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New solutions to the coupled three-wave equations in a nonuniform plasma medium are presented
that include both space and time dependence of the waves. By including the dominant nonlinear
frequency shift of the material wave, it is shown that if the driving waves are sufficiently strong �in
relation to the medium gradient�, a nonlinearly phase-locked solution develops that is characteristic
of autoresonance. In this case, the material �electrostatic� wave develops into a front starting at the
linear resonance point and moving with the wave group velocity in a manner such that the intensity
increases linearly with the propagation distance. The forms of the other two �electromagnetic� waves
follow naturally from the Manley–Rowe relations. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2884717�

I. INTRODUCTION AND MOTIVATION

Because of their fundamental importance in plasma dy-
namics �see Ref. 1, Chaps. 6–8�, resonant three-wave inter-
actions, including stimulated Raman scattering �SRS�, stimu-
lated Brillouin scattering �SBS�, and other processes, have
been widely studied theoretically and numerically. In particu-
lar, currently SRS is of great interest as a potentially delete-
rious reflection mechanism in inertial confinement fusion,2–6

or potentially as a beneficial mechanism for optical pulse
compression in plasma-based Raman amplifiers.7,8

SRS has been studied mainly in the context of a cw
pump or else an eikonal pump wave packet with fixed carrier
frequency and wave number, propagating in a time-
stationary and spatially homogeneous underdense back-
ground plasma. The role of a plasma density gradient in satu-
rating SRS was first studied in Ref. 9. Recently, Refs. 10 and
11 used chirps in the laser frequency and/or plasma density
to suppress deleterious plasma instabilities, while demon-
strating that depletion of the pump laser changes the Lang-
muir wave saturation conditions of Ref. 9 permitting signifi-
cant energy exchange in the context of transient SRS. These
papers neglected any nonlinear effects in the plasma wave
itself, assuming that the plasma is sufficiently cold and that
depletion happens sufficiently quickly that they may be ne-
glected. In contrast, the autoresonant effect we investigate
here arises when the nonlinear frequency shift of the material
wave due to thermal and relativistic effects balances that of
the plasma gradient. Temporal autoresonance via drive-laser
frequency chirping was suggested as a method for excitation
of plasma waves.12–14 Spatially autoresonant three-wave in-
teractions in variable density media were introduced about
15 years ago,15 but not in the context of any specific system
or application. More recently, autoresonant SBS, including
the effects of the damping, ion-trapping and detuning, was
considered by Williams et al.16

The goal of the present work is to study formation of
large amplitude, spatially autoresonant plasma waves in a
nonuniform plasma via SRS. We will discuss the transition to
spatial autoresonance during pulsed application of the pump/
seed laser waves and the role of the autoresonant threshold
phenomena in this transitional process. Previously, this
threshold effect has been studied only in the context of au-
toresonance in externally driven dynamical systems and non-
linear wave problems.17,18

II. DYNAMICAL MODEL

A. Three-wave equations with fluid nonlinearity

Our starting point is a system of envelope equations de-
scribing the SRS process in a stationary, one-dimensional
�along z�, weakly nonuniform, underdense, thermal plasma
with stationary ions �see, e.g., Ref. 4 and 19�,
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Here, the complex envelopes a, b, and g describe the pump
and seed electromagnetic waves and the plasma Langmuir
wave, respectively, and are defined in terms of the associated
dimensionless rms electric fields via
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bei�b�ê� + c.c., �2b�

where c is the vacuum speed of light, m is the electron mass,
and e is the magnitude of its charge; ê� is the common
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transverse polarization of the laser fields �linear or circular�,
��=	zdz�k��z��−��t for �=a ,b ,g, are the eikonal phases of
the waves, and �
�a−�b−�g. The frequencies �� of the
waves are assumed to be constant and satisfy the three-wave
resonance condition �a−�b=�g, while the wave vectors are
slowly varying functions of longitudinal position z, so as to
satisfy the local dispersion relations �a,b

2 =�p
2 +c2ka,b

2 and
�g

2=�p
2 +3vth

2 kg
2, where vth is the electron thermal velocity,

assumed uniform, and �p=�p�z� is the local linear plasma
frequency, which is assumed to satisfy �d�p /dz���p�0�ka,b.
The differential operators
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are those of slowly varying linear geometric optics,20 with
va,b=c2ka,b /�a,b and vg=3vth

2 kg /�g the group velocities of
the corresponding waves. The three waves are quadratically
coupled via the right-hand sides of Eqs. �1�, while the addi-
tional term i��g�2 represents a nonlinear frequency shift of
the plasma wave; the coupling and nonlinearity strengths are
given, respectively, by
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such that both parameters have dimensions of inverse time.
Here vph
�g /kg is the phase velocity of the plasma wave,
and � has been calculated in the fluid approximation �see
Refs. 21–23�. The first term in � arises from the combined
effects of the convective nonlinearity u�u /�z and the thermal
spread in the momentum equation, while the second term
describes a weakly relativistic inertial effect �assuming
�a�2 , �b�2 , �g�2�1�. We assume that the dimensionless ratio
�g
vph /vth of the plasma wave phase velocity to electron
thermal velocity is sufficiently large �typically, greater than 5
in our examples below� so as to justify neglecting all effects
associated with resonant particles, such as Landau damping
or other particle-trapping effects, which would effectively
contribute additional terms to the nonlinear dispersion �. Fi-
nally, since we assume the resonance condition �a−�b=�g

is satisfied, the phase mismatch � in the envelope equations
is due entirely to the variation of the wave vectors arising
from the plasma nonuniformity, so that �=��z�
=	zdz��ka�z��−kb�z��−kg�z���.

In the case of forward scatter, vph�c and the first term in
� is much smaller than the second, so that ��0. In the
opposite case of backward scatter, vph�c so that the first
term is typically larger than the second, and �	0. Here, we
focus on the latter scenario of RBS, in which case autoreso-
nant solutions can exist if the plasma density is an increasing
function of z; for RFS we would require a decreasing plasma
gradient.

B. Boundary/initial conditions

We are interested in analyzing the passage through spa-
tial resonance in the plasma and, consequently, assume that
in the vicinity of the resonance at z=0, ka−kb−kg�
z,
where 
 parameterizes the spatial nonuniformity, and is as-

sumed to be sufficiently small �in a precise sense described
below�. We solve the system �1� between two fixed plasma
boundaries, at z=zL�0 and z=zR	0, and assume that the
electromagnetic field a=a�z , t� �pump� is switched on at zL at
time t=0, propagates in the positive z direction �va	0�, re-
maining at a prescribed constant amplitude at the left bound-
ary zL for all t�0, i.e., a�zL , t�=��t�a0, where ��t� is the
Heaviside step function. We suppose the field b=b�z , t�
�seed� is also switched on at t=0, and either vb	0, and
b�zL�=��t�b0 �for the case of Raman forward scattering
�RFS��, or else vb�0, and b�zR , t�=��t�b0 �for the case Ra-
man backward scattering �RBS��. Finally, the plasma wave is
initially zero, i.e., g�z , t=0�=0. We seek the solution of this
initial/boundary problem in the space-time domain zLz
zR, t�0.

C. Rescaling

At this stage, we rewrite the coupled equations �1� in a
more convenient dimensionless form. We introduce the di-
mensionless longitudinal coordinate �
��
�z scaled to the
plasma gradient, and the dimensionless time �
vg�0���
�t.
Furthermore, we define the scaled action amplitudes of the
waves,

A��,�� =
�va
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a�z,t�

a0
, �3a�
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, �3b�
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ei�2/2, �3c�

which simplify both the advection operators L� and the cou-
pling parameters. In these dependent and independent vari-
ables, the scaled governing equations become

vg
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where �=sgn�vb�, and �̃ and �̃ are dimensionless parameters
describing, respectively, the wave coupling and plasma non-
linearity,

�̃ =
a0��g

��
��bvgvb

�, �̃ =
a0

2�ava

��
��gvg
2
��� .

As discussed previously, the sign of � �and, hence, 
� de-
pends on whether one considers forward or backward scat-
tering, with sgn���=−�. Thus, note that Eq. �4c� incorpo-
rates the signs of 
 �the plasma gradient� and � �the
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nonlinearity� using �. In our new notation, the boundary con-
ditions become A��L ,��=���� and either B��L ,��=B0����
�for RFS� or B��R ,��=B0���� �for RBS�. For simplicity we
will assume that all parameters in Eqs. �4a�–�4c� are constant
in the following discussion.

III. AUTORESONANT SOLUTIONS

A. Time-stationary case

To introduce our subsequent analysis and make connec-
tion with previous work, we first consider the stationary �i.e.,
time-independent� solution of Eqs. �4�. In this case, we have
the simplified set of equations

�A

��
= − �̃BG , �5a�

�
�B

��
= �̃AG*, �5b�

�G

��
− i���̃�G�2 − ��G = �̃AB*, �5c�

where A, B, and G depend only on �. This set of equations
was studied in Ref. 15 for RFS ��= +1�, where it was dem-
onstrated, under certain criteria, to yield spatially autoreso-
nant solutions. These solutions are typified by two effects:
the nonlinearity of the plasma wave effectively cancels the

plasma gradient in Eq. �5c�, so that �G�2�� / �̃, while the
relative phase of the three coupled modes remains nearly
invariant apart from some small oscillations,

� 
 arg�A� − arg�B� − arg�G� � constant. �6�

Autoresonant nonlinear phase-locking, for which the
relative phase between waves is given by expressions analo-
gous to Eq. �6�, was first observed in non-neutral plasma
experiments.24 These experiments �and the corresponding
theory� demonstrated that as the system passes through reso-
nance, the persistence of nonlinear phase-locking �autoreso-
nance� requires that the normalized driving amplitude � be
sufficiently large at the linear resonance to overcome a given

nonlinearity, such that �	�cr
0.41�̃ −1/2, in order for
phase-locking to occur. In our three-wave scenario with a
nonlinear plasma wave, we see from Eq. �5c� that this thresh-
old is characterized by the scaled ponderomotive drive �

 �̃�AB�. For the case of RFS, one can use the value of �AB�
given at the boundary �L to estimate this threshold.

The autoresonant time-independent solutions of Eqs. �5�
for the RBS ��=−1� case are similar to those in the RFS
geometry if the standard autoresonant threshold condition is
satisfied at the linear resonance, i.e., if �	�cr at �L. How-
ever, there exists a complication since the RBS scenario in-
volves a mixed boundary-value problem, with the initial A0

=1 given at �L and B0 prescribed at �R. This may result in a
multiplicity of possible time-independent solutions for given
A0 and B0 as discussed below. Nevertheless, if B0 is suffi-
ciently large there exists a single autoresonant solution in the
RBS problem. We present such a RBS solution for the di-
mensionless wave intensities in Fig. 1�a�, for which we solve

the stationary Eqs. �5� assuming two near-10 �m pump and
seed lasers of amplitudes a0=0.00316 and b0=0.80a0 at the
appropriate boundaries �corresponding to laser intensities of
1.37�1011 and 0.877�1011 W /cm2� and G0=0 at �L. We
assume a 100 eV plasma with a central density of n0=5
�1017 cm−3 and plasma density spatial variation scale-
length L=1 cm �where we define L−1
n0

−1dn0 /dz�. In this

case 
��p
2�6kgLvth

2 �−1=6�104 cm−2, �g=5.35, �̃=48.2,
and �̃=0.25, while A��L�=1, B��R�=0.8, with �L=−10 and
�R= +60, corresponding to zR−zL=0.26 cm.

In Fig. 1, we observe that beyond the linear resonance at
�=0, the plasma wave intensity grows in an approximately

linear fashion, �G�2�� / �̃, so that the nonlinear shift in
wavevector balances the linear dispersion due to the plasma
nonuniformity in Eq. �5c�. At the same time, the three waves
are continuously phase-locked, i.e., ��� /2, as shown in
Fig. 1�b�. Furthermore �A�2 and �B�2 are also approximately
linear functions of � due to the stationary Manley–Rowe con-
ditions,

�A�2 + �G�2 = constant, �7a�

�B�2 − ��G�2 = constant. �7b�

On top of the average linear growth of the wave intensities
appear small oscillations characteristic of autoresonance �dis-
cussed further below�, whose slowly varying frequency
scales as �̃1/2. After essentially all the pump action has been
transferred to the plasma wave, so that �A�2�0 and �G�2�1,

autoresonance is lost. This happens near the point �� �̃, and
in our example corresponds to a longitudinal electric field of
the Langmuir wave given by Ez�0.54E0, where E0


vph /va�0�mc�p�0� /e is the usual cold, nonrelativistic
wavebreaking limit near resonance.

As alluded to earlier, the autoresonant scenario depicted
in Fig. 1 and discussed above typifies the time-independent
RBS solutions of Eqs. �5� when B0 is sufficiently large. For
smaller B0 one encounters a multiplicity of time-independent
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FIG. 1. �Color online� Spatially autoresonant evolution: �a� Normalized
wave intensities �A�2, �B�2, and �G�2 vs scaled longitudinal coordinate �. �b�
Phase mismatch � vs �.
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solutions due to the mixed boundary-value problem in the
RBS case, with the initial A0 given at �L and B0 prescribed at
�R. To illustrate this, we solve the �inverse� “initial” value
problem �in ��, assuming that we are given A��L� and B��L�.
We plot the resulting dependence between the seed ampli-
tudes �B�L
�B��L�� and �B�R
�B��R�� on the two boundaries
in Fig. 2. One can see in the figure that only if �B�L	1 and
�B�R�0.175 in our example does one obtain a single, au-
toresonant solution. In this case, at �L, �= �̃�AB�L
	1.72�̃ −1/2, a more stringent condition than that for the RFS

case �where � must exceed �cr=0.41�̃ −1/2 to access au-
toresonance�. For smaller values of �B�R, there exists a mul-
tiplicity of solutions naturally separated into different re-
gimes as indicated by double arrows in Fig. 2. For ���cr,
no significant excitation of G is observed, so �B�L��B�R. For
larger �, when �B�L� �0.23,1� in the figure, spatially au-
toresonant plasma wave solutions exist, but do not reach the

maximum �G�=1 at �= �̃1/2 as in Fig. 1, because the phase-
locking in the “inverse” problem is lost, as the seed is nearly

depleted at some ���̃1/2. Only for �B�L	1 does one obtain a
spatially autoresonant plasma wave reaching its maximum

possible amplitude of �G�=1 at �= �̃1/2 as in Fig. 1. However,
because of the multiplicity of time-independent solutions of
the mixed boundary value problem in the RBS case, the sta-
tionary problem �5� is physically indeterminate, and we must
consider the full, time-dependent problem to determine
which asymptotic state will be achieved.

B. RBS in the full, one-dimensional case

We now numerically solve the fully space-time depen-
dent, initial/boundary three-wave problem �4� for the case of
RBS, and find naturally arising, quasistationary solutions that
have many of the same essential features as the autoresonant
solutions in the time-independent case studied above. We
show the resulting wave intensities and relative phase � as

functions of � for three different scaled times �=10, 20, 30 in
Fig. 3, using the same parameters and boundary conditions
as in Fig. 1, but with the pump and seed waves switched on
suddenly at �=0. Where it is excited, the plasma wave �G�2 is
again a nearly linear function of �, except in this case it has
a steep front moving with the group velocity. Assuming an
underdense plasma at moderate temperatures �such that the
group velocity of the EM fields far exceeds that of the
plasma wave�, the location of the front is approximately � f

=� f�����, and therefore, prior to the depletion of the pump

at �= �̃, the plasma wave can be approximated by

�G��,���2 ���/�̃ if 0 � � � � f���

0 otherwise
 . �8�

At the same time, because of the near stationarity of the
solution behind the front, the amplitudes �A�2 and �B�2 for the
pump and seed waves approximately satisfy the algebraic
Manley–Rowe conditions of the time-independent problem
�7�, and thus also evolve approximately linearly in �.

C. Prescribed ponderomotive drive model

The formation of autoresonant plasma waves in nonuni-
form plasmas as illustrated above can be understood more
simply by considering the case of a prescribed ponderomo-
tive drive governed by �compare to Eq. �4c��,

�G

��
+

�G

��
+ i��̃�G�2 − ��G = F��,�� , �9�

where F=F�� ,�� is a given slow function of � and �, corre-
sponding to the large pump and large seed limit. This partial
differential equation can be solved along the characteristics
defined via d� /ds=1, d� /ds=1, with s a real parameter cho-
sen such that s=0 at �=0. Thus, the characteristics comprise
a set of straight lines defined by �=s, �=s−s* in the
�� ,��-plane between the two boundaries �L and �R, where we
have labeled each characteristic by its �-intercept s*. Then,
Eq. �9� becomes the ordinary differential equation
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FIG. 2. �Color online� The seed wave amplitude �B�L at �L vs the seed
amplitude �B�R, in the time-independent mixed boundary-value problem.
Note the multiplicity of solutions for �B�R�0.175.
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FIG. 3. �Color online� Solutions of the full three-wave system as a function
of � at different times: �=10,20,30.
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d

ds
Y + i��Y�2 − s�Y = ���s� �10�

along these characteristics, where Y =Y�s�
 �̃1/2G and ��


 �̃1/2F. To obtain Y�� ,��, one must solve Eq. �10� subject to
the “initial” condition �Y�s=�L

=0 for each s*� ��L ,�R�. For
constant ��, this driven, single parameter nonlinear
Schrödinger equation is the archetype of all weakly nonlin-
ear dynamical autoresonance problems and has been studied
extensively in the past �see, for example, Ref. 17�. One of the
important results of these studies is a pronounced threshold
phenomenon: starting with Y =0 sufficiently far from the lin-
ear resonance, i.e., at a large negative value of s, there exists
a threshold value of �cr� 
0.41, such that if ����	�cr� , the
driven solution is characterized by a phase-locked �arg�Y�
�const�, continuously growing solution with �Y�2�s beyond
the linear resonance. In contrast, below the threshold, the
solution of Eq. �10� dephases from the drive near the linear
resonance and �Y� saturates at a relatively small value. For
����	�cr� , a smooth, averaged autoresonant growth of �Y� is
accompanied by characteristic oscillations around this aver-
age. The frequency of these oscillations scales as �
�2���Y�. The phase mismatch � also oscillates with this
frequency.

The RBS case under consideration differs from the ca-
nonical example described above by the dependence of the
scaled drive �� on � and �, i.e., on s. Figure 4 shows an
example of the evolution of G�� ,�� obtained by integrating
Eq. �10� for a �� that is constant in �, but a step function in
time, ��=�0����. We used �0=0.46 and, as in Fig. 3, �L

=−10. Comparing the solution of �G�2 in Fig. 4 to that ob-
tained solving the full three-wave problem in Fig. 3, we ob-
serve a remarkable similarity between the two solutions,
which we explain as follows.

Consider the characteristic determined by a given inter-
cept s* as shown in Fig. 5. The plasma wave is initially zero
when the drive is suddenly turned on at �=0 �or equivalently,

s=s*�, so that Y =0 everywhere along the characteristic
where the parameter ss*. As s→�, Eq. �10� has two
asymptotic solutions: The saturated, constant amplitude so-
lution Y =Y0eis2/2, and the growing �autoresonant� solution
�Y�2=s. Thus, the problem reduces to determining which
asymptotic solution is approached, subject to the initial con-
dition Y�s*�=0 for each s*, i.e., at different locations relative
to the linear resonance point s=0. For each value of s*, the
scaled drive �� determines the asymptotic solution. For those
characteristics with s*�0, the drive appears before the linear
resonance is passed, so that Eq. �10� behaves as in the pre-
viously studied case of a driven, nonlinear oscillator, yield-
ing autoresonant solutions result if �0	�cr� . For s*	0, in
contrast, the drive is turned on only after the linear resonance
has been passed, and autoresonance is impossible. This be-
havior explains the triangular front seen in Fig. 4: The front
is located at ���, for which s*�0; ahead of the front, s*
	0, autoresonance cannot occur, and the plasma wave am-
plitude is small. Behind the front, s*�0, the autoresonant

solution exists, with �G�2�� / �̃. This in turn explains the
features seen in the solutions of the full three-wave problem
plotted in Fig. 3. For those plasma-wave characteristics that
pass the resonance point before the drive is turned on, the
amplitude remains small. On the other hand, if the character-
istics pass the resonance point when the ponderomotive drive

strength is sufficiently large, so that �̃�̃1/2�AB�	�̄, the rela-
tive phase ��const, the plasma-wave nonlinearity cancels

the change in the Langmuir dispersion, and �G�2�� / �̃. This
is the process by which the fully time-dependent problem
chooses from the multiplicity of steady-state solutions shown
in Fig. 2 and indicates that autoresonance prevails for those
characteristics that pass the linear resonance after the drive
has turned on, provided that the drive is sufficiently strong
such that �	�cr, as in the RFS case.
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0.2

0.4

0.6

ξ

|G
|2

τ=20
τ=10

τ=30

FIG. 4. �Color online� The normalized plasma wave intensity vs � at differ-
ent times, �=10,20,30, with a prescribed drive �� that rises suddenly from
zero to �0 at �=0.

τ s

s=s*

µ′=µ0

0ξL ξR ξ=s
µ′=0

s=ξL

FIG. 5. �Color online� A typical characteristic of the externally forced
plasma wave equation in the �-� plane for which phase-locking can be
achieved. The drive �� switches on at the point s=s

*
�0, before passage

through resonance at �=0.
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IV. CONCLUSIONS

To summarize, provided �̃�̃1/2�B�R	�cr�0.41, the ex-
cited plasma wave in a nonuniform plasma has a simple form
represented by Eq. �8�, with a maximum squared amplitude
growing linearly in � behind a front that moves with the
group velocity of the wave. In the case of Raman backscat-
ter, this condition can be approximately written in terms of
physical variables �namely, the plasma gradient scale length
L, temperature Te, and density ne, along with the two laser
intensities I0, I1, and their central wavelength �� in the fol-
lowing manner:

c

vth
��gL

vph
�1/4��gL

vth
�1/2� �

�g
�1/2 a0b0

63/4�cr

�
�L�cm��3/4�I0I1�1010 W/cm2��1/2

����m�Te�eV��1/4�ne�1018 cm−3��3/4 	 1. �11�

Since the plasma wave behind the front is nearly station-
ary, the algebraic Manley–Rowe conditions �7� appropriate
for a steady-state effectively determine the intensities of the
autoresonant pump and seed waves. Provided that the above
threshold condition is satisfied, the nonlinear phase-locking
is insensitive to the spatio-temporal form and/or strength of

the ponderomotive drive, so that �̃�G�2−��0 throughout the
autoresonant plasma region.

In physically realizable systems, there will be an addi-
tional laser structure including amplitude variations due to
the perpendicular envelope and speckles, along with laser
diffraction and three-dimensional plasma inhomogeneities.
Because of the sharp threshold criterion, autoresonant behav-
ior will arise only where the laser amplitude is sufficiently
strong and the plasma gradient sufficiently mild such that the
condition �11� is satisfied locally. Thus, realistic variations
may lead to interesting three-dimensional spatiotemporal dy-
namics in which there may be several localized regions of
autoresonant behavior. Finally, large amplitude plasma
waves may be subject to the modulational instability when
��d2�g /dk2��0. In the RBS case discussed above, the non-
linear frequency shift is positive, so that the plasma wave is
necessarily modulationally stable. In contrast, ��0 in the
RFS geometry, so that in this case the plasma wave is un-
stable to sufficiently long wavelength perturbations. Thus,
except for a small window of parameters in which stability is
provided by the autoresonant driving,25 RFS autoresonance

would require laser pulses that are shorter than the charac-
teristic time scale of the modulational instability. Studying
such additional effects may provide interesting directions for
future research.
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