
19 July 1999

Ž .Physics Letters A 258 1999 145–148
www.elsevier.nlrlocaterphysleta

Plasma shielding, Vlasov’s equation, and the unperturbed-orbits
technique

A.B. Reimann, J. Fajans 1

Department of Physics, UniÕersity of California at Berkeley, Berkeley, CA 94720-7300, USA

Received 18 May 1999; accepted 25 May 1999
Communicated by M. Porkolab

Abstract

The common textbook derivation of collisionless plasma shielding is technically invalid. Trapped particles are crucial to
shielding, but the trapped-particle distribution does not reach a steady state before the trapped particles bounce, thereby
violating the unperturbed-orbit technique used in the derivation. However, physical arguments indicate that the final answer
is nonetheless often correct. q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 52.20.-j; 52.25.Dg; 52.25.Mq; 52.25.Kn
Keywords: Plasma shielding; Trapped particles; Unperturbed orbits

One dimensional, collisionless shielding of a test
charge is critically dependent on the particles trapped
in the vicinity of the test charge. If the number of
trapped particles is calculated incorrectly, the degree
and even the sign of the predicted shielding can be
incorrect. We will show that by the time the trapped
particles have settled down to a steady state, they
will have bounced in the shielded potential well
formed by the test charge, thereby violating the
unperturbed-orbit technique used in textbook shield-

w xing derivations 1,2 . Thus these derivations are tech-
nically invalid.

In this Letter, we will assume a fully one-dimen-
sional system. However, the same considerations
apply to a system in which the potential is three-di-
mensional, but the particle’s guiding center motion is
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constrained to straight lines: for instance, to a plasma
in a strong magnetic field. In a fully three-dimen-
sional system orbit bending is more important than

w xparticle trapping 3 , and the issues raised here are
unimportant.

We begin with a brief derivation of the shielding
Ž . w xof a test sheet sd x . Following Nicholson 1 , we

assume that the ions are immobile, and that the
electron distribution function can be written as

f x ,Õ ,t s f Õ q f x ,Õ ,t , 1Ž . Ž . Ž . Ž .e 0 1

Ž .where f Õ is the unperturbed distribution and0
Ž .f x,Õ,t is a perturbation. We will solve the lin-1

earized Vlasov equation,

E f x ,Õ ,t E f x ,Õ ,t ye Ef E fŽ . Ž .1 1 0
qÕ s , 2Ž .

E t E x m E x E Õ
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in conjunction with Poisson’s equation,

E 2f e s
s f x ,Õ ,t dÕy d x , 3Ž . Ž . Ž .H 12 e eE x 0 0

where e and m are the electron charge and mass. We
proceed by taking the spatial Fourier transform and

Ž . Ž .the temporal Laplace transform of Eqs. 2 and 3 ,
yielding two new equations

e s
2yk f k ,v s f k ,Õ ,v dÕq ,Ž . Ž .H 1

e 2p ie v0 0

ike E f0
iv f k ,Õ ,v y ikÕf k ,Õ ,v s f k ,v .Ž . Ž . Ž .1 1 m E Õ

4Ž .

Note that the Laplace transform implies that the test
sheet is suddenly and fully turned on at ts0.

Nicholson solves this pair for the potential; we
find it more informative to solve for the perturbed
distribution,

ies 1 1 1 E f0
f k ,Õ ,v s ,Ž .1 2pe mk e k ,v v vykÕ E ÕŽ . Ž .0

5Ž .

where

v 2 df u rduŽ .e 0
e k ,v s1y du 6Ž . Ž .H2 uyvrkk

is the Vlasov dielectric function. Here v is thee

electron plasma frequency. No general expression
Ž .exists for e k,v , but it can be simplified in certain

Ž .limits. In particular, assuming that f Õ is0

Maxwellian,

1 v
e k ,v s1q , <Õ , 7Ž . Ž .th2 2 kk le

where l is the electron Debye length and Õ is thee th

thermal velocity. A more complete discussion of the
dielectric function is given by Nicholson.

Following Nicholson, we ignore the contributions
Ž . Ž .to Eq. 5 from the poles at e k,v s0, as these

contributions die out. The remaining poles are at
Ž .vs0 and vskÕ. Again assuming that f Õ is0

Maxwellian, inverse Laplace transforming gives

yi k Õ tes f Õ eŽ .0
f k ,Õ ,t sŽ .1 2 22pe m Õ k e k ,vskÕŽ .0 th

1
y . 8Ž .2k e k ,vs0Ž .

In the limit Õ<Õ , inverse Fourier transformingth

gives

es f ÕŽ .0
f x ,Õ ,t sŽ .1 22pe m Õ0 th

=

Ž .i k xyÕ t i k x
` e e

dk y , 9Ž .H 2 2 2 2k qk k qky` e e

Ž . Ž .where k is 1rl , and we have used Eq. 7 . Eq. 9e e

has poles at ks"ik . We close the contour in thee

upper-half plane, yielding the perturbed distribution
function

es f ÕŽ .0 y < xyÕ t < rl y < x < rle ef x ,Õ ,t s l e yeŽ . Ž .1 e22e m Õ0 th

e
s f Õ F x yF xyÕt ,Ž . Ž . Ž .0

kT

< <Õ <Õ 10Ž .th

where

sle y < z < rleF z s e , 11Ž . Ž .
2e0

T is the plasma temperature, and k is Boltzmann’s
Ž .constant. Note that F z is the standard result for

the shielded potential from a charge sheet s .
For a particle of velocity Õ, the perturbed distri-

Ž .bution function f x,Õ,t is time independent only1
Ž .after F xyÕt goes to zero, i.e. after a time t such

< <that xyÕt 4l . But assuming that the particlee

starts near xs0, this inequality implies that the
particle travels a distance substantially greater than a
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Debye length l in time t . As the particles trappede

in the potential well can only travel a distance
approximately equal to the Debye length before they
bounce, the trapped particles make many bounces
before their distribution function becomes time inde-
pendent. Consequently, the unperturbed-orbit tech-
nique used to solve the linearized Vlasov equation is
violated. There is no time at which the trapped-par-
ticle distribution function has reached steady state
and the unperturbed-orbit technique is valid.

If trapped particles were not crucial to shielding,
all this would be of little importance. That the trapped
particles are crucial is easy to see by calculating the
trapped-particle density. For the moment, let us ig-
nore the problems with the above derivation, and

Ž .assume that the potential really is given by Eq. 11 .
Then the complete distribution function is given by
Ž . w Ž . x Ž . Ž .f x,Õ sexp eF x rkT f Õ , where f Õ is a0 0

Maxwellian. At xs0, particles whose velocity is
< < (less than Õ -Õ s 2 eF 0 rm , are trapped, soŽ .T

the density of trapped particles at the origin equals

ÕT

n s f xs0,Õ dÕŽ .HT 1
yÕT

eF 0 eF 0Ž . Ž .
sn exp erf (0 kT kT

3r2
eF 0 eF 0Ž . Ž .

s2n qOO , 12Ž .(0
p kT kT

where erf is the error function and n is the unper-0

turbed density. The density of free particles equals

`

n s2 f xs0,Õ dÕŽ .HF 1
ÕT

eF 0 eF 0Ž . Ž .
sn exp erfc (0 kT kT

eF 0 eF 0Ž . Ž .
sn 1y2 q(0 ½ p kT kT

3r2
eF 0Ž .

qOO , 13Ž .5kT

where erfc is the complementary error function. As
expected, the total density equals

eF 0Ž .
n sn qn sn exptot T F 0 kT

3r2
eF 0 eF 0Ž . Ž .

sn 1q qOO , 14Ž .0 ½ 5kT kT

the unperturbed density times a Boltzmann factor.
Obtaining this result is critically dependent on the

Ž . Ž .square root terms in Eqs. 12 and 13 canceling; if
'these terms do not cancel, n will have a eFrkTtot

term which will dominate the desired eFrkT term.
In other words, the density of trapped particles is

'never small as it depends on eFrkT . An error
calculating the trapped density has profound conse-
quences for the final answer.

In sum, the problem with the textbook shielding
derivation is that by the time the trapped-particle
distribution has reached steady state, the solution is
no longer valid, and we cannot be sure that we will
get the necessary perfect cancellation of the square-
root terms. This is not merely an academic exercise;

w xexperiments 4 have demonstrated that when the
trapped-particle density is anomalous, the sign of the
shielding can change; the plasma can enhance rather
than diminish the fields from test sheet. Some au-

w xthors 3 even think that this ‘anti-shielding’ is the
default result in one-dimension. Experimentally we

w xfind, however, that we usually do get shielding 5,6 ,
implying that the square-root terms usually cancel.
Physically, this probably results from the shielded
trapped-particle density being close to the original

< <density of particles with Õ -Õ . So long as theseT

two densities do not differ more than linearly in F ,
the square root terms will cancel, and the linear term
will be as expected. The higher-order terms, how-
ever, will not necessarily conspire to give the Boltz-
mann result, n exp eF 0 rkT . Experiments haveŽ .0

demonstrated that the higher order response depends
on how the plasma is prepared and on how the

w xcharge is inserted into the plasma 4–6 .
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