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The simultaneous control of the density and particle number of nonneutral plasmas con�ned
in Penning-Malmberg traps is demonstrated. Control is achieved by setting the plasma's density
by applying a rotating electric �eld while simultaneously �xing its axial potential via evaporative
cooling. This novel method is particularly useful for stabilizing positron plasmas, as the procedures
used to collect positrons from radioactive sources typically yield plasmas with variable densities and
particle numbers; it also simpli�es optimization studies that require plasma parameter scans. The
reproducibility achieved by applying this technique to the positron and electron plasmas used by
the ALPHA antihydrogen experiment at CERN, combined with other developments, contributed to
a ten-fold increase in the antiatom trapping rate.

We report experiments that employ a novel plasma
physics technique to achieve a dramatic improvement in
the control and reproducibility of nonneutral plasmas.
This development was implemented in the ALPHA anti-
hydrogen experiment at CERN, where it facilitated op-
timization of the myriad procedures involved in trapping
antihydrogen and contributed to a ten-fold increase in
the trapping rate [1]. This increase in the trapping rate
was critical to the success of observations of the 1S�2S
transition [2] and hyper�ne splitting [3] in antihydrogen.
The new technique is potentially applicable to a vari-
ety of nonneutral plasma systems and regimes, including
those used in particle accelerator studies [4], ion mass
spectrometry [5], �uid dynamics [6, 7], positron beam
creation [8�10], atomic clocks [11], and positron-electron
pair plasmas [12].

Nonneutral plasmas contain particles with the same
charge polarity, and are often con�ned as ellipsoids in
Penning-Malmberg traps (see Fig. 1). Such traps use a
strong axial magnetic �eld B for radial con�nement and
an electrostatic well for axial con�nement; the latter is
formed by biasing a series of electrically isolated, hollow
cylinders arrayed along the magnetic axis.

The zero-temperature equilibrium of a plasma held in
a Penning-Malmberg trap is a rigid rotor of constant den-
sity n [13]. The plasma rotates at frequency f due to the
local E×B drift velocity; here, the electric �eld E comes
from the charge of the plasma. At non-zero plasma tem-
peratures T [14], this equilibrium is modi�ed such that
the �uid rotation rate (set by the E×B drift combined
with the diamagnetic drift) is constant across the plasma.

Antihydrogen is synthesized in the ALPHA apparatus
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FIG. 1. a) Partial schematic of one of ALPHA's Penning-
Malmberg traps, showing the axial magnetic �eld B, seven
of the electrically-isolated cylindrical electrodes, and one ro-
tating wall electrode (�fth in from the left) with six isolated
azimuthal sectors; the inner radius of the electrodes is 14.8
mm. b) Typical initial (dashed) and �nal (solid) electrostatic
potentials used in the stabilization procedure, and the axial
magnetic �eld (dot-dash).

by mixing positron and antiproton plasmas in a shal-
low magnetic minimum neutral atom trap, and traps an-
tiatoms colder than 0.54 K [15, 16]. ALPHA uses two
Penning-Malmberg traps, the antiproton catching and
antihydrogen mixing traps, to prepare and mix plasmas;
descriptions are given in Ref. [15]. Due to the extreme
sensitivity of the antiatom trapping rate on the param-
eters of the plasmas, much experimental e�ort has been
devoted to their optimization. Historically, the trapping
rate su�ered from short term and long term variations
in plasma densities and particle numbers. The positron
plasma parameters varied by up to a factor of two, likely
due to changes in the solid-neon positron moderator and
the bu�er gas in the positron accumulator [17]. Smaller
variations in the electron plasmas were likely due to drifts
in the thermionic electron source compounded by the
large magnetic �eld gradient between the source and the
trap. These variations led us to use an autoresonant mix-
ing technique [18, 19] which, while relatively insensitive
to small changes in plasma parameters, was suboptimal
for trapping; our plasma manipulations required frequent
tuning.
The technique described here controls two of the most

critical plasma parameters, the number of plasma parti-
cles N and the density n. Rotating wall electric �elds
[20] in the strong drive regime (SDR) [21] are applied
simultaneously with evaporative cooling (EVC) [22] elec-
trostatic well potentials. Hence, the process is called
SDREVC. After introducing SDREVC, the electron and
positron plasmas became highly reproducible so long as
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FIG. 2. Pre- ( ) and post- ( ) SDREVC measurements: a)
plasma electron number Ne− in the catching trap; b) plasma
electron numberNe− in the atom trap; and c) plasma positron
number Ne+ in the atom trap. SDREVC was implemented
at the end of July 2016, so only pre-SDREVC data are shown
prior to that date. Beginning in August, the pre-SDREVC
numbers in a) are o� scale. The arrows in c) indicate instances
where the positron moderator e�ciency decreased and the
number of pre-SDREVC positrons dropped below the desired
post-SDREVC value; the number was recovered by regrowing
the moderator.

the pre-SDREVC N was at least marginally higher than
the desired post-SDREVC N .
Figure 2 shows the dramatic stabilization of electron

and positron plasmas obtained with SDREVC. The elec-
tron plasmas in Fig. 2a were held in a uniform 3T axial
�eld. The electron plasmas in Fig. 2b were held in a uni-
form 1T axial �eld while the positron plasmas in Fig. 2c
were held in a 3T axial �eld with a slight gradient as
shown in Fig. 1b. The standard deviation of the num-
ber of particles in Fig. 2a diminished from 14% without
SDREVC to less than 3% with SDREVC; even larger im-
provements are observed in the data in Figs. 2b and 2c.
Below we show a simple theory that motivated this pro-
cedure, the techniques we use to achieve it, and the range
over which the theory models our experimental results.
We assume throughout that kBT � eφ, where φ is the

potential di�erence over the radius of the plasma due to
its own charge and e is the elementary charge. This is
equivalent to assuming that the plasma is at least several
Debye lengths in radius, and is often taken as a require-
ment that a cloud of charged particles is a plasma. In
the zero-temperature limit, the E×B rotation frequency
f of the plasma is

f =

(
e

4πε0B

)
n, (1)

where ε0 is the permittivity of free space. Experimentally,
we impose a rotation frequency f , and hence �x n.
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The on-axis self potential φc of an in�nitely-long, zero-
temperature plasma is

φc =
nerp

2

4ε0

[
1 + 2 ln

(
Rw

rp

)]
, (2)

where Rw and rp are the electrode and plasma radii re-
spectively, and the electrode walls are assumed to be at
ground. If the plasma is con�ned in a relatively shallow
electrostatic well with depth equal to φc, and if n is con-
trolled by f , then Eq. (2) admits only one solution for
rp. Furthermore, the total number of plasma particles is
given by

N =

∫ V

ndV = nπr2pL, (3)

where the plasma length L is assumed to be long enough
that axial end e�ects can be neglected. Thus, using
SDREVC to simultaneously control the rotation fre-
quency f and the on-axis potential φc fully speci�es all
the plasma parameters in the zero-temperature limit; this
is the essence of the SDREVC technique.
The density of a nonneutral plasma in a Penning trap

can be manipulated by applying rotating electric �elds at
frequencies near the plasma's natural rotation frequency.
The �elds are created by applying appropriately phased
oscillating potentials to the azimuthally-sectored rotat-
ing wall electrodes (see Fig. 1). This technique, called
rotating wall compression, was pioneered by Huang et

al. [23], and has been used extensively in the nonneutral
plasma community.
As �rst noted by Danielson and Surko [24], the plasma

rotation frequency f can lock to the rotating wall drive
frequency in the strong drive regime. Since the density,
in turn, is governed by the plasma rotation frequency,
this allows control of the density by varying the drive
frequency. In ALPHA, a plasma a few centimeters long
can be in the strong drive regime when one end of the
plasma is dri[ven at frequencies varying between 50 kHz
and 1MHz with sinusoidal potentials in the range of 1
to 5V. It is notable that strong drive operation can be
achieved even in the presence of spatial variations in the
magnetic �eld (see Fig. 1) [25].
The on-axis potential φc is controlled via evaporative

cooling, a procedure which has been used in ALPHA to
cool both antiprotons [22] and positrons. Evaporative
cooling is performed by lowering the axial potential bar-
riers con�ning a nonneutral plasma such that the most
energetic particles escape; typically, the barriers are low-
ered asymmetrically so that particles escape from only
one end of the plasma. Examples of initial and �nal
potentials are shown in Fig. 1b. As with any evapora-
tive procedure, the remaining trapped particles are cooler
than those in the initial plasma. In the zero-temperature
limit, this will set the potential of the plasma to φc.
Evaporative cooling and rotating wall compression

have competing e�ects; the rotating wall heats the
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FIG. 3. Image data (orange circles) and generalized Gaus-
sian �t (brown line) of the intensity as a function of radius
corresponding to the inset MCP image of an electron plasma.

plasma while the evaporative cooling cools the plasma,
and the rotating wall radially compresses the plasma
while evaporative cooling radially expands the plasma
[22]. To overcome these competing side e�ects, it is nec-
essary to experiment with di�erent potential well shape
manipulations, axial plasma positions relative to the ro-
tating wall electrode, and rotating wall amplitudes and
frequencies. Once tuned, SDREVC is robust, and ad-
justing the tuning parameters can yield an optimized
post-SDREVC plasma. The plasma's radial pro�le is di-
agnosed by extracting the plasma onto a micro-channel
plate (MCP) attached to a phosphor screen and imaging
the �uorescence with a CCD camera [26]. The plasma
radius, normalized net intensity, and line-integrated den-
sity are determined from the resultant MCP images by
applying a generalized Gaussian �t to the plasma pro�le,

f(r) = ae−(
r
b )

n

+ c (4)

where a is the overall scaled line density, b is the ra-
dius of the plasma after scaling to account for the lower
magnetic �eld at the MCP location relative to the ini-
tial plasma location, n ≈ 2 scales the fall-o� region,
and c accounts for the image background. The density
can then be found numerically [27]. The plasma parti-
cle numbers can be measured directly with the Faraday
cup, or they can be determined from the MCP image
by calibrating the normalized net intensity, of the MCP
images to absolute numbers; calibration factors are de-
termined separately by sequentially depositing identical
plasmas onto the MCP and the Faraday cup. Typical
radii, numbers of particles, and densities of the plasmas
after SDREVC were on the order of 0.5mm, 107, and
108 cm−3 respectively. An example MCP image with its
generalized Gaussian �t of a post-SDREVC plasma is
shown in Fig. 3.
Figures 4 and 5 show the results of experiments de-
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signed to test SDREVC. Due to the long duty cycle for
making positron plasmas and an additional desire to bet-
ter control the large electron plasmas used for cooling
antiprotons, we opted to use electron plasmas to test
and characterize SDREVC. We prepared electron plas-
mas with a range of pre-SDREVC particle numbers by
varying the electron loading procedures, and a range of
pre-SDREVC densities by driving the plasmas with dif-
ferent rotating wall frequencies. In Fig. 4 the potential
well during SDREVC was ramped from the initial to �nal
states similar to those shown in Fig. 1b over 20 s, while
2.5V rotating wall potentials at 450 kHz were continually
applied. Later tests showed that reducing the SDREVC
time to 10 s produced similar results. The post-SDREVC
plasmas are highly reproducible; Figs. 4a and b con�rm
that the number of particles and plasma density post-
SDREVC are invariant over a large range of initial parti-
cle numbers. Fig. 4c con�rms a similar invariance in the
post-SDREVC density for a large range of initial den-
sities. Notably, SDREVC can increase or decrease the
density. For comparison, the measurements of plasmas
after EVC only in Fig. 4 are not independent of the initial
conditions.
In Fig. 4, each data point represents the average of

20 measurements; the standard error of the mean of each
point is smaller than the size of the markers, so error bars
were omitted. The shot-to-shot variation of the particle
number and density after SDREVC was about 1%, which
is the precision limit of our diagnostics. However, long
term drifts in post-SDREVC plasma parameters, as ap-
parent in Fig. 2, can be larger than 1%. These drifts are
thought to be due to slow variations in other experimen-
tal parameters such as the decay of the persistent current
in the solenoid producing the axial magnetic �eld and its
periodic resets.
Figure 5 shows that by varying the tuning parameters,

SDREVC can produce plasmas with a wide range of par-
ticle numbers and densities. In Fig. 5a, an order of mag-
nitude range in the number of particles post-SDREVC
was achieved by varying the �nal depth of the poten-
tial well while driving the plasma with a 2.5V, 700 kHz
rotating wall. From Eq. (2), it is easy to show that at
constant density, φc should scale with N , given normal-
ization points φc0 , rp0

, and N0, as

φc = φc0

(
N

N0

) 1 + ln
(

R2
w

r2p0

N0

N

)
1 + ln

(
R2

w

r2p0

) . (5)

The solution to this equation is plotted in Fig. 5a, nor-
malized around the measured values N0 = 3.1× 107 and
rp0

= 0.42mm found at φc0 = 8V. The nonlinear cor-
rections from the logarithmic terms in Eq. (5) are small.
Figures 5b and 5c show the e�ect of changing the ro-

tating wall frequency f . As expected, in Fig. 5b the den-
sity n increases linearly with f while in the strong drive
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FIG. 4. Initial ( ), post-EVC ( ), and post-SDREVC ( )
measurements for a variety of plasma parameters. a) The �-
nal number of electrons as a function of the initial number
of electrons; b) the �nal plasma density as a function of the
initial number of electrons; and c) the �nal density as a func-
tion of the initial density. The density refers to the results of
an axially-integrated MCP diagnostic and has arbitrary units.
The orange lines mark the average post-SDREVC values.

regime. The dependence of the radius rp on f comes from
the solution to the di�erential equation

drp
df

= − rp
2f

[
1 +

1

2 ln(Rw/rp)

]
, (6)

but is only marginally di�erent from the solution ignoring
the logarithmic correction, rp = rp0

√
f0/f . In Fig. 5b,

the solution for rp is normalized around rp0 = 0.33mm
and f0 = 450 kHz.
Figure 5c plots the �nal number N as a function of f ,

which can be calculated from Eqs. (1), (3), and (6). We
observe that SDREVC can control the plasma's density
or its number of particles by an order of magnitude, while
additional data (not shown) has extended the ranges to
even higher numbers of particles and lower densities post-
SDREVC. The excellent agreement of the data and the
theoretical predictions in Figs. 5b and 5c up to 750 kHz
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FIG. 5. Measured numbers ( ), densities ( ), and radii ( );
predicted values, normalized at 450 kHz, are indicated by the
lines. a) Number of electrons retained in di�erent well depths
when driven with a 700 kHz rotating wall; b) plasma radius
and plasma density; and c) number of electrons retained in a
4V potential well as a function of the rotating wall frequency.

provide strong evidence that the plasma is in the strong
drive regime at lower frequencies; above this frequency,
it departs from this regime. The standard deviation of
the data in Fig. 5 was again smaller than the markers, so
error bars have been similarly omitted. Two of the 400
measurements taken for Figs. 4b and 4c were excluded
because the plasma compression failed for unknown rea-
sons.
The scalings developed from Eqs. (1) and (2) are for-

mally valid only for zero-temperature plasmas. Measure-
ments show that the plasma temperatures can be as high
as 300K during the SDREVC process. At these �nite
temperatures at least two of the zero-temperature as-
sumptions are no longer valid. First, Eq. (2) assumes
that the plasma is a rigid rotor of uniform density; at
non-zero temperatures, the plasma's radial pro�le falls
o� over a few Debye lengths. Computational analysis
of the equilibrium equations developed by Prasad and
O'Neil [14] shows that, in the experimentally relevant

regime (potential well depths greater than 2V, and rota-
tion frequencies below 1.5MHz), variations in the calcu-
lated post-SDREVC central density for temperatures of
30�300K are less than 1%. Second, evaporative cooling
relies on the axial escape of the highest energy particles
in the plasma distribution; the actual plasma potential
φc is several kBT less than the con�ning EVC potential.
This can cause changes in N of 5�10% over the operat-
ing range. Note, however, that the temperature pro�le
is roughly similar over multiple shots; thus, these e�ects
do not necessarily impact the reproducibility of plasmas
treated with SDREVC.
Other data (not shown) demonstrate that single or re-

peated cycles of sequential, rather than simultaneous,
SDR and EVC, are not as e�cacious. Such sequential
SDR and EVC cycles were used, but not reported [28],
in Refs. [8] and [9].
In summary, simultaneously applying a rotating wall

and evaporative cooling can reproducibly stabilize cold,
nonneutral plasmas. By changing the depth of the poten-
tial well or the frequency of the applied rotating electric
�eld, the plasma density and total particle number can
be tailored over a large range of values. This technique
was employed to stabilize plasmas against �uctuations in
their initial conditions. This stabilization has been par-
ticularly dramatic for positron plasmas and was a signif-
icant contributor to recent factor-of-ten improvements in
antihydrogen trapping rates and can be applied to many
other nonneutral plasma systems.
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EHPDS/EHDRS (Canada); FNU (NICE Centre), Carls-
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