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The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a
Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys.
Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the
mirror in the low field region, but also may be weakly trapped in part of the high field region. The
plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential
vary along field lines. Some other simplifying assumptions were employed in order to analytically
characterize the equilibrium; for example the interface region between the low and high field regions
was not considered. The earlier results are confirmed in the present study, where two-dimensional
particle-in-cell (PIC) simulations are performed with the Warp code in a more realistic configuration
with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range
of temperatures and radial plasma sizes are considered. Particle tracking is used to identify
populations of trapped and untrapped particles. The present study also shows that it is possible to
obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses
the inherent numerical collisionality as a proxy for physical collisions. © 2007 American Institute

of Physics. [DOL: 10.1063/1.2727470]

I. INTRODUCTION

The equilibrium of a non-neutral plasma in a Penning-
Malmberg trap has been the subject of many studies.' A
mirror field has been suggested to cause transport in such
traps.1 Thermal equilibrium in Malmberg-Penning traps has
been studied,4 but without a detailed analysis of mirror fields.
A hollow electron column with axial mirrors has also been
considered.’ Penning-Malmberg traps have been recently
used in experiments for the production of antihydrogen6’7
and are considered, with mirror fields added to confine the
antihydrogen itself, for present and future experiments as
well.*

Recently the effects of a multipole magnetic field in-
tended to trap the antihydrogen radially in such a trap have
been studied experimentally,lo’11 theoretically,12 and with
simulations.'>'* This work was conducted at UC Berkeley as
part of the ALPHA (Ref. 8) collaboration. Future ALPHA
experiments will use a mirror field. The results presented
here are not meant to study the ALPHA geometry, but, rather
are motivated by the study of how the non-neutral plasma
equilibrium self-consistently changes as the mirror field is
applied.

These numerical studies are motivated in part by earlier
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work,"> where it was shown analytically that a non-neutral
plasma exhibits unusual features when a magnetic mirror
field is added to the longitudinal field of the trap. In contrast
to neutral plasmas, the density and potential along field lines
is not constant. There are two trapping regions, one in the
low field side and one in the high field side. Assuming that
the velocity distribution is a Maxwellian, the density distri-
bution obeys the Boltzmann relation (written for positrons):
”(Z§”L)=n(ZL§”L)eXP<M)- (1)
kT
Here n=n(z;r;) is the density value in along a field line
originating at a radius r; in the low field region, and n(z, ;r;)
is the corresponding low field density. The potential differ-
ence along the same field line is Ad(r;z;)=d(r;z;)
—@(z;r.). A typical trap configuration is shown in Fig. 1.
In Ref. 15, an infinitely long plasma is assumed and the
transition between the high field and low field region is ide-
alized via the conservation of magnetic moment. Additional
assumptions were made in Ref. 15 in order to analytically
characterize the equilibrium: the field variation was assumed
to be small and a flat-top density profile was considered.
Numerical solutions in the same paper15 extend those results
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FIG. 1. Typical Penning-Malmberg trap with a mirror field. The magnetic
field strength and field lines of the mirror are plotted as well as the plasma
profile. r is the initial plasma radius before the field is ramped.

to broader regimes, however still considering an infinite
plasma and ignoring the transition region between high and
low field. In this paper we study plasma equilibria in a real-
istic two-dimensional geometry with finite plasma lengths
and realistic magnetic field variations. We use the WARP
simulation code'® with a two-dimensional field solver (r—z).
Thus, the simplifications required for the analytical study are
not required. The plasma density decreases radially towards
the plasma boundary. Initially the plasma is loaded, follow-
ing the technique described in Refs. 13 and 14, into an equi-
librium distribution which satisfies Eq. (1) along field lines
in an initially uniform axial field. The mirror field is then
ramped slowly until it reaches the desired value. The plasma
appears to be in a new equilibrium, whose properties we
investigate in detail.

We show the existence of two trapping regions and ex-
amine the deviations from constant density and potential
along field lines; the Boltzmann distribution is obtained all
along the field lines, including in the transition region be-
tween the high and low field, which is ignored in Ref. 15.

We previously used the same code to simulate the posi-
tron confinement in a proposed antihydrogen trap with an
octupole magnetic field for the radial trapping of the
antihydrogen.13 We found that a proper equilibrium can be
achieved with the Warp code, although it does not take real-
istic collisions into account. We employ the same techniques
as in Refs. 13 and 14, in order to find the positron/electron
equilibrium in the Penning-Malmberg trap with a magnetic
mirror. Thus we show that by using the scheme described
above, a local unknown equilibrium (with a nonuniform
field) can be found from the uniform field equilibrium with a
collisionless particle-in-cell (PIC) code, using the collision-
ality of the method to facilitate relaxation of the system.

It is not clear that a Maxwellian distribution should be
obtained in PIC simulations as the result of numerical colli-
sions. Numerical effects such as nonconservation of energy,
unrealistic fluctuation levels associated with the reduced par-
ticle number, finite size macroparticles with an effective
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shape influenced by the grid, etc., could lead to different
results. Early work by Dawson'’ showed that the plasmas
modeled in a simple class of particle codes exhibit relaxation
toward a Maxwellian state, as a result of three-body interac-
tions; however, because entropy is (in general) continuously
generated in PIC codes, there is formally no steady state. A
detailed discussion of relaxation and related effects can be
found in Chaps. 12 and 13 of Ref. 18. We intend to explore
these issues more thoroughly in future work, where we hope
to be able to employ the physically correct number of par-
ticles along with fine zoning. In this paper we employed a
limited number of macroparticles, and so deliberately en-
hanced the numerical collisional effects in order to achieve
more rapid damping; the Boltzmann distribution obtained as
a result indicates that Maxwellization is obtained to a very
large degree for the present simulation parameters.

The Warp code (Ref. 16) was designed, originally, for
heavy ion beam simulations. This is a three-dimensional
particle-in-cell (PIC) code that considers the self electrostatic
fields of the particles, together with many external magnetic
and electric field elements. One feature that makes Warp a
very suitable code for the present simulations is that the time
step can be larger than the gyroperiod while the various drifts
and Larmor radius are calculated properly.19 Within these
strongly magnetized plasmas, the motion is primarily deter-
mined by the guiding center dynamics. Another special fea-
ture of Warp is the Python-based user programmable (“‘steer-
able”) capability that enables us to, for example, gradually
turn on a mirror coil or add particles during the simulation
run.

The paper is organized as follows: In Sec. II the simula-
tion setup is described. In Sec. III we present the results for
different plasma configurations, namely, plasmas of different
density profiles and various temperatures. In Sec. IV we dis-
cuss the particle trapping. Finally, our conclusions are given
in Sec. V.

Il. SIMULATION GEOMETRY AND PARAMETERS

We describe here the setup for the PIC simulations done
with Warp. A representative simulation produces particles
distributed in r-z as shown in Fig. 2. The trap geometry and
parameters are apparent. Thus, the plasma is confined axially
by two voltage rings of 100 V each. The plasma is confined
radially by an axial magnetic field which, in the low field
region, is 1 T. The trap wall radius is 21 mm, the plasma
column width at the high field region is 7 mm. The field is
approximately a factor of 2.2 higher in the high field region
due to the existence of a solenoid in the right half of the
plasma. The plasma length is ~300 mm and the computa-
tional field grid’s spacing is 1 mm. The time step for the
simulation is 1-107'" s. The plasma density in the low field
is of the order of 1-107 cm™3; it decreases towards its radial
boundary. The initial density distribution is loaded with the
previously calculated trap equilibrium. The particles have an
initial Maxwellian velocity distribution. Following the tech-
nique described in Ref. 14, computational equilibrium is ob-
tained (during hundreds of plasma periods and tens of
bounce times), the mirror field is then ramped slowly (over
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FIG. 2. (Color online) Particles (and marked particles) in the Penning-
Malmberg trap with a mirror field. The potential appears as a color map.
Note that only a subset of the particles is shown, in order to prevent satu-
ration. Trapped particle orbits were observed.

several bounce times) until it reaches the desired value, and
the simulation is continued over tens to hundred of bounce
times. We tracked the trajectories of selected particles; their
motion along constant field lines was observed, allowing us
to identify trapped particle regions and note their character-
istic features.

lll. PARTICLE DISTRIBUTIONS

We show here the simulation results for various density
profiles and plasma temperatures. The first case is for plasma
temperature of 1 eV. For these parameters the Debye length
is of the order of 2.5 mm. This length is much smaller than
the plasma length and significantly smaller that the plasma
radius.

In Fig. 3(a) we show a color map of the magnitude of the
magnetic field, together with the corresponding field lines in
the r-z plane. If B; is the magnetic field in the low field
value side, and By is the field at the high field side, then we
define B via By=(1+6)B;. In this simulation 8~ 1.2. The
following values of the density and potential are averaged
over several bounce times, in order to obtain smoother val-
ues (alternatively we could use more particles at the end of
the simulation, however this usually slows down the simula-
tion). In Fig. 3(b) we show the density color map in the r-z
plane and in Fig. 4(a) we show the value of the density on
the axis. In the case of a cold, infinitely long plasma with an
initially flat top density distribution and for small Debye
length compared to the wall radius the density should scale
approximately with the field strength along the field line."
When comparing the density in the high field region as com-
pared to their value in the low field, we can see from Fig. 3
that, in the interior of our plasma, for small radii (where a
flat-top and infinitely long plasma is a good approximation to
our initial distribution) the density scales approximately as
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FIG. 3. (Color) (a) Color map of the magnetic field magnitude B(T) of the
mirror field in the simulated non-neutral plasma trap. (b) Color map of the
density (1/cm?®) and magnetic field lines for the case of a plasma at 1 eV.

the magnetic field. On the axis the density in the high field
region is =1.9 times the low region value. In fact the density
approximately scales as the magnetic field along the axis, as
can be appreciated in Fig. 5. We can see that our density
distribution increases along each field line over most of the
plasma. In Figs. 4 and 6 we show the potential distribution.
This result can appear at first sight as counterintuitive; how-
ever, the high-density region’s outer radius is smaller than
that of the low density region (due to the convergence of
field lines), leading to a smaller potential than in the low
field region, for the same field lines."> The potential de-
creases over most of the plasma region, and this is the reason
that it is possible to obtain trapped particles in the high field
region; they are reflected by the electrostatic potential as they
move to a lower field region. Along the axis, the potential
decrease is of the order of 0.4 V. However, at larger radii,
there is a general trend for the potential variation along field
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FIG. 4. (Color online) (a) The density at the axis for the case of a plasma at
1 eV. Averaged density values in the low and high field region are shown.
(b) The potential at the axis for the same case.
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FIG. 5. The density as a function of the magnetic field at the axis for the
case of a plasma at 1 eV.

lines to decrease. Along a field line that originates at a radius
of =7+1 mm (marked with a dashed line in Fig. 6), the
potential is constant and for larger radii it increases along
field lines. We denote the field line with zero potential varia-
tion as the critical line; it defines a critical radius in both the
high and in the low field regions. In the high field region
particles cannot be trapped beyond the high field critical ra-
dius.
We evaluated the expression,

n(r(z;ryp),z)
_em(r(z;q),z))’ @
KT

where A¢(r,z)=d(r,z)—p(r;) on each field line, which is
expected to be equal to 1. In Fig. 7 we show contour maps of
G in the r; -z plane. We have interpolated the different values
over a finer grid, using the “Spline” function of Matlab. G is
plotted in the region where the Boltzmann distribution is

G(z;rp) =
nL(rL)eXP<
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FIG. 6. (Color) Color map of the potential (V) and magnetic field lines for
the case of a plasma at 1 eV.
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FIG. 7. (Color online) Color map of G(z;r;) for the 1 eV plasma. It should
be noted that this is not a depiction of the physical r-z plane.

satisfied. Compared to the density in Fig. 3(a), it appears that
in our simulation the Boltzmann distribution is satisfied over
most of the higher density region, i.e., r;, <6 mm. We use the
same temperature in Eq. (2) for all the plasma regions (all
field lines), which in this case is of 1 eV, and is also the
initial temperature that we had before ramping the mirror
field. Typically, while performing the procedure for obtaining
the equilibrium, the heating of most of the plasma (where the
density is high), would be less than 5%. The fact that in this
simulation the Boltzmann distribution is not satisfied in the
region of low densities, does not mean that the Boltzmann
distribution is not satisfied there; rather, we believe that the
results in this region are inaccurate. The main reason for this
localized inaccuracy is that there are very few macroparticles
here, resulting in very large numerical noise and heating. The
effective temperature in this region is thus higher and is per-
manently increasing for longer simulations. The use of more
macroparticles is an imperfect solution. Since the equilibra-
tion process is then slower in the high density region, the
simulation time becomes much longer. This leads, in turn, to
more heating in the high density region. Also a differential
macroparticle charge could be used according to the density,
leaving the number of particles per cell uniform. This could
lead to other numerical problems due to particle mixing.
Since we are mainly interested in the region of higher den-
sity, we did not attempt to develop the advanced numerics
nor carry out the long simulations required to analyze the
boundary regions in detail.

In Ref. 15 the Boltzmann distribution was not solved for
the interface between the low and high density regions. Here,
in the region where the Boltzmann distribution is shown to
be satisfied, we show the expected result: the Boltzmann
distribution is valid along field lines. We also remark that the
values of G are not trivially uniform. If, for instance, n;(r;)
is replaced by n;(0), G(z;r;) can deviate significantly from
unity over most of the plasma, also if the temperature is
replaced by even different values, this value deviates easily
by a factor of several. Thus, for example changing the tem-
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FIG. 8. (Color) Color map of the initial density distribution (1/cm?).

perature by 50% (up or down) can lead to a change in the
high to low field values of G of the same order or even more
(instead of being unity), and furthermore, this value changes
nonuniformly over the field lines in most of the plasma re-
gion.

We also consider two cases with a larger plasma radius
(14 mm). The first case has the same plasma density as be-
fore, and a temperature of 0.5 eV. For these parameters the
Debye length is even smaller, about 1.7 mm. However, we
still resolve it with the grid spacing in the high density re-
gion. The second case has a higher temperature (2 eV). In
Fig. 8 we show the initial density distribution for the 2 eV
case. The radial falloff is clearly seen. The choice of radial
profile is somewhat arbitrary since the initial Boltzmann dis-
tribution is assumed to be satisfied along field lines which
are purely axial without the mirror field. Naturally, a realistic
radial profile for the initial distribution has to be chosen, and
our solution with mirror fields depends on this choice.

For the 0.5 eV temperature case, we expect that the den-
sity will scale as the field strength with even higher accuracy
than for the higher temperatures. In Fig. 9(a), we plot the
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FIG. 10. (Color online) (a) The density n(1/cm?) and on axis, T=0.5 eV
and T=2 eV cases. Averaged density values in the low and high field region
are shown. (b) The potential ¢(V) on axis for the same cases.

density color map and the field lines. In this case, the density
on the axis is 2.05 times its value in the low field region, as
can be seen from Fig. 10(a). This is close to the 2.2 ideal
value for a cold plasma. In Fig. 8(b), we show the potential
color map. We can see that the critical radius occurs at r;,
=10+1 mm. The decrease of the potential on the axis is of
the order of 0.3 V [Fig. 10(b)].

In the case of a 2 eV plasma, the density increase on the
axis, as expected, is somewhat smaller than in the previous
cases. The density is =~1.8 times larger in the high field re-
gion than in the low field region [see Fig. 10(a)]. The poten-
tial decrease along the axis is about 0.8 V [Fig. 10(b)],
higher than in the colder case. In Fig. 10(a), the density color
map is shown and in Fig. 11(b) the potential is plotted. We
can see that the critical radius occurs at r;=9+1 mm.
Clearly, as the temperature decreases the transition between
the density in the low and high field region occurs on a
smaller scale.
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FIG. 9. (Color) (a) Color map of the density n(1/cm?) and magnetic field lines for T7=0.5 eV. (b) Color map of the potential ¢(V) and magnetic field lines

for the same plasma.
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FIG. 11. (Color) (a) Color map of the density #(1/cm?) and magnetic field lines for 7=2.0 eV. (b) Color map of the potential ¢(V) and magnetic field lines

for the same plasma.

In Fig. 12 we plot color maps of the function G in the
rp-z plane for both cases. We observe that the Boltzmann
equation is satisfied over a similar region in both cases. This
region is roughly within the critical radius. On the plasma
boundaries, there is some numerical heating, so that a rough
Boltzmann distribution is satisfied, but at an increased tem-
perature. The somewhat discontinuous lines are due to the
finite grid and the existence of numerical noise.

IV. PARTICLE TRAPPING

The simulations show that some particles are trapped in
the low field region, others (relatively few) are transiently
trapped in the high field region, and most oscillate between
the two potential barriers at the ends of the plasma. A typical
untrapped particle trajectory is shown in Fig. 13. The axial
position is plotted as function of time in Fig. 13(a) and the
orbit in r-z is plotted in Fig. 13(b) (the orbit follows a field
line).
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Energy and magnetic moment conservation yields15 a
useful expression in approximation where the plasma is long,
and the transition region between the high and low fields and
plasma boundary are neglected:

v - l(vﬁ_%Ad))- )
B kT

Here V|, V), are the transverse and axial velocities of the
particles, respectively, normalized by the thermal velocity
given by V= VkT/m. This gives a hyperbolic shape of the
separatrix between the particles trapped in the low field re-
gion and those that are untrapped. For sufficiently large per-
pendicular velocities particles are trapped. In case where
there is zero potential variation along the field lines the sepa-
ratrices reduce to the cold limit of straight lines originating at
the origin. Thus, the trapping of particles is favored at larger
radii, where the potential variation is smaller or even posi-
tive. At the smaller radii, the trapping is favored at lower
temperatures since the potential difference is smaller. In our
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FIG. 12. (Color online). Color map of G(z;r;) [defined in Eq. (2)] for (a) 7=0.5 eV and (b) T=2.0 eV.
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FIG. 13. Typical untrapped particle trajectory for a 7=0.5 eV plasma: (a)
axial position as a function of time; (b) particle trajectory in the r-z plane.
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examples, the potential variation is, at most, of the order of
0.3-0.8 V (for the 0.5 eV-2 eV cases, respectively). For the
potential term in Eq. (3), this gives a value of <0.6 in the
0.5 eV case and 0.8 in the 2 eV case. Since \e““,@z 1, particles
reflected in the low field region should have perpendicular
velocity of at least the value of the parallel velocity (for radii
lower than the critical radius). They can have lower values
only for radii larger than the critical radius. These features
are observed. There is large number of trapped particles in
the low field region and more particles are trapped at larger
radii (also as expected). A typical result for a trapped particle
for a T=0.5 eV plasma is shown in Figs. 14(a) and 14(b).
The particle is inside the critical radius, therefore its perpen-
dicular velocity should be larger than its parallel velocity.
Indeed, the highest parallel velocity is 5-10° m/s, while the
perpendicular velocity is at most 9-10° m/s. The particle
follows a field line trajectory.
In the high field region,

1 2eA
VL:\/ ;B(—vf— ekT¢>. 4)

This yields an elliptical shape for the separatrices, which
for the analytical top hat distribution decrease in size as the
radius increases. For our parameters, the value of the second
term is positive only for radii less than the critical, and is
relatively large only for small radii (see, for example, the
potential in the 1 eV case of Fig. 6). Thus, particles can be
trapped in the high field region only if the parallel velocity is
sufficiently small. In Figs. 14(c) and 14(d) we show a par-
ticle reflected while traversing from the high to low field
region for the 1 eV plasma. In fact, this occurs near the ori-
gin, where the potential rise in the low field region is highest.
The parallel velocity of this particle is in fact small,

03
0.15
—— —
£ o041 £02
N N
0.05 0.1
) FIG. 14. Trapped particles trajectories.
0 ) : . . . . ) (a) and (b) A trapped particle orbit in
2 25 3 65 7 75 8 85 the low field region in a 7=0.5eV
. : 0 : plasma. (c) and (d) A particle is
time (S) x 1 0-5 (d) time (S) x 1 0'5 weakly trapped (for a few oscillations)
(b) 3 3 in the high field region (T=1 eV). In
x10 x10 (a) and (c) the axial position is plotted
6.5 25 as a function of time. In (b) and (d) the
radial position versus the axial posi-
6 5 tion are plotted.
—~ ~~
£55 TE_’
e
5 | T1s
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3-107° m/s, giving rise to a positive term in the square root
in Eq. (4).

We tracked the motion of a small number (18) of par-
ticles, with randomly chosen initial conditions consistent
with the initial thermal distribution. Since particles can be
detrapped and trapped due to numerical collisions, the ob-
served fraction (0.3-0.5) of trapped particles is only an esti-
mate. This is consistent with the expected number of trapped
particles in this region'> (=1/8/(B8+1) which is the value in
the cold limit.

We observed only few particles that were trapped in the
high field region (and they were trapped only for short
times). This is expected to be a small fraction on the basis of
the phase space analysis for the idealized case.

V. CONCLUSIONS

We have performed Warp simulations of two-
dimensional plasma dynamics in a Malmberg trap with a
mirror field. We use a technique to relax the simulated
plasma to an equilibrium in a uniform field that was
developed14 for antihydrogen traps. We then ramp the mirror
field and find numerical agreement with a basic theory that
describes the equilibrium distribution in the mirror geometry.
Thus, we show that the local equilibrium (with a nonuniform
field) can be found from the uniform field equilibrium with a
collisionless PIC code, as a consequence of the numerical
noise. The Boltzmann distribution is shown to describe the
plasma distribution along field lines. The density and poten-
tial need not be and are not constant along field lines. Mov-
ing beyond the earlier theory, the simulation shows that the
Boltzmann distribution is satisfied in the transition region
between the high and low fields. The unusual behavior of the
non-neutral plasma, with some degree of trapping in both the
high and low field regions, is demonstrated.
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