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Second harmonic autoresonant control of thd =1 diocotron mode in pure-electron plasmas
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An oscillator whose frequency is amplitude dependent can be controlled by a drive whose frequency sweeps
through a resonance with the oscillator’'s fundamental frequency. This phenomenon is called autoresonance,
and has been previously investigated for drives with frequencies near the oscillator's fundamental or subhar-
monic frequencies. This paper examines autoresonance for drives at twice the fundamental frequency, i.e,
second harmonic autoresonance. Thel diocotron mode in pure-electron plasmas, a very l@ghonlinear
oscillator, is the focus of the paper. The theory for this oscillator is derived, and compared to experimental
results. The results can be generalized to any Duffing-like driven nonlinear oscillator in which the coupling
between the drive and the oscillator depends at least weakly on the oscillator amplitude.

PACS numbgs): 52.25.Wz, 05.45.Xt, 52.35.Mw
I. INTRODUCTION 1. DIOCOTRON MODE EXPERIMENTS

. . . . . Thel=1 diocotron is a basic oscillating mode in pure-
Adiabatic passage through a resonance in a driven nonllrEIectron plasmas confined in a Malmberg-Penning iz,

ear system may lead to persistent nonhqear phase IOCI('n‘?’hese traps consist of a series of collimated conducting cyl-
(autoresonangebetween the system and its drive, therebymderS immersed in a strong, axial magnetic fi@d The

engendering a strong and controllable system response. Alfiasma forms a cylindrical column inside a center cylinder,
toresonance has many applications in particle acceleratoig,g appropriately biased end cylinders provide longitudinal
[1], atomic physic42,3], fluid dynamics[4], plasmag5,6],  confinement. The axial magnetic field provides radial con-
and nonlinear wavels7,8|. Passage through the fundamentalfinement. TheE x B drifts that result from the plasma’s self-
resonance in an initially quiescent nonlinear system neceslectric field cause the plasma to rotate around itselé Fig.
sarily yields phase lockingfundamental autoresonance 1). If the plasma is moved off center, it undergoes an addi-
(FAR)] when the driving amplitude exceeds a threshold pro+ional EX B drift from the electric field of its image. As this
portional to a®* where « is the driving frequency sweep drift always points azimuthally, the plasma orbits around the
rate [4—6]. Recent studies also demonstrated subharmonitrap center. This motion, at frequenay, , is called the dio-
autoresonance or SHAP,10], via passage through arth  cotron mode and is very stable, lasting for hundreds of thou-
subharmonic of the fundamental frequency of the systemsands of rotations.
The mechanism for SHAR is different from that of FAR as it  Assuming that the plasma column’s charge per unit length
requires the self-generation of an internal nonlinear respondé A, then the electric field of its imagég, is approximately
that serves as an effective adiabatic drive. SHAR also has dial and constant across the plastas 2\D/(R*—D?)
threshold, which scales as’*" . Importantly, for both FAR
and SHAR, the system enters autoresonance regardless of the OB
initial driving phase when above threshold.

In the present work we study autoresonance by passage
through a second harmonic resonance: we drive the system >4
with a frequency that sweeps through twice the fundamental. o L
We refer to this autoresonant phenomenon as 2HAR. As
with FAR and SHAR, we shall show that there exists a driv-
ing amplitude threshold for 2HAR below which phase lock- %
ing is impossible. However, unlike FAR and SHAR, this
threshold does not scale as a simple power of the sweep rate,
and beyond the threshold only a fraction of initial driving
phases lead to phase locking. In further contrast to the FAR
and SHAR, entering 2HAR by sweeping the driving fre-
guency requires that the system be pre-excited to some initial
amplitude. We study 2HAR experimentally and theoretically £ 1. End view of the trap showing the confining wall at
using thel =1 diocotron mode in pure electron plasnias]  radiusR, the plasma at anglé and distanc® from the trap center,
as a model system. Sec. Il of this paper presents our expefie plasma image, the image electric figlgand the diocotron drift
mental results, Sec. lll describes the theory with the first parht frequencyw/2s. For our experimentsyy/2m=26.4x 10° kHz.
of this section concentrated on autoresonant state itself, anthe mode is detected by monitoring the image charge on the pickup
the second part concentrated on the transition into autoreseectorV, and driven by applying a voltage to the drive sedfgy.
nance. The last section presents our conclusions. Further details are given in Rgi6].

Image
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FIG. 2. Second harmonic excitation for a mode initially excite®i&=0.02.(a) Mode amplitudeD/R as a function of time for drives
of 0.2 and 2.0 volts peak to peak (Vp-p). Only the 2.0 Vp-p drive is autoresonant. To show low amplitude details, both curves are replotted
with an expanded scale ifh). When graphed with a finer time scale, the damped “noise” from 0 to 90 ms resolves into an amplitude
oscillation with a frequency equaling the beat between the linear mode frequency and the drive fre@igitiaation steps are visible from
60 to 90 ms in one of the expanded curves, as the diagnostic sensitivity was decreased there to cover the full mode)dmdhride.
amplitude(solid line) and drive frequencydashed lingas a function of time. Note that the wave is preexcited by sweeping through the
fundamental betweer 200 and—12 ms(the first 150 ms are not plottedhe second harmonic sweep occurs between 0 and 170 ms.

(cgs Gaussian unitsHereR is the wall radius, an@® is the  dence onD. We drive the diocotron mode by applying a
offset of the plasma column from the center, i.e., the modeignal to a driving sectdv,. [17] This driving signal creates
amplitude. The diocotron mode frequenay follows by  electric fields which induce additional drifts.

equatingwpD to cEX B/B?, giving Typical experimental results are given in Fig. 2. The
mode is preexcited t®/R=0.02 by fundamental autoreso-

1 nance: that is, by sweeping the frequency from 20 to

wp= 0( 1—D2/R2) (1)  26.5 kHz. After a pause, the system is then driven at a fre-

quency sweeping from 32 to 80 kHz. When this second
) ] sweep hits 53.0 kHz, twice the fundamental at 26.5 kHz,
where wo=2c\/BR? is the linear resonant frequency. Note the mode amplitude follows the drive autoresonantly for the
that the mode frequer_my increases with mode amplitudg@pgve-threshold 2.0 V peak-to-ped¥p-p) drive, but not

[13,14. We can determine both the mode frequency and amor the 0.2 Vp-p drive. For the autoresonant 2.0 Vp-p drive,
plitude by measuring the image charge at a particular anglghe mode is phase locked to the drive at half the drive fre-

on the trap wall as a function of time. More precisely, we quency; for the nonautoresonant 0.2 Vp-p drive, the mode
measure the time dependence of the surface charge on @@d drive phases are uncorrelated.

azimuthal sector like the one label&tj, in Fig. 1. The re-
ceived signal is calibrated to the displacemBrity imaging
the plasma on a phosphor screen at the end of the trap.

The experiments reported here were don8at1485 G
in a trap with wall radiusR=1.905 cm. The plasma density A. Second harmonic autoresonance

H \/ —3 —
was approximately 210" cm °, temperatureT=1 eV, We model thd = 1 diocotron mode driven by an external,

and plasma radius 0.6 cm. The measured linear diocotrogecond harmonic swept frequency drive by an approximate,
frequency[15] was approximately 26.5 kHz. The plasma isolated resonance Hamiltoni&hs]

was confined within negatively biased cylinders separated by
10.25 cm. Finite length and plasma radius effects, discussed  H(l,6,t)=— w8 tIn(1—Bl)+ el cog26—¢). (2)

in Ref.[16], increase the linear frequency from that given by

Eqg. (1) by approximately 40% and also modify the depen-The angle variablé is the angular position of the mode in

lIl. PASSAGE THROUGH SECOND HARMONIC
RESONANCE: THEORY
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the trap, whilel = (D/R)? is the normalized action. The fac- vicinity of the quasi-steady-statéh) Q1> 1 initially, and (c)

tor 8 generalizes the unperturbed Hamiltonian to account fothe driving parametee,, satisfies the double inequality
a broad class of finite plasma length and radius corrections

[16]. For our experimentg=0.6. The complete driving po- Q|_> EO>(Q|_)*1_ (10)
tential is
The left inequality in Eq(10) allows us to neglect the small
interaction term in Eq(7) and rewrite it ad®/dr=QlI/(1
Ve, @) — Bl)— 7. By differentiating this equation in time and sub-
stituting d1/dt from Eg. (6), we obtain

©

V(D,o,t)=Re[l20 A

D |
=] exdi(6-g)]

whereV,, is the peak-to-peak amplitude of the drivg, are

the coupling coefficients determined by the sector geometry,
¢o=[w(t) dt is the phase of the drive, and(t) is the in-
stantaneous drive frequency. We assume that the driving fr
quency w(t)=de¢/dt is swept linearly, i.e.,w(t)=2w,

+ at, and passes the second harmonic of the unexcited mo
att=0. Sincew(t) is generally near &,, we anticipate that V(®,7)=d+ v2(7)cosd. (12)

only the second spatial harmonic ¥{D, 6,t) can interact a

resonantly with théd =1 mode. Consequently only this har- Provided»?>1, which is guaranteed by the right inequality
monic is included in the HamiltoniafEq. (2)], and the ap- in Eq.(10), this quasipotential will have definite wells; phase
propriate drive amplitude is=2cA2VpC/BR2. The param- locking in our system corresponds to trapped quasiparticle
eter C accounts for finite length effects; the experimentaloscillations in one of these wells.

d’®/d?=v?sind — 1, (11)

Wherev?~ €Q1/(1— B1)2. Now, if »? variesslowlyenough
(see below, this equation describes the trajectory of a qua-
&j}particle in a slowly varying, tilted cosine quasipotential

geometry and other autoresonance experimgsitsndicate The existence of potential wells is a necessary, but not
thatC~0.187 andA,=0.12. sufficient, guarantee of phase lock. There are two possible

The Hamiltonian Eq. (2)] yields the following system of ways to lose phase locking. The first would occur if the time
equations forl and the phase mismatch=26— ¢: variation of v> were so fast that it violates the adiabaticity

_ condition »~2dv/dr<1. But
dl/dt=2e€l sin®, (4)
212
dd/dt=A(l)— at+2e cosd, (5) v 2dvldr= (1-pha-A17) (13

2Q1(&Q1)Y2
where A(1)=2(Q—wg)=2wBl/(1-81) and Q(I) . .
=wy/(1— 1) is the angular frequency of the diocotron where we have usedll/d7~Q~(1— B1)?, found by differ-
mode. There exist two different time scales in our problementiating Eq.(9). Since botheOQI_and Ql_are large due to

the fast time scalelT;=2n/w, determined by the linear our initial conditions,»?dv/dr<1 and adiabaticity is pre-
mode frequencyw,, and the slow time scal€.=a Y2 as-  served.

sociated with the driving frequency sweep rate. As we are The second way to lose phase lock is through the adia-
interested inslow phase locked solutions in our system, we patic growth of the amplitude of the phase oscillations and
transform to the dimensionless time variablet/Ts=a%,  the approach to the trapping separatrix as the slow parameter

yielding the following dimensionless system: v2 increases in time. Here, we can use the action associated
_ with the oscillations of the quasiparticle around the quasi-
di/d7= €l sin®, (6)  equilibrium, J=A®AI, whereA® and Al are the ampli-

tudes of the oscillations ab andl in the well. This action is

d®/d7=Ql/(1~ )~ 7+ €oC0SP, () conserved as varies adiabatically. But, from Ed6), Al
whereQ is the ratio of the slow to fast time scales, = €0l A®/vosc, Where vog is the frequency of the quasi-
particle oscillations. By using,s.~ v as an estimate, we see

Q=4nT/Ti=2weBa” "*>1, that A®=J/Al~Jv/eyl. Since v increases rapidly agl

approaches one, the oscillatioAsh will also increase rap-

— —1/2 i i i
andeg=2ea" "*is the normalized drive amplitude. idly. The system will loose phase lock whard becomes of
For phase locked autoresonant evolution to occur, the SYSrder o

tem must be, at some initial time, in the vicinity of the In summary, if the system is phase locked and in second

quasi-steady-state solutidn ® defined by setting the right- harmonic autoresonance, it will remain in phase lock and in
hand side of Eqs6) and(7) to zero: autoresonance untl approaches one. How the system first

— gets into autoresonance is discussed next.

b=,

_ _ B. Trapping into resonance and the threshold condition
Ql/(1-Bl)— 17— €9=0. 9 _

If the action| is below the “well threshold” actionl,,
If the system stays in the vicinity of this steady state, thendefined by »?=¢,Ql,,/(1—Bl,)?~1, the quasipotential
by Eq.(9), the actionl will necessarily increase as the time wells[Eq. (12)] disappear. Consequently, if the system starts
increases, and the system will be in autoresonance. The syaith an initial actionl, that is less than the well threshold
tem will indeed remain in this vicinity ifa) it begins in the  actionl,,, the system will only enter autoresonance if the
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FIG. 4. Experimentally determined threshold drive voltage as a
FIG. 3. Normalized threshold driving amplitude,=U(Sy)  function of the sweep rate/2s, for two initial mode amplitude®.
versus initial rescaled actio,. (O), Data based on numerical As shown by the solid, best fit, lines, the drive voltage scales as the
solutions of systenil4) and(15); (A), results by using formula Eq.  0.76 and 0.52 power of the sweep rate for BeR=0.2 andD/R
(25); (dashed lingsmall €, approximation Eq(24); (tilted straight  =0.02 data, respectively. The dashed lines were obtained from the
line) Sgl. The two grayed regions indicate tlg intervals used in  gmall €o (small drive voltaggtheory Eq.(24).
the two measurements shown in Fig. 4, labeled by the initial value
of D/R. The form of the threshold curvel(S,) reflects the two
different trapping mechanisms described in the first para-
action grows to be greater than the well threshold actiongraph of this section. Consider the quasipotential @),
Alternately, the initial action may be greater than the wellwhich, for1<1, is
threshold action, i.el;>1,,. In this case the quasipotential
wells exist initially and the quasiparticle is very likely to be Vq=@ +€,Scosd. (16)
free-streaming above the wells. Then the system can only " ) . )
enter autoresonance if the well depth increases fast enough ®ince the condition for this potential to have wellseigS

trap the quasiparticle in midflight, and the conditions for au-> 1, @nd below the inflection point in Fig. 3 this condition is
toresonance are quite different than fgr<l, . not met, the potential does not initially have wells. The po-

As the well threshold action is generally quite small, Wete.ntial wells appear only if, durin? the initial evolution st.age,
will assume that,,~(€,Q) "1<1. Then we can study trap- Sincreases beyond the valuegf". Consequently there is a

ping into resonance by rewriting system E¢@).and(7) as  threshold drive amplitude for trapping, sineg must be
large enough foEto reach this value. In contrast, beyond the

dSd7=¢;Ssin®, (14)  inflection point in Fig. 3, i.e., wher,Sy>1, the quasipoten-
tial wells exist initially and, as mentioned above, the quasi-
particle is very likely to free-stream above the wells. The
d®/d7=S— 7+ €ycosP, (15  system can only enter autoresonance if the well depth in-
creases fast enough to trap the quasiparticle in midflight.
Let us briefly return to our original parametets €, and

whereS= QI is the scaled action. This is a single parameterlo_ Sincee,=2ea Y2 we have

(eg) system that must be solved subject to initial conditions
S=5=0Qly and &=&y=>d(—x). Despite their relative 1
simplicity, Egs.(14) and (15) still comprise a nonintegrable en(a,ly)= §a1’2U(2,8w0a’1’2I 0)- (17
Hamiltonian system, so we proceed by investigating their

solutions numerically. The solutions show that, as in FAR
and SHAR, for a giverS,, phase lockingand subsequent
autoresonangeas impossible forll initial phases wher is ein(K2a,Klg) =ke( a1 o), (18)
below a certain threshold valuey,,, . Figure 3 shows<) the

numerically determined dependenegn=U(S). The tilted  and we can obtain the threshadgh(k?a, k1) from ep(a,1o)
straight line in Fig. 3 plotsso_l, and the slope of this line for any valuek.

coincides with the largedinegative slope of the threshold We can compare some of these predictions with our ex-
functionU(Sp). The two curves cros§.e., egnSp=1) atthe  perimental results. Figure 4 shows the experimental thresh-
inflection point Sy~10 of U(Sy). For Sy well below the old versus the sweep rate for two initial amplitudes of the
inflection point, say5,<<0.1, the slope oJ(Sy) in Fig. 3is  diocotron modeD/R=0.02 and 0.2 I(,=0.0004 and 0.04,
rather small. At higher values &, the exponenty of the  respectively. We find that, to a good approximation, the
local dependenc®) ~S;” increases and reaches the maxi-thresholds scale ag,~ a®%?ande;,~ a®®i

Therefore,

in the two cases.
mum value ofy=1 at the inflection point. Beyond the in- The two curves lie in the two relatively narrow intervals
flection point y decreases rapidly and the threshold curve0.0073<S;<<0.15 and 0.59.5,<8.5. In the first interval
reaches its minimum of 0.05 & ~50. (for D/IR=0.02), the power dependence U{S,) is rather
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1.0 illustrating another difference between starting with or with-
c out initial quasipotential wells. Similar behavior is observed
208 experimentally[Fig. 5(b)].
o To complete our understanding of the threshold phenom-
i enon and the reasons behind the incomplete trapping of ini-
= 0.6 tial phases in the system, we examine the initial evolution in
g the system Eq914) and (15) in more detail. We shall limit
204 ourselves to the parameter region whe®g<S,=Ql,,
o) =egl, i.e, the region in which the quasipotential initially
So2 does not have potential wells. HeSamustincreasefrom its
j initial value S, to S, for trapping to occur. Nonetheless, we
00 can approximateS by S, in Eq. (15) without significantly
) changing the trapping physics; thus, E@5 becomes
dd/dr=Sy— 7+ egcosd. Furthermore, the constarg, in
this last equation can be removed by shifting the timeo
1.0 that the full system of equations for studying the initial ex-
S citation is
g038 dS/dr=e,Ssind, (19
S
”;a 06 dd/dr=— 7+ e,c0sD. (20)
8 The evolution of® in this system is decoupled froB) thus,
%0'4 simple integration yields
et
202 S=Soexp(eoF ), (21)
< where the function
0.0

0 1 2 3 4 F(CI)O,EO,T)=J sind(7')dr’ (22)
Drive Voltage (Vp-p) -

FIG. 5. (a) The fraction of the initiakbo < [0,27], which yield ' [uUlly determined by the solution of EQ0) for ® subject
phase locking and autoresonance, as a function of the driving an]f-0 the 'n't'a_‘l c_:ondltlonCDO and thg value of the parametey.
plitude ¢, for S;=0.001, 0.01, 0.1, and 10. The form of the fraction In the I|m|2t €0—0, the solution of Eq(Z,O) re(.juces to
curve changes near the inflection point@~10 in Fig. 3.(h)  P(1)=Po+7°/2, andF can be found analytically:
Experimental data demonstrating qualitatively similar behavior, _\/— .
taken ata=1.508<10° rad/$. For comparison, a peak-to-peak F(®o,e0—0,7—»)=m(sin®o—cosPo). (23

dri It f1 Vp- Id d &g~1.36. . . .
five vottage o P-p would correspond &g This function has a maximum value @t,=3m/4, namely,

weak rougthU~Sg°'2°~a°'1' therefore,e;,~ a®%° by Eq. V2, at which pointS will likewise attain its maximum
(17), in fair agreement with the experimental scaling. In theVa/U& Si€XP(27€o). SinceS must exceed the well thresh-

— -1 ; ;
second intervalD/R=0.2), the functiorl varies faster with 0ld value S, =€, " for the quasiparticle to be trapped, the
S,, and scales approximately d$~ S, %~ %24 Thus threshold driveeq, as a function of the initial amplituds,

em~a®7 in good agreement with the experiment. Note ¢@n be determined from the equation
that, as mentioned earlier, the largest exponeat the scal- o= Soexp(\2meg), (24)

ingU~S, ”is y=1, in which cas&) ~ Sy *~ a2 This hap-
pens at the inflection point, where one encounters the fastesalid in the limit ey,,—0. We plot this formula in Fig. 3,
scaling ey~ a*?U~ a. and, as expected, it agrees well with the numerical solution
As with FAR and SHAR, autoresonance in 2HAR is im- of the original systeniEgs.(14) and(15)] for small €.
possible below the drive threshold. Unlike FAR and SHAR, The threshold drive,, is sufficient only for the optimal
where above the threshold the system enters autoresonarigétial angle, ®,=3m/4. Whene, is increased beyonel, ,
regardless of the initial phase of the system, in 2HAR only aan ever larger set of other initial anglés become autoreso-
fraction of the initial phasesP yield autoresonance. For nant as their values &= SyexdF(®q,€y,t)e;] exceed 1€,,.
example, Fig. &) shows the percentage of the initidl, Clearly F cannot be negative $is to grow. It might appear
€[0,2] leading to autoresonance as a functionegffor  from Eq.(23) that half the initial angles would lead to nega-
Sy=0.001, 0.01, 0.1, and 10. For the lower three values ofive F. The derivation of Eq(23), however, ignores the in-
Sy (and for any smaller values d,,) the fraction of the fluence of thee, term in Eq.(20). This term favors angles
initial phases that enter autoresonance increaseseyitind  ®(t) that pull the integrand in Eq22) positive, and makes
approaches 100%. The val&=10, however, is near the the functionF positive for most, but not all, initial angles
inflection point ofU(S,), and consequently near where the ®,. For example, the exact solution fBris shown in Fig. 6
quasipotential wells are initially present. For this valuesgf  for =1 and 20 evenly spaced initighye[0,27]. In all
the fraction of autoresonance phases reaches o1f9%, casesF asymptotes to a fixed value, most of which are posi-
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IV. CONCLUSIONS

We can extract a relatively simple picture that accounts
for most of the important features of 2HAR. Since only the
second spatial harmonic of the drive can interact with the
mode resonantly, and since the fields from this mode disap-
pear at the origin, the mode will not interact with the drive if
the mode is on-axis. Thus, 2HAR cannot occur unless the
mode is preexcited. When the drive frequency crosses twice
the mode’s linear resonant frequency, the mode receives a
“kick” that may make its amplitude large enough for the
mode to be trapped in a quasipotential well. If so, it will stay
in resonance with the drive and grow to large amplitude: the
system is in second harmonic autoresonance. The kick am-
plitude required for 2HAR depends on the size of the initial
excitation, the sweep rate, and the drive amplitude, and the
amplitude requirement leads to a threshold criterion. Near
the threshold, the phase difference between the initial wave
and the drive must lie in a narrow band for 2HAR. As the

as is done in this figure, is sufficient for illustrating the asymptoticthreshold is exceeded, an ever larger band of initial phase

picture.

differences is acceptable, and eventually virtually all initial
phase differences lead to 2HAR. Alternately, the initial mode

tive. For a few initial phases, however, the asymptote issmplitude may be large enough that the quasipotential wells
negative. Such phases will not be trapped even for values @ixists from the very beginning. In this case, 2HAR will only

€9 much larger thareyy, .
A more general estimate for the threshold than &)

occur when the mode is dynamically trapped into the wells.
This process is less robust, and not all initial phase differ-

can be found by numerically Scanning over all the initial ences will enter into resonance.

phases for the maximum valug,,, of F as a function ok,

Then for everye,, the thresholdsy,, can be found from the

relation
Sotn= €0 ‘EXP(— €oF ). (25)

In this paper, we have studied second harmonic autoreso-
nance(2HAR) in the context of thé=1 diocotron equation.
However, 2HAR will occur in any Duffing-like driven oscil-
lator system so long as the coupling between the mode and
the drive has component that depends on the drive ampli-

This last expression shows that, as expected, a finite initiftde. Such a component assures that there can exist a reso-
excitation is necessary for entering 2HAR by passagdant interaction at the mode’s fundamental frequency.

through resonance. One can also view Etp) as yielding

the threshold driving amplitudeeg,=U(Sy) or e

= en(a,lg) for a givenly. Equation(25), plotted in Fig. 3, is
in very good agreement with the results of the original sys-
tem[Egs.(14) and(15)] for all S, below the inflection point.
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