i) will be re-
flected. WhenDf is zero, the result is well known; the sep
ratrix reduces to the straight lines with slope6A1/b shown
in Fig. 1. Including theDf term extends this result to non
neutral plasma equilibria, and changes the form of the se
ratrix to a hyperbola.

Equation~4! describes the separatrix for particles tra
siting from the low to the high field region. IfDf is positive,
some particles will be reflected while attempting to tran
the other way, from the high to the low field region. Th
high-field separatrix is defined by

v'sH~v i!5A11b

b S 2eDf

kT
2v i

2D , ~5!

an ellipse; particles with perpendicular energyless than
v'sH(v i) will be reflected. As no particles are reflected wh
Df is zero or negative, this separatrix does not exist
non-interacting particles or for neutral plasmas.

Typical examples of both the high and low separatric
are plotted in Figs. 6 and 7. Particles which are reflected
be trapped; thus, separate populations of particles are tra
in both the low and high field regions. The fraction of th
population that is trapped in the low field region is sligh
less than one can calculate explicitly for theDf50 case,
namelyAb/(11b). The fraction trapped in the high fiel
region is typically two to ten times lower.

One might think that the origin of the hyperbolic low-to
high separatrix might go to zero asb goes to zero~at r
50); in other words, the separatrix might asymptote to

FIG. 6. The separatrices between trapped~shaded! and untrapped noninter
acting particles forb51. The parallelv i and perpendicular temperaturesv'

are normalized to the thermal temperature. The scale used in all the g
is identical to the scale in the upper right graph. The density profile
potential are identical to those shown in Fig. 4. The appropriate separat
are plotted at the four indicated potentials, corresponding to the indic
low field radii. There are no trapped particles in the high field region
r L /Rw.0.43 because thereDf<0.
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classic form shown in Fig. 1. Likewise, the high-to-low sep
ratrix might disappear entirely. However, Eqs.~2! and~3!, as
well as the numeric solutions, predict thateDf(0)/kT→b
asb→0 andr p@ld . Consequently, the value of the perpe
dicular velocity on the separatrix atv i50 @v's(0;r 50)# is
never far from the thermal velocity. Significant differenc
between the correct form of the separatrix and the cla
form ~Df50! persist up to normalized velocities in the v
cinity of A2b.

The qualitative form of the potential differenceDf(r ) is
a displaced exponential;eDf(r )/kT remains close tob until
r approaches the edge of the plasma@see Fig. 4~c!#. Thus, the
inclusion of the potentialDf makes a zeroth-order change
the separatrix for almost all the particles; the effects ofDf
do not go away asb vanishes. Only whenr p&ld will
eDf(0)/kT go to zero andv's(0;r 50) approach zero.

IV. SEPARATRIX CROSSING AND TRAPPED
PARTICLE MODES

Recent experiments have probed2 the separatrix. The ex
periments examined the damping of trapped particle mod
Diocotron-like modes which rely on populations of trapp
particles that cannot travel the length of the plasma.10 These
modes are damped by velocity-space collisions which tra
port particles across the trapping separatrix. There is str
experimental evidence that the damping of these mode
closely linked to the hitherto unknown mechanism for glob
transport in non-neutral plasmas.1 The damping11 should be
proportional to the value of the distribution function on th
separatrix,f (v i ,v')5 f @v i ,v's(v i)#5 f s(v i) where v's is
found from Eq.~4!. Thus, the damping rate should depend
shape of the separatrix.

The damping can be enhanced by an applied rf drive
frequencyf rf . The drive kicks particles with a velocity pro
portional to f rf . ~The drive acts over an interaction leng
L* , so particles with velocityv i'L* f rf will receive a nona-
diabatic kick in v i .) The shape of the separatrix can b
probed by varying the drive frequencyf rf . The authors of
Ref. 1 do not consider the true mirror equilibrium, so th

hs
d
es
d

r

FIG. 7. The separatrices between trapped~shaded! and untrapped noninter-
acting particles forb50.02. Other parameters are identical to those in F
6. Note that the separatrices in this figure resemble those in Fig. 6 if thv i

axis is normalized byAb.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ignore all effects ofDfÞ0. Assuming a Maxwellian distri-
bution, thatb is small, and thatDf50, they find the follow-
ing expression for the distribution function on the separa
@Eq. ~5! of Ref. 2#:

f s~v i!}
v i

Ab
expS 2

v i
2

2b D . ~6!

As the authors find excellent experimental agreement w
this formula, they would indeed be tracing out the separa
straightforwardly ifDf were zero.~Note that they also as
sume that the number of kicked particles is independent ov,
an assumption quite unresolved by the experiments.!

A proper calculation off s(v i) includes both the direc
tionality of the kick ~along v i) and the effects ofDf. The
complete formula is

v i

b
expS 2

eDf

bkTDexpF2
v i

2

2 S 11b

b D G v i
2.2

2eDf

kT
~7!

0 v i
2<2

2eDf

kT
.

Curiously, this equation is proportional to Eq.~6! in the limit
b→0 and when the velocity cutoffv i

2.22eDf/kT is satis-
fied. Equation~7! should be weighted over the currently u
known mode profile; since the bulk of the plasma satis
the velocity cutoff, Eq.~6! and Eq.~7! likely predict similar
damping. Thus, the experiments in Ref. 1 cannot different
between the separatrix solutions found in this paper and
standard separatrix~Df50!.

Note, however, that the velocity cutoff is violated fo
large radii whereDf,0. Assuming uniform weighting, ther
are small differences between the two equations that
comparable to the resolution of the experiments. If the m
was concentrated at the very edge of the plasma, howe
there would be significant differences between the equati
Thus, the experiments imply that the mode extends throu
out the bulk.

The proportionality between Eqs.~6! and~7! is, in some
sense, coincidental. For instance, for kicks alongv' instead
of v i , theDf50 solution resembles the proper solution on
when v is much larger than the thermal velocity. Likewis
the mode should also be damped by crossings of the
field separatrix. The form off s(v i) on the high field separa
trix is completely different from Eqs.~6! and~7!, as it is zero
beyond a cut-off velocity comparable tovT /Ab. Finally, the
natural mode damping from collisions is strongly depend
on the nature of the separatrix and will not reduce to
Df50 limit.

V. CONCLUSIONS

Because the potential is not constant along field lin
mirror non-neutral plasma equilibria are quite different fro
noninteracting particle equilibria or uniform field non-neutr
equilibria. Separate populations of particles are trapped
both the high and low field regions. The trapped populatio
exist throughout the plasma, not just at the radial edge. Th
is a qualitative change in the form of the separatrices div
ing trapped and untrapped particles from the commonly
Downloaded 02 Jun 2003 to 169.229.38.242. Redistribution subject to A
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scribed mirror separatrix. The unusual nature of the sep
trices complicates the interpretation of experiments inten
to explore these separatrices.
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APPENDIX A: FLAT-TOP, SMALL GRADIENT
EQUILIBRIA

The equilibrium for a flat-top, finite temperature plasm
in a small mirror fieldb*0, can be derived from Poisson
and Boltzmann’s equations. Asb is small, the density varia-
tions are small, and Boltzmann’s relation for the density
the low and high field region@Eq. ~1!# can be approximated
as

nL~r L!5NS 12
eDf~r L!

kT
1¯ D ,

~A1!

nH~r H!5NS 11
eDf~r L!

kT
1¯ D ,

whereN is the density whenb50. From the zero tempera
ture limit discussed in Sec. II A, we know that the dens
increase between the two limits is approximatelyb. Thus, a
good starting approximation for the potential differen
along a field line is

Df~r L!5
kTb

e
@12DwL~r L!#, ~A2!

whereDwL(r L'0) is small whenr pL@lD .
Recall that the potential difference along a field line

defined by

Df~r L!5FH~r H!2FL~r L!, ~A3!

whereFL(r L) andFH(r H) are the potentials in the low an
high field regions as a function of radius, and where,
usual, r L and r H are linked by a field line. Assuming th
plasma in the low field region resembles a long charge r
Poisson’s equation can be trivially integrated to give

FL~r L!5
e

e0
E

r pL

r L dr

r E
0

r

dr̃ r̃ nL~ r̃ !

1
e

e0
lnS r pL

Rw
D E

0

r pL
dr rnL~r !. ~A4!

Using Eqs.~A1! and ~A2! reduces this equation to
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FL~r L!5
eN
e0

H ~12b/2!F1

4
~r L

22r pL
2 !1

1

2
r pL

2 lnS r pL

Rw
D G

1
b

2 F E
r pL

r L dr

r E
0

r

dr̃ r̃DwL~ r̃ !

1 lnS r pL

Rw
D E

0

r pL
dr rDwL~r !G J . ~A5!

Similarly

FH~r H!5
eN
e0

H ~11b/2!F1

4
~r H

2 2r pH
2 !1

1

2
r pH

2 lnS r pH

Rw
D G

2
b

2 F E
r pH

r H dr

r E
0

r

dr̃ r̃DwH~ r̃ !

1 lnS r pH

Rw
D E

0

r pH
dr rDwH~ r̃ !G J , ~A6!

whereDwH(r ) equalsDwL(r ) at linked radii. With the aid of
the identities

E
0

r pH
dr rDwH~r !5~12b!E

0

r pL
dr rDwL~r ! ~A7!

and

E
r pH

r H dr

r E
0

r

dr̃ r̃DwH~ r̃ !5~12b!E
r pL

r L dr

r E
0

r

dr̃ r̃DwL~ r̃ !,

~A8!

substituting Eqs.~A2!, ~A5!, and ~A6! into Eq. ~A3!, and
keeping only terms linear inb, gives an integral equation fo
DwL(r )

kT

e
@12DwL~r L!#52

eN
e0

F r pL
2

4
1E

r pL

r L dr

r E
0

r

dr̃ r̃DwL~ r̃ !

1 lnS r pL

Rw
D E

0

r pL
dr rDwL~r !G . ~A9!

Defining ld
25e0kT/Ne2, and differentiating this equation

twice yields the differential equation for zeroth-order mo
fied Bessel functions

05r
d2DwL~r!

dr2 1
dDwL~r!

dr
2rDwL~r!, ~A10!

wherer5r L /ld . Discarding the K0 solution because its be
havior at the origin is not analytic leaves the soluti
DwL(r)5AI0(r). As Eqs.~A5! and ~A6! are only valid in-
side the plasma, this solution is only valid there as well.

Finally, the coefficientA is found by substituting the
solutionAI0(r L /ld) into Eq.~A9!, and evaluating the result
ing equation atr L50. Employing the identities

E r

dr̃ r̃ I0~ r̃ /ld!5ldr I1~r /ld! ~A11!
Downloaded 02 Jun 2003 to 169.229.38.242. Redistribution subject to A
and

E
r pL

0 dr

r E
0

r

dr̃ r̃ I0~ r̃ /ld!5ld
2@12I0~r pL /ld!#, ~A12!

yields a linear equation forA which is solved by Eq.~3!.

APPENDIX B: ROTATION RATE

So long as the plasma is in local thermal equilibrium, t
total rotation frequency will be constant along field line
The total rotation frequency is the sum of theE3B rotation
frequency, E/rB, and the diamagnetic drift rotation fre
quency (kT/eBr)d ln n/dr. Equating the rotation frequenc
in the low and high fields gives

1

r L

EL~r L!

BL
1

1

r L

kT

eBL

d ln nL~r L!

drL

5
1

r H

EH~r H!

BH
1

1

r H

kT

eBH

d ln nH~r H!

drH
, ~B1!

whereEL(r L) and EH(r H) are the electric fields in the low
and high field regions. UsingBH5(11b)BL , r H

5r L /A11b, and Boltzmann’s relation@Eq. ~1!# this equa-
tion becomes

EL~r L!2
EH~r H!

A11b
5

kT

e

d

drL
H lnFnL~r L!expS eDf~r L!

kT D G
2 ln@nL~r L!#J , ~B2!

or

EL~r L!2
EH~r H!

A11b
5

dDf~r L!

drL
. ~B3!

But this is equivalent to the definition ofDf, as can be seen
by differentiating Eq.~A3!. Thus, the total rotation rate i
constant along field lines in local thermal equilibrium.
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