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Second harmonic autoresonant control of thelÄ1 diocotron mode in pure-electron plasmas

J. Fajans,1 E. Gilson,1 and L. Friedland2
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2Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
~Received 22 March 2000!

An oscillator whose frequency is amplitude dependent can be controlled by a drive whose frequency sweeps
through a resonance with the oscillator’s fundamental frequency. This phenomenon is called autoresonance,
and has been previously investigated for drives with frequencies near the oscillator’s fundamental or subhar-
monic frequencies. This paper examines autoresonance for drives at twice the fundamental frequency, i.e,
second harmonic autoresonance. Thel 51 diocotron mode in pure-electron plasmas, a very highQ nonlinear
oscillator, is the focus of the paper. The theory for this oscillator is derived, and compared to experimental
results. The results can be generalized to any Duffing-like driven nonlinear oscillator in which the coupling
between the drive and the oscillator depends at least weakly on the oscillator amplitude.

PACS number~s!: 52.25.Wz, 05.45.Xt, 52.35.Mw
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I. INTRODUCTION

Adiabatic passage through a resonance in a driven non
ear system may lead to persistent nonlinear phase loc
~autoresonance! between the system and its drive, there
engendering a strong and controllable system response.
toresonance has many applications in particle accelera
@1#, atomic physics@2,3#, fluid dynamics@4#, plasmas@5,6#,
and nonlinear waves@7,8#. Passage through the fundamen
resonance in an initially quiescent nonlinear system ne
sarily yields phase locking@fundamental autoresonanc
~FAR!# when the driving amplitude exceeds a threshold p
portional to a3/4, wherea is the driving frequency swee
rate @4–6#. Recent studies also demonstrated subharmo
autoresonance or SHAR@9,10#, via passage through annth
subharmonic of the fundamental frequency of the syst
The mechanism for SHAR is different from that of FAR as
requires the self-generation of an internal nonlinear respo
that serves as an effective adiabatic drive. SHAR also h
threshold, which scales asa3/(4n). Importantly, for both FAR
and SHAR, the system enters autoresonance regardless
initial driving phase when above threshold.

In the present work we study autoresonance by pass
through a second harmonic resonance: we drive the sys
with a frequency that sweeps through twice the fundamen
We refer to this autoresonant phenomenon as 2HAR.
with FAR and SHAR, we shall show that there exists a dr
ing amplitude threshold for 2HAR below which phase loc
ing is impossible. However, unlike FAR and SHAR, th
threshold does not scale as a simple power of the sweep
and beyond the threshold only a fraction of initial drivin
phases lead to phase locking. In further contrast to the F
and SHAR, entering 2HAR by sweeping the driving fr
quency requires that the system be pre-excited to some in
amplitude. We study 2HAR experimentally and theoretica
using thel 51 diocotron mode in pure electron plasmas@11#
as a model system. Sec. II of this paper presents our ex
mental results, Sec. III describes the theory with the first p
of this section concentrated on autoresonant state itself,
the second part concentrated on the transition into autor
nance. The last section presents our conclusions.
PRE 621063-651X/2000/62~3!/4131~6!/$15.00
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II. DIOCOTRON MODE EXPERIMENTS

The l 51 diocotron is a basic oscillating mode in pur
electron plasmas confined in a Malmberg-Penning trap@12#.
These traps consist of a series of collimated conducting
inders immersed in a strong, axial magnetic fieldB. The
plasma forms a cylindrical column inside a center cylind
and appropriately biased end cylinders provide longitudi
confinement. The axial magnetic field provides radial co
finement. TheE3B drifts that result from the plasma’s sel
electric field cause the plasma to rotate around itself~see Fig.
1!. If the plasma is moved off center, it undergoes an ad
tional E3B drift from the electric field of its image. As this
drift always points azimuthally, the plasma orbits around
trap center. This motion, at frequencyvD , is called the dio-
cotron mode and is very stable, lasting for hundreds of th
sands of rotations.

Assuming that the plasma column’s charge per unit len
is l, then the electric field of its image,E, is approximately
radial and constant across the plasma,E'2lD/(R22D2)

FIG. 1. End view of the trap showing the confining wall
radiusR, the plasma at angleu and distanceD from the trap center,
the plasma image, the image electric fieldE, and the diocotron drift
at frequencyv/2p. For our experiments,v0/2p526.43103 kHz.
The mode is detected by monitoring the image charge on the pic
sectorVu and driven by applying a voltage to the drive sectorVD .
Further details are given in Ref.@6#.
4131 ©2000 The American Physical Society
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FIG. 2. Second harmonic excitation for a mode initially excited toD/R50.02.~a! Mode amplitudeD/R as a function of time for drives
of 0.2 and 2.0 volts peak to peak (Vp-p). Only the 2.0 Vp-p drive is autoresonant. To show low amplitude details, both curves are
with an expanded scale in~b!. When graphed with a finer time scale, the damped ‘‘noise’’ from 0 to 90 ms resolves into an amp
oscillation with a frequency equaling the beat between the linear mode frequency and the drive frequency.~Digitization steps are visible from
60 to 90 ms in one of the expanded curves, as the diagnostic sensitivity was decreased there to cover the full mode amplitude.! ~c! Drive
amplitude~solid line! and drive frequency~dashed line! as a function of time. Note that the wave is preexcited by sweeping through
fundamental between2200 and212 ms~the first 150 ms are not plotted!; the second harmonic sweep occurs between 0 and 170
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~cgs Gaussian units!. HereR is the wall radius, andD is the
offset of the plasma column from the center, i.e., the mo
amplitude. The diocotron mode frequencyvD follows by
equatingvDD to cE3B/B2, giving

vD5v0S 1

12D2/R2D , ~1!

wherev052cl/BR2 is the linear resonant frequency. No
that the mode frequency increases with mode amplit
@13,14#. We can determine both the mode frequency and a
plitude by measuring the image charge at a particular an
on the trap wall as a function of time. More precisely, w
measure the time dependence of the surface charge o
azimuthal sector like the one labeledVu in Fig. 1. The re-
ceived signal is calibrated to the displacementD by imaging
the plasma on a phosphor screen at the end of the trap.

The experiments reported here were done atB51485 G
in a trap with wall radiusR51.905 cm. The plasma densit
was approximately 23107 cm23, temperatureT51 eV,
and plasma radius 0.6 cm. The measured linear dioco
frequency @15# was approximately 26.5 kHz. The plasm
was confined within negatively biased cylinders separated
10.25 cm. Finite length and plasma radius effects, discus
in Ref. @16#, increase the linear frequency from that given
Eq. ~1! by approximately 40% and also modify the depe
e
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dence onD. We drive the diocotron mode by applying
signal to a driving sectorVD . @17# This driving signal creates
electric fields which induce additional drifts.

Typical experimental results are given in Fig. 2. T
mode is preexcited toD/R50.02 by fundamental autoreso
nance: that is, by sweeping the frequency from 20
26.5 kHz. After a pause, the system is then driven at a
quency sweeping from 32 to 80 kHz. When this seco
sweep hits 53.0 kHz, twice the fundamental at 26.5 kH
the mode amplitude follows the drive autoresonantly for
above-threshold 2.0 V peak-to-peak~Vp-p! drive, but not
for the 0.2 Vp-p drive. For the autoresonant 2.0 Vp-p driv
the mode is phase locked to the drive at half the drive f
quency; for the nonautoresonant 0.2 Vp-p drive, the mo
and drive phases are uncorrelated.

III. PASSAGE THROUGH SECOND HARMONIC
RESONANCE: THEORY

A. Second harmonic autoresonance

We model thel 51 diocotron mode driven by an externa
second harmonic swept frequency drive by an approxim
isolated resonance Hamiltonian@18#

H~ I ,u,t !52v0b21ln~12bI !1eI cos~2u2w!. ~2!

The angle variableu is the angular position of the mode i
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the trap, whileI 5(D/R)2 is the normalized action. The fac
tor b generalizes the unperturbed Hamiltonian to account
a broad class of finite plasma length and radius correct
@16#. For our experimentsb50.6. The complete driving po
tential is

V~D,u,t !5ReF(
l 50

`

Al S D

RD l

exp@ i ~ lu2w!#GVp , ~3!

whereVp is the peak-to-peak amplitude of the drive,Al are
the coupling coefficients determined by the sector geome
w[*v(t) dt is the phase of the drive, andv(t) is the in-
stantaneous drive frequency. We assume that the driving
quency v(t)5dw/dt is swept linearly, i.e.,v(t)52v0
1at, and passes the second harmonic of the unexcited m
at t50. Sincev(t) is generally near 2v0, we anticipate that
only the second spatial harmonic ofV(D,u,t) can interact
resonantly with thel 51 mode. Consequently only this ha
monic is included in the Hamiltonian@Eq. ~2!#, and the ap-
propriate drive amplitude ise52cA2VpC/BR2. The param-
eter C accounts for finite length effects; the experimen
geometry and other autoresonance experiments@6# indicate
that C'0.187 andA250.12.

The Hamiltonian@Eq. ~2!# yields the following system of
equations forI and the phase mismatchF52u2w:

dI/dt52eI sinF, ~4!

dF/dt5L~ I !2at12e cosF, ~5!

where L(I )52(V2v0)52v0bI /(12bI ) and V(I )
5v0 /(12bI ) is the angular frequency of the diocotro
mode. There exist two different time scales in our proble
the fast time scaleTf52p/v0 determined by the linea
mode frequencyv0, and the slow time scaleTs5a21/2 as-
sociated with the driving frequency sweep rate. As we
interested inslow phase locked solutions in our system, w
transform to the dimensionless time variablet5t/Ts5a1/2t,
yielding the following dimensionless system:

dI/dt5e0I sinF, ~6!

dF/dt5QI/~12bI !2t1e0cosF, ~7!

whereQ is the ratio of the slow to fast time scales,

Q54pTs /Tf52v0ba21/2@1,

ande052ea21/2 is the normalized drive amplitude.
For phase locked autoresonant evolution to occur, the

tem must be, at some initial timet, in the vicinity of the

quasi-steady-state solutionĪ , F̄ defined by setting the right
hand side of Eqs.~6! and ~7! to zero:

F̄5p, ~8!

QĪ /~12b Ī !2t2e050. ~9!

If the system stays in the vicinity of this steady state, th
by Eq.~9!, the actionI will necessarily increase as the timet
increases, and the system will be in autoresonance. The
tem will indeed remain in this vicinity if~a! it begins in the
r
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y,

e-

de

l
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e
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,
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vicinity of the quasi-steady-state,~b! QĪ@1 initially, and~c!
the driving parametere0 satisfies the double inequality

QĪ@e0@~QĪ !21. ~10!

The left inequality in Eq.~10! allows us to neglect the sma
interaction term in Eq.~7! and rewrite it asdF/dt5QI/(1
2bI )2t. By differentiating this equation in time and sub
stituting dI/dt from Eq. ~6!, we obtain

d2F/dt25n2sinF21, ~11!

wheren2'e0QĪ /(12b Ī )2. Now, if n2 variesslowlyenough
~see below!, this equation describes the trajectory of a qu
siparticle in a slowly varying, tilted cosine quasipotential

Vq~F,t!5F1n2~t!cosF. ~12!

Providedn2.1, which is guaranteed by the right inequali
in Eq. ~10!, this quasipotential will have definite wells; phas
locking in our system corresponds to trapped quasipart
oscillations in one of these wells.

The existence of potential wells is a necessary, but
sufficient, guarantee of phase lock. There are two poss
ways to lose phase locking. The first would occur if the tim
variation of n2 were so fast that it violates the adiabatici
conditionn22dn/dt!1. But

n22dn/dt5
~12b Ī !~12b2 Ī 2!

2QĪ~e0QĪ !1/2
, ~13!

where we have usedd Ī /dt'Q21(12b Ī )2, found by differ-
entiating Eq.~9!. Since bothe0QĪ andQĪ are large due to
our initial conditions,n22dn/dt!1 and adiabaticity is pre-
served.

The second way to lose phase lock is through the a
batic growth of the amplitude of the phase oscillations a
the approach to the trapping separatrix as the slow param
n2 increases in time. Here, we can use the action associ
with the oscillations of the quasiparticle around the qua
equilibrium, J5DFDI , whereDF and DI are the ampli-
tudes of the oscillations ofF andI in the well. This action is
conserved asn varies adiabatically. But, from Eq.~6!, DI

5e0 Ī DF/nosc, where nosc is the frequency of the quasi
particle oscillations. By usingnosc'n as an estimate, we se
that DF5J/DI'Jn/e0 Ī . Since n increases rapidly asb Ī
approaches one, the oscillationsDF will also increase rap-
idly. The system will loose phase lock whenDF becomes of
orderp.

In summary, if the system is phase locked and in sec
harmonic autoresonance, it will remain in phase lock and
autoresonance untilb Ī approaches one. How the system fir
gets into autoresonance is discussed next.

B. Trapping into resonance and the threshold condition

If the action Ī is below the ‘‘well threshold’’ actionI w
defined by n25e0QIw /(12bI w)2'1, the quasipotentia
wells @Eq. ~12!# disappear. Consequently, if the system sta
with an initial actionI 0 that is less than the well threshol
action I w , the system will only enter autoresonance if t
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action grows to be greater than the well threshold acti
Alternately, the initial action may be greater than the w
threshold action, i.e.,I 0.I w . In this case the quasipotentia
wells exist initially and the quasiparticle is very likely to b
free-streaming above the wells. Then the system can o
enter autoresonance if the well depth increases fast enou
trap the quasiparticle in midflight, and the conditions for a
toresonance are quite different than forI 0,I w .

As the well threshold action is generally quite small, w
will assume thatI w'(e0Q)21!1. Then we can study trap
ping into resonance by rewriting system Eqs.~6! and ~7! as

dS/dt5e0SsinF, ~14!

dF/dt5S2t1e0cosF, ~15!

whereS5QI is the scaled action. This is a single parame
(e0) system that must be solved subject to initial conditio
S5S05QI0 and F5F05F(2`). Despite their relative
simplicity, Eqs.~14! and ~15! still comprise a nonintegrable
Hamiltonian system, so we proceed by investigating th
solutions numerically. The solutions show that, as in FA
and SHAR, for a givenS0, phase locking~and subsequen
autoresonance! is impossible forall initial phases whene0 is
below a certain threshold value,e0th . Figure 3 shows (+) the
numerically determined dependencee0th5U(S0). The tilted
straight line in Fig. 3 plotsS0

21, and the slope of this line
coincides with the largest~negative! slope of the threshold
functionU(S0). The two curves cross~i.e.,e0thS051) at the
inflection point S0'10 of U(S0). For S0 well below the
inflection point, sayS0,0.1, the slope ofU(S0) in Fig. 3 is
rather small. At higher values ofS0 the exponentg of the
local dependenceU;S0

2g increases and reaches the ma
mum value ofg51 at the inflection point. Beyond the in
flection point g decreases rapidly and the threshold cu
reaches its minimum of 0.05 atS0'50.

FIG. 3. Normalized threshold driving amplitudee0th5U(S0)
versus initial rescaled actionS0 . (s), Data based on numerica
solutions of system~14! and~15!; (n), results by using formula Eq
~25!; ~dashed line! small e0 approximation Eq.~24!; ~tilted straight
line! S0

21. The two grayed regions indicate theS0 intervals used in
the two measurements shown in Fig. 4, labeled by the initial va
of D/R.
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The form of the threshold curveU(S0) reflects the two
different trapping mechanisms described in the first pa
graph of this section. Consider the quasipotential Eq.~12!,
which, for I !1, is

Vq5F1e0ScosF. ~16!

Since the condition for this potential to have wells ise0S
.1, and below the inflection point in Fig. 3 this condition
not met, the potential does not initially have wells. The p
tential wells appear only if, during the initial evolution stag
S increases beyond the value ofe0

21. Consequently there is a
threshold drive amplitude for trapping, sincee0 must be
large enough forS to reach this value. In contrast, beyond t
inflection point in Fig. 3, i.e., whene0S0.1, the quasipoten-
tial wells exist initially and, as mentioned above, the qua
particle is very likely to free-stream above the wells. T
system can only enter autoresonance if the well depth
creases fast enough to trap the quasiparticle in midflight

Let us briefly return to our original parametersa, e, and
I 0. Sincee052ea21/2, we have

e th~a,I 0!5
1

2
a1/2U~2bv0a21/2I 0!. ~17!

Therefore,

e th~k2a,kI0!5ke th~a,I 0!, ~18!

and we can obtain the thresholde th(k2a,kI0) from e th(a,I 0)
for any valuek.

We can compare some of these predictions with our
perimental results. Figure 4 shows the experimental thre
old versus the sweep rate for two initial amplitudes of t
diocotron mode,D/R50.02 and 0.2 (I 050.0004 and 0.04,
respectively!. We find that, to a good approximation, th
thresholds scale ase th;a0.52 ande th;a0.76 in the two cases.
The two curves lie in the two relatively narrow interva
0.0073,S0,0.15 and 0.59,S0,8.5. In the first interval
~for D/R50.02), the power dependence ofU(S0) is rather

e

FIG. 4. Experimentally determined threshold drive voltage a
function of the sweep ratea/2p, for two initial mode amplitudesD.
As shown by the solid, best fit, lines, the drive voltage scales as
0.76 and 0.52 power of the sweep rate for theD/R50.2 andD/R
50.02 data, respectively. The dashed lines were obtained from
small e0 ~small drive voltage! theory Eq.~24!.
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weak, roughlyU;S0
20.20;a0.1; therefore,e th;a0.60 by Eq.

~17!, in fair agreement with the experimental scaling. In t
second interval (D/R50.2), the functionU varies faster with
S0, and scales approximately asU;S0

20.48;a0.24. Thus,
e th;a0.74, in good agreement with the experiment. No
that, as mentioned earlier, the largest exponentg of the scal-
ing U;S0

2g is g51, in which caseU;S0
21;a1/2. This hap-

pens at the inflection point, where one encounters the fas
scalinge th;a1/2U;a.

As with FAR and SHAR, autoresonance in 2HAR is im
possible below the drive threshold. Unlike FAR and SHA
where above the threshold the system enters autoreson
regardless of the initial phase of the system, in 2HAR onl
fraction of the initial phasesF0 yield autoresonance. Fo
example, Fig. 5~a! shows the percentage of the initialF0
P@0,2p# leading to autoresonance as a function ofe0 for
S050.001, 0.01, 0.1, and 10. For the lower three values
S0 ~and for any smaller values ofS0,! the fraction of the
initial phases that enter autoresonance increases withe0, and
approaches 100%. The valueS0510, however, is near the
inflection point ofU(S0), and consequently near where th
quasipotential wells are initially present. For this value ofS0
the fraction of autoresonance phases reaches only;60%,

FIG. 5. ~a! The fraction of the initialF0P@0,2p#, which yield
phase locking and autoresonance, as a function of the driving
plitudee0 for S050.001, 0.01, 0.1, and 10. The form of the fractio
curve changes near the inflection point atS0'10 in Fig. 3. ~b!
Experimental data demonstrating qualitatively similar behav
taken ata51.5083106 rad/s2. For comparison, a peak-to-pea
drive voltage of 1 Vp-p would correspond toe0'1.36.
st

,
nce
a

f

illustrating another difference between starting with or wit
out initial quasipotential wells. Similar behavior is observ
experimentally@Fig. 5~b!#.

To complete our understanding of the threshold pheno
enon and the reasons behind the incomplete trapping of
tial phases in the system, we examine the initial evolution
the system Eqs.~14! and ~15! in more detail. We shall limit
ourselves to the parameter region whereS0,Sw5QIw

5e0
21, i.e, the region in which the quasipotential initiall

does not have potential wells. HereS must increasefrom its
initial value S0 to Sw for trapping to occur. Nonetheless, w
can approximateS by S0 in Eq. ~15! without significantly
changing the trapping physics; thus, Eq.~15! becomes
dF/dt5S02t1e0cosF. Furthermore, the constantS0 in
this last equation can be removed by shifting the timet, so
that the full system of equations for studying the initial e
citation is

dS/dt5e0SsinF, ~19!

dF/dt52t1e0cosF. ~20!

The evolution ofF in this system is decoupled fromS; thus,
simple integration yields

S5S0exp~e0F !, ~21!

where the function

F~F0 ,e0 ,t!5E
2`

t

sinF~t8!dt8 ~22!

is fully determined by the solution of Eq.~20! for F subject
to the initial conditionF0 and the value of the parametere0.

In the limit e0→0, the solution of Eq.~20! reduces to
F(t)5F01t2/2, andF can be found analytically:

F~F0 ,e0→0,t→`!5Ap~sinF02cosF0!. ~23!

This function has a maximum value atF053p/4, namely,
A2p, at which pointS will likewise attain its maximum
value,S0exp(A2pe0). SinceS must exceed the well thresh
old value Sw5e0

21 for the quasiparticle to be trapped, th
threshold drivee0th as a function of the initial amplitudeS0
can be determined from the equation

e0th
215S0exp~A2pe0th!, ~24!

valid in the limit e0th→0. We plot this formula in Fig. 3,
and, as expected, it agrees well with the numerical solu
of the original system@Eqs.~14! and ~15!# for small e0.

The threshold drivee0th is sufficient only for the optimal
initial angle,F053p/4. Whene0 is increased beyonde0th ,
an ever larger set of other initial anglesF0 become autoreso
nant as their values ofS5S0exp@F(F0,e0,t)e0# exceed 1/e0.
ClearlyF cannot be negative ifS is to grow. It might appear
from Eq. ~23! that half the initial angles would lead to neg
tive F. The derivation of Eq.~23!, however, ignores the in
fluence of thee0 term in Eq.~20!. This term favors angles
F(t) that pull the integrand in Eq.~22! positive, and makes
the functionF positive for most, but not all, initial angle
F0. For example, the exact solution forF is shown in Fig. 6
for e051 and 20 evenly spaced initialF0P@0,2p#. In all
cases,F asymptotes to a fixed value, most of which are po

-

,



i
s

ia

iti
g

ys

nts
he
the
ap-
if
the
ice
s a

e
ay
the
am-
ial
the

ear
ave
e

ase
ial
de
ells
ly
lls.
er-

so-

-
and
pli-
reso-

ci-

tic

4136 PRE 62J. FAJANS, E. GILSON, AND L. FRIEDLAND
tive. For a few initial phases, however, the asymptote
negative. Such phases will not be trapped even for value
e0 much larger thane0th .

A more general estimate for the threshold than Eq.~24!
can be found by numerically scanning over all the init
phases for the maximum value,Fm , of F as a function ofe0.
Then for everye0, the thresholdS0th can be found from the
relation

S0th5e0
21exp~2e0Fm!. ~25!

This last expression shows that, as expected, a finite in
excitation is necessary for entering 2HAR by passa
through resonance. One can also view Eq.~25! as yielding
the threshold driving amplitudee0th5U(S0) or e th
5e th(a,I 0) for a givenI 0. Equation~25!, plotted in Fig. 3, is
in very good agreement with the results of the original s
tem @Eqs.~14! and~15!# for all S0 below the inflection point.

FIG. 6. The evolution of the response functionF(F0 ,e0 ,t) for
e051 and for 20 evenly spaced initialF0P@0,2p#. Most F0 yield
positive asymptotic values ofF(F0 ,e0 ,t), but some yield negative
values. Note that integrating betweent5220 ~not 2`) and120,
as is done in this figure, is sufficient for illustrating the asympto
picture.
a-
s
of

l

al
e

-

IV. CONCLUSIONS

We can extract a relatively simple picture that accou
for most of the important features of 2HAR. Since only t
second spatial harmonic of the drive can interact with
mode resonantly, and since the fields from this mode dis
pear at the origin, the mode will not interact with the drive
the mode is on-axis. Thus, 2HAR cannot occur unless
mode is preexcited. When the drive frequency crosses tw
the mode’s linear resonant frequency, the mode receive
‘‘kick’’ that may make its amplitude large enough for th
mode to be trapped in a quasipotential well. If so, it will st
in resonance with the drive and grow to large amplitude:
system is in second harmonic autoresonance. The kick
plitude required for 2HAR depends on the size of the init
excitation, the sweep rate, and the drive amplitude, and
amplitude requirement leads to a threshold criterion. N
the threshold, the phase difference between the initial w
and the drive must lie in a narrow band for 2HAR. As th
threshold is exceeded, an ever larger band of initial ph
differences is acceptable, and eventually virtually all init
phase differences lead to 2HAR. Alternately, the initial mo
amplitude may be large enough that the quasipotential w
exists from the very beginning. In this case, 2HAR will on
occur when the mode is dynamically trapped into the we
This process is less robust, and not all initial phase diff
ences will enter into resonance.

In this paper, we have studied second harmonic autore
nance~2HAR! in the context of thel 51 diocotron equation.
However, 2HAR will occur in any Duffing-like driven oscil
lator system so long as the coupling between the mode
the drive has component that depends on the drive am
tude. Such a component assures that there can exist a
nant interaction at the mode’s fundamental frequency.
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