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Stability of highly asymmetric non-neutral plasmas
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The stability of non-neutral plasma equilibria subjected to external, azimuthal-asymmetric
potentials is studied. The system exhibits a wide range of complex, symmetry-dependent,
bifurcation phenomena. €999 American Institute of Physid$$1070-664X99)01601-§

I. INTRODUCTION ever, some experimentally stable plasmas are so distorted
that they cannot be described by perturbation theory. Under-
When non-neutral plasma columns are subject to azZistanding the stability properties of these highly deformed
muthally asymmetric electrostatic potentials, they deformplasmas was the original motivation for this work.
into azimuthally asymmetric shap&s A typical asymmet- Contour dynamics-bas&t'® numerical studies of asym-
ric shape is shown in Fig. 1. The companion papeesents metric plasmas reveal complicated dynamical behaviors that
methods of predicting the form of these shapes. Here wgannot be interpreted easily. In an attempt to clarify the pic-
analyze the shapes’ stability. Stability is normally studiedtyre of the transition to instability, we employ a framework
through modal analysis, in which nonlinear equilibria areqeyeloped for the study of bifurcations in Hamiltonian
calculated and subsequently perturbed. Eigenvalue coIIisior§/3temsl_6 Two types of bifurcations occur in our system:
are often assumed to engender instability. However, as i§teady-state and Krein—Hopf collisions. We use recently
well known in bifurcation theory” symmetries can stabi- proven theorentd on the generic behavior of Hamiltonian
lize eigenvalue collisions. We have two goals in this papergysiems with a single bifurcation parameter to make general
(1) to describe the various, often surprising, responses thafiegictions for the behavior of our system. These predictions
Fhe pIasma make; to the aPP"ed perturbations, @do strongly depend on the system symmetries. We numerically
||Igstrate, in a reapzablg phy;lcal system, some of the COm,—nvestigate several systems with different symmetries, and
plicated Hamiltonian bifurcation phenomenon that occur 'ncompare the results with our predictions. As no disagree-

syst%:n s which potssT:ss Ia high deglgree of symmetr);: d i ments are observed, we conclude that the symmetry argu-
e non-neutral plasma columns are confined in .o o0 pa employed profitably.

Penmng—MaImberg t_raﬁ‘sA schematic of_the SySt.e”.“ IS The influence of symmetry on stability has been studied
shown in the companion papéfhe plasma is held within a . ; Co Lo
theoretically in both dissipative and Hamiltonian systems.

conducting cylindrical wall of radiu®. Radial confinement While many practical dissipative systertiBaylor—Couette

is provided by a uniform axial magnetic fielBEB2), flow. Ravleigh—Benard convection o nam fewan b
while axial confinement is provided by an electrostatic well. ow, Rayleigh—benard convection 1o name a Jevan be
rgound in the literature, few practical Hamiltonian systems

More detailed descriptions of Penning—Malmberg traps ca : : S
be found in the literatur&1® have been discussed. Asymmetric plasma equilibria are a
We make the common assumption that the axially9°°d practical example of a complicated Hamiltonian system

(2)-directed motion bounce averages out, and that the syste}fiith Symmetries determined by the boundary condition. The
can be described by the two-dimensiof@D) drift Poisson flexibility of the boundary condition makes these systems

equations. Then only motion in the,@) plane perpendicu- Particularly interesting. _ o o
lar to B is important, and the particles follo&@x B orbits, We begin, in Sec. II, by studying elliptical equilibria, for
where theE field is determined by both the plasma itself andWhich there exists a simple analytical treatment that allows
the imposed boundary condition at the cylindrical wall, Uus to probe the stability problem. In Sec. lll, the method of
=V(6). The 2D drift Poisson equations are isomorphic tocontour dynamics, here slightly modified, is presented
the 2D Euler equations for incompressible, inviscid fluitls. briefly, and the linear stability analysis is developed. Section
In this isomorphism, the plasma charge density correspondy studies the stability of symmetric systems. The change of
to the fluid vorticity and the electrostatic potential corre-the eigenvalue spectrum is investigated numerically as the
sponds to the stream function. Thus results obtained for norstrength of the external potential is varied. Crossings with
neutral plasmas are also applicable to 2D fluid flows. other equilibrium branches are studied. Comparisons show a
In the case of a grounded confining waM(6)=0], the  clear agreement between predictions based on the bifurcation
steady-state solution of the equations of motion is a centeredheory for Hamiltonian systems and numerical results for the
circular plasmad? Breaking the symmetrjV(6)#0] de-  steady-state bifurcations. We show the scaling of the insta-
forms the plasma. While Chet alX® used perturbation tech- bility threshold with the plasma area. Stability in a system
nigues to prove that the plasma remains stable under smallith no rotational symmetries is investigated in Sec. V, using
external potentiald/(6), it seems intuitively plausible that the example of a circular off-center equilibrium. Appendix A
sufficiently large potentials should lead to instability. How- gives a detailed derivation of the contour dynamics equa-
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FIG. 2. Equilibrium ellipticity\ , vs the external potentiady, from Eq.(5).

FIG. 1. Elliptical on-center plasma equilibrium. The plasma covers the
shaded region. The light solid lines are equipotential contours, and the heav_ly . . .
surrounding circle is the trap’s cylindrical boundary. he system governed by Eq4)—(4) is Hamiltonian and the

explicit expression for the Hamiltonian can be found in Ref.
13. Note that the equations of motion possgss Z, sym-
metry with reflections X;,y¢ \,¢)—(—X¢, — Y N\, @) and
S(’xc,yc,)\,<,o)—>(xc,yc,)\,<p+ 7). The first reflection corre-
sponds to the reflection of the center of charge and the sec-
ond to the rotation of the ellipse by. From Eqs(1) and(2)

it is clear that a centered plasihg.,y.)=(0,0)] is a likely

Il. ELLIPTICAL EQUILIBRIA equilibrium. Solving Eqs(3) and (4) for A=0 and ¢=0
Elliptical plasmas can be described by a simple analyti-W'th (Xe,¥¢) =(0,0) we _ob_taln an eqU|I_|br|um forp=0,m
cal treatment—the elliptical plasma model developed by ChL]cmd)‘:)\O’ where), satisfies the equation
et al®® In this model, which is valid for plasmas of small Vo No(A3—1)

area, extended patches of charge are assumed to ha\{e ellip- 5 en@ (1+)\0)2(1+)\3) . 6)

tical shapes. Chuet al. approximate the exact particle

guiding_center Hamiltonian by inc|uding 0n|y a finite num- AS expected, the strength of the external potential determines
ber of degrees of freedom, namely the center of charge witkhe ellipticity of the equilibrium. The plot of the right-hand
coordinates )(C ,yc), the aspect ratio,, and the ang|e be- side of EQ(S), presented in Flg 2, shows that there are two
tween major axis ang-axis . We use a boundary potential solutions of Eq.(5) (Ao1,No2:hor<<Nop) for Vo/dmenR
V=—V, cos &, which we expect to result in an elliptical <0.07507 and no solution fovo/4menR>0.07507. Thus

equilibrium for small plasmas. Without loss of generality thethere are two(up to the rotation of the ellipspon-center

tions, and Appendix B gives a proof, based on energetic
that circular, off-axis plasmas are stable.

bifurcation parameteY,, is taken to be positive. solutions with different ellipticity.
To lowest order in the plasma ardg,, the system is To determine the stability of these equilibria, we linear-
described by the equations of motith: ize the equations of motion. The equations for the position of
the center of charge and the ellipticity separate. The Jacobian
Ke=— —| =9+ ———o— |y v © the linearized form for the center of charge is
2¢(Vo  enk f the linearized form for th f charge i
c B RZ RZ_X2 y(2: c )
4
_ 2¢ [V, enA, nyz—w(vo—enﬁb)(voJrenAb). (6)
yc:_§<R TRZ_X2— 7))(0’ 2 . " L
¢ Ye Thus the instability threshold for the on-center equilibrium is
4enc A th_
p Vo=enhA,, 7
A=-— B (RZ_Xg_y(Z:)2[2XCyC COSZID 0 Ab ( )

because fol&/osvﬁ,h the Jacobiard,, is positive and the re-

y o 4cN\V, sulting eigenvalues are pure imaginary, yielding stable mo-
—(xc=Yye)sin 2p] = —po— Sin 29, (3)  tion of the center of charge. Note that the trap radtudoes
not appear in threshold criterion, as both the applied and
_ 4mcemn  2ceni?+1 image fields vary as R? for a small plasma close to the
=B 12t B A1 origin.

The cause of instability in this system is apparent from
Ap the center of charge equations of motidfgs. (1) and (2)].
(Rz—xz—yz)2 In the small plasma approximation, the motion of the center
s . of charge is along the equipotential line of the combined
X[(Xc—Yyc)cos Zp+2xcy. sin 2p] image and external potentials. If the equilibrium is displaced
0 from the origin, the image charge attempts to induce a stable
“en COoS 2p |. (4) rotation around the origin. The external potential, however,
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+ potentials as moments beyond the first and se¢bad cen-
ter of charge and ellipticifypecome important in the dynam-
ics. A technique that allows us to find equilibria and analyze
stability in the general case is developed in the next section.

[lI. CONTOUR DYNAMICS AND STABILITY ANALYSIS

Consider the full equations of motion for a long, magne-
tized electron column: the continuity equation for the elec-
tron density (), the EXB drift equation, and Poisson’s
equation for the electrostatic potential satisfying the bound-

+ ary condition ¢(R,0)=V(6). When, as is common, the
FIG. 3. Potential contours for elliptical external potential. plasma temperature is so low that the Debye lengghis
small compared to the plasma radius, the electron density
becomes nearly constant in the plasma interior and decays to
tends to move the center of charge away from the origin, asero on the scale of, (Ref. 18 at the plasma edge. There-
can be seen in the equipotential plot, Fig. 3. Thus the extefipre we will use the flat top, constant density plasma model.
nal potential attempts to destabilize the equilibrium. |nStabi|-M0re rea]isticy smooth density equ”ibria will be considered
|ty results if the external electric field is Iarger than the imagein Sec. VI. To S|mp||fy the pr0b|em further 0n|y p|asma
charge field. In the language of non-neutral plasmas, the dicshapes consisting of a single simply connected region of
cotron frequency*” goes to zero and the diocotron motion nonzero density are considered.
stalls, and then destabilizes. In Sec. IV symmetries of the system will be used to
The ellipticity equation[Eq. (3)] must be analyzed to predict instability. The equations of motion themselves have
complete the stability evaluation. After calculating the Jaco-s5Q(2) symmetry, and the symmetry of the problem is deter-
bian, one can see that the equilibrium wit, is stable, mined by the boundary condition, i.e., by the wall potential
while the one With}\oz is unstable. The value of the param- V( 0) For examp]e, a system with a constant app“ed poten-
eter Vo/4menR=0.07507 corresponds to the saddle—nodeja| has S@2) symmetry. The family of external potentials
bifurcation where the stable and unstable branches coalesc@ven by V()= —V, cosmé, which will be considered in

Combining the Stab”lty anaIySiS for the center of ChargeSec_ IV, results |rzm(277/m) Symmetry(the symmetry gen-
and ellipticity, we conclude that the on-center equilibrium grated by rotations i of 27/m).
with ellipticity given by, is stable for 6<|Vo|<enA, . At In-flows with constant charge density, the velocity at any
the instability threshold the Jacobiak,=0, and intersec- point in space depends solely on the location of the plasma
tions with other equilibrium branches are possible. To inV@Sboundary. The methodology of contour dynantic$ (CD),
tigate this possibility, a bifurcation analysis close to thefirst developed for fluid dynamics, uses this simplification.
threshold could be performed or, alternatively, other equilibHere we must modify the standard CD formalism to include
ria may be found by inspection from equations of motion.the boundary condition at the confining w&ilWe use CD
Following the latter path we find from Eqgél) and(2) that  throughout this paper to obtain static shapes numerically, to

another equilibrium exists fov,>enA,, with investigate stability, and to perform dynamic simulations.
enA, The electrostatic potential for the system at hand can be
Xc=*R\/1- Vv Voo 0. (8) represented as
0

Equations(3) and (4) yield the equilibrium values o and ¢=dpt St beus ©
\. Stability analysis reveals that this equilibrium is stable.where ¢, corresponds to the free space plasma potengial,
Thus, at the instability threshold, given by EJ), the on- is the image contribution, and.,; is the external potential.
center equilibrium experiences a supercritical pitchfork bi-For flat top plasmas, the expression for the free space poten-
furcation. A new branch of solutions appears which corredtial written using the Green’s function combined with the
sponds to the off-center equilibrium E@). An exchange of ~ Stoke’s theorem yield$
stability occurs. Note that this new equilibrium, as is typical
in bifurcation theory, is not symmetric with respect to the ¢p(x,y)=ne< —Apt 47 Injr—r’|
reflection of the center of charge. ¢

In summary, the elliptical plasma model provides some
insight into the stability problem. The transition to instability X[(X"=x)dy" = (y'—y)dx']
of the on-center static shape is observed. Crossing with other
equilibrium branches occurs. Further investigations of othewhere A, is the plasma area and integration is performed
equilibria corresponding to different boundary conditions areover the plasma boundarg. We express the image and
needed to generalize the results to arbitrary wall potentialsexternal contributions inside the cylindrical domain as solu-
Unfortunately, the elliptical plasma model is not suitable fortions of Laplace’s equation in cylindrical coordinates subject
investigating the equilibria and stability for arbitrary wall to the boundary conditionse;(R,60)=—¢,(R,0) and

: (10
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xR, 0)=V(6). We calculate the velocity of the flow from Where{f} stands for a set of orthonormal functions and the
the electrostatic potential as= —cV ¢ X 2/B, giving expansion is multiplied by the basic statefor convenience.
. Due to the periodicity of the system ia natural choice for
_ 2enc v, Vit e X2 the basigf,} is
vV(X,y)=——F%— Infr—r’|dx' —c—————.
B c B
11

1
{fl}:\/_;

1
—,C0S7%,C0S 2...,Siny,sin2y... .
: . . V2
Turning to the static problem of equilibrium plasma (19
shapes, recall that iB X B dynamics, the guiding centers of
the plasma electrons drift along the equipotential contoursUsing Galerkin’s projection method, we keep only a finite
Therefore, for flat top plasmas the shape is stationary if th@umberN, of basis functions. Taking the inner product of
electrostatic potential on the plasma boundgy$®) is equal  Eq. (17) with f, yields an eigenvalue problem

to a constant? i.e., N,

#(r,(6),0)=const. (12) UCmZE GmiCi . (20)

Writing the CD expression for the potential on the plasmag,pjicit expression for thé\, x N, matrix G,,, can be found
boundary, a static shape can be found using(Eg). Details i, Appendix A. The stability of the equilibrium can now be
of the numerical calculation can be found in Refs. 15 and 204equced from the spectrum &. If all the eigenvaluesr
What about the stability of asymmetric equilibria subject t05ye nonpositive real parts, the system is stable; otherwise, it
possibleEX B perturbations? Though general nonlinear stajg yngstaple. We can compute numerically the eigenvalues
bility conditions would be preferable, we consider weaker,p,q eigenvectors for any equilibrium shape of interest.
spectral stability conditions due to the complicated nature of  \yhen no external potential is present, the equilibrium is
the problem. Our analysis is similar to that in Ref. 21, where, cjrcle of arbitrary radius,, and the perturbed states are
stability of different vortex configurations was investigated, ihe much studied diocotron mod¥<’ The eigenvalues are

extended here to include the external and image potentialsyq|| known (see, for example, Ref. 12nd are given by
Two cylindrical coordinate systems will be used fre-

quently in this paper:r(0) centered on the trap, and,») L 27recn
centered inside the plasmaxt,y.. The plasma boundary in a==l—g
the second system is

[I-1+(r,/R?]. (21)

Using a coordinate system centered in the plasma trap, i.e.,
Xp(0) =X+ E&(m)cosy, yu(0)=y.tE&(p)siny. (13  x.=y.=0, =4, the eigenfunction corresponding to the ei-
_ genvalueo, is given bye™'7=e* "% The numerically com-
Let £o( ) be the equilibrium state of the system. Then the, o4 eigenvalues agree with the analytical result given by
perturbed state can be represented as Eq. (20).
— Due to the use of some group theoretic considerations in
£0m)=Lolm) + oL(m), (19 Sec. IV, let us consider the action @f,(27/m) group on
where 8¢(7) is assumed to be small. The perturbation,the basis eigenvectors

5&(7)=E(n)e’t is assumed to be a normal mode of the

C —
system. Velocities are represented as &r(6)=coslo, (22

V() =ve( 1) +(m)e (15 i(0)=sin!6, @3

which span the eigenspace for the eigenvaludor a con-

The flow velocity determines the evolution of the boundary: . : s
stant potentiaM(6). These eigenfunctions transform under

D¢ o9& v, 9¢ the action ofZ,(27/m) as
et F P ek J (16)
Dt gt £ dy s 27l s 27l c
R(27/m)&(0)=cos——&(0)—sin——&7(0), (24
Linearizing this equation of motion using Eq&4) and (15) (2mIm)&i () m SO =sin=m(6), (249
yields

ol o 27l 2wl )
L Vs dE T, dé Vnodé R(2mlm)&1(6) =cos— - &/(0)+sin——£(6), (25

B Ly =, (17)
§ dn & dp & dy whereR(27/m) denotes a rotation by2/m. Two different

We express the velocity amplitude as a linear functional ofﬁse.s shqulddbe .ﬂ:stlggwshed. If/? |s| nolt an w:jtegglr then
the boundary shapg& using the contour dynamics equation this is an |rref ucibie u; n;)t anla EO utely wri u ml:z_p—
[Eqg. (12)], and substitute it into Eq17). The normal mode resentation of groug,(27/m). In the case where 1S

amplitude function~§( n) is represented in the form an integer, however, the transform reduces to
R(2mIm)E(6)=(—1)?"ME(6), (26)

()= & ’7).21 Cifi(m), (18) R(2m/m)ES(0) = (—1)2/mel(0). 27
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This representation is a reducible representatiod ofvhen e
2l/mis an odd integer and of an identity group whdinr is |
an even integer. 06+ LT Re o,

When a nonconstant wall potentidl §) = —Vy cosmé 4\%
is turned on, the eigenvectors are no longer represented by
simple sinusoidal waves due to the coupling between waves 0.3 instability onset
with different!l. However, the irreducible representations of I=1
Z.(27/m) associated with the eigenspace for mbagaould "5 o )ﬁ/ ......
persist by continuity. We will label the modes by theircor- |~~~ —— T
responding values dfin the absence of the external poten- I=1
tial. Consider a family of equilibria of a fixed areg,, and 0.3 |
the wall potentialV =V F(6), whereF(6) is some function //
of the angled andV, stands for the strength of the external =2
field. For V,=0 the eigenvalues are purely imaginary and '0-60 0102 0104 - 0'06
are given by Eq(21). When the bifurcation parameter rises ' ' % '

from zero, the eigenvalues move on the imaginary axis and
the spectrum changes. If, at some valu&/gf an eigenvalue FIG. 4. Spectrum of the elliptical equilibrium.
with a positive real part appears, then the corresponding

equ[:_lg'rlum bthcomes ubnstable.'d di | V, as a solution of the eigenvalue problem given by &6).
text T;f F(ero em clan et(_:ons:c er;D IIEn Ia r_norﬁ ggnera Colr;The results for first two modes are presented in Fig. 4. As the
ext. The dynamical equations for ulerian iuids are we potential V, rises from zero, all the eigenvalues begin to

k?own tk()) bed Ham_lltoma;ﬁ. EThg tITIeb evolution dotc tf;)e move toward the origin on the imaginary axis. The first col-
plasma boundary given by EQLE) will be assumed to be lision occurs at Imp=0, and is between thie=1 mode and

Hamﬂtor;gn as yveII. The b|fu.rcat|on theory of H:_a_mlltoman its complex conjugate. As a result, the eigenvalues split and
system&?* predicts that the simplest loss of stability Occursinstability OCCUrS

along one of two paths. The first path is through a collision These numerical results are in agreement with the

of two eligenvalues aF the origin, resulting in the appearance, j,ced-Hamiltonian analytical results of Sec. I, but, as the
.Of two eigenvalues with complementary rea}l partg. This pa'Frhumerical procedure keeps additional harmonic components,
is usually referred to as a steady-state bifurcation. At thlﬁt hould be more accurate. Numerically, the equilibrium be-
bifur_ca_ti(_)n the system POSSEsses a zero-vall_Jed ei_genvalueé) mes unstable to the=1 diocotron moae. Appropriately,
mul'qphqty two, and the possibility of crossing with other this instability corresponds to the center of charge instability
equilibrium bran_ches .”_"'“St be tgken Into acco_unt. on th?dentified in Sec. Il. A typical bifurcation diagram with nu-
second path to instability, two elgenvalue§ collide at* Som{?nerical(solid line) and analyticaldashed lingpredictions is
nonzero*freguency and a quadruplet of elgenvalfmas_ ' plotted in Fig. 5. Stable and unstable regions can be seen on
A with the nonzero real parts emerge. Th's blfurca'the graph(Note that the stability regions are also limited by
tion .corr.esponds t(.) a 1._1 resonance, a.n.d is_called e geometrical constraints imposed on the system by the
.Ham|lton|an'—Hopf blfurca'uon or a Krein collision. FOIIO\.N' resence of the cylindrical wallThe analytical model also
ing the te_rmlnology used in Ref. 7 the appearance of elgerEredicts that another stable equilibrium appears at the bifur-
yalue_s W|th_real parts as a result of collisions Of. purelycation point. To check this prediction, off-center equilibria
imaginary eigenvalues will be referred to as a splitting OfWere sought with an equilibrium code and their stability was

eigenvalues, or S|mpl_y_splltt_|ng. As proven in Ref.(_énd analyzed. No off-center equilibria for potentials below the
reference therejn splitting is the generic behavior of

symmetry-free Hamiltonian systems. In practice, often due to

the restrictions imposed on the system by symmetries, eigen- Tr~. _
values do not always follow this generic behavior. Instead of T~
splitting, the eigenvalues sometimes remain on the imaginary 0.8 | T~ )
axis after collisions and no instability occurs. We will refer NS
to this process as passing. s 0.6 [ .
Let us reconsider the elliptical equilibrium problem with < o N
V=—Vg cos ¥. We first introduce dimensionless variables 04t g29\® _ /
*_Ap * _ Vo * _ 0B 02 /// g
Ao=or2 Vo 4men 9 T 2mecn 8 20\®
0 ' o : :
An example of a highly deformed but stable equilibrium with 0 0.03 . 006 0.09
areaA7 =0.3 atVj=0.05 is presented in Fig. 1. As ex- Vo
pected, this on-center eqU|I|br|.un_1 possesses all Symmem%ﬁG. 5. Stability diagram for the elliptical equilibrium. Threshold of insta-
of the problem and looks elliptical. The spectrum for apjjity from the elliptical plasma modei— — —), from CD (—), geo-

plasma WithA; =0.2 is obtained numerically for different metrical constrainf——-—- ), limit of confinement(:--).
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FIG. 6. (a) A stable off-center elliptical equilibriunishaded The centered \

unstable equilibriun{solid line) is plotted for comparisonb) The position

of the center of charge for the center and of center equilibria.
FIG. 7. Triangular on-center equilibrium. The plasma covers the shaded
region. The light solid lines are equipotential contours, and the heavy sur-

instability threshold were found, but equilibria on tkeaxis ~ ounding circle is the trap’s cylindrical boundary.
at =X, were obtained above the threshold. An example of an

unstable centered and a stable off-center equilibria, with | potential its in the d f the di d
A% =0.2 andV} =0.06, is presented in Fig. 6The unstable nal potential results in the decrease of the diocotron mode

on-center equilibrium with ellipticity\ o, was also found nu- frequgncies. The first obgerved collision is a steady state bi-
merically) furcation for the mpde with the smqllest frgqgency, i.e., for
thel =1 mode, which results in the instability in accordance
with the expected generic behavior. Moreover, a pitchfork
bifurcation, which is generic in systems wifly symmetry?°
While the detailed physical mechanism responsible foiis expected. These predictions agree with the results of small
instability is often hard to deduce, some general aspects gflasma analysis and numerical calculations.
the behavior can be predicted based on the symmetries alone. We conclude that the numerically observed behavior of
As was mentioned in Sec. lll, the generic behavior, i.e., splitthe elliptical equilibrium is in agreement with the picture
ting at first collision, can be altered if a symmetry is presentdeduced by the symmetry arguments. We expect that all the
in the system. We will merely use the main results derived irmain featuregsplitting at the first collision, pitchfork bifur-
Refs. 5 and 7 as they apply to the relation between the typeation forl=1 instability) present for the boundary condi-
of the symmetry group representation, i.e., absolutely irretion V= —V, cos 2 will remain the same for wall potentials
ducible or nonabsolutely irreducible, and splitting and passwith a twofold axis of symmetry for which the first occurring
ing of the eigenvalues at the collision at zero. In a steadybifurcation is anl=1 steady state collision, but where the
state bifurcation the representation of the symmetry group opotential contains higher order (co8,4cos &, etc) terms.
the generalized zero eigenspdtg(the space spanned by the This expectation was verified for the wall potentil=
mode undergoing the collisidns either nonabsolutely irre- —V, applied to two 90° patches centered on thaxis.
ducible and the eigenvalues pass with nonzero speed, or it is
a direct sum of tyvo isomorphic_ absolut_ely irreducible_ sup-B_ Triangular equilibria
spaces and the eigenvalues split. The eigenvalue motion in a
1-1 resonance is more complicated. Here, the conclusions We proceed to a system with a threefold rotation axis.
cannot be made based on the symmetries alone, as energje wall potential is now assumed to he=—V, cos I
arguments must be considered as well. General results for tvéith Vo>0. The on-center equilibrium appears triangular
resonant collisions can be found in Ref. 7. Both steady statgnd possesses all symmetry properties of the system. An ex-
and resonant collisions will be encountered in the followingample of an equilibrium witiA7 = 0.2 andVg = 0.1 together
examples. We will compare the numerical results for steadyvith its equipotential contours is shown in Fig. 7. Investiga-
state bifurcations with the general predictions based on th#on of the spectrum reveals a qualitatively different picture
symmetry of the system. No attempt will be made to com-than that for the elliptical plasma. An example of a typical
pare the resonant collisions with the generic behavior due tepectrum is presented in Fig. 8 for a plasma wAfh=0.1.
the lack of an explicit expression for the symplectic structureAs the bifurcation parameter increases, the eigenvalues move
of contour dynamics. This is a topic for future work. We first in the direction of Imo=0 up until the steady state bifurca-
illustrate the use of symmetry arguments by returning to théion for thel =1 mode occurs. However, this collision results
elliptical equilibrium. in passing anado instability takes place. Under the further
increase of the bifurcation parametéy, the frequency of
=1 mode changes sign and moves away fronutaD. All
For V=—V, cos & the system ha&,(w) symmetry other eigenvalues continue to decrease in absolute value. The

IV. STABILITY OF SYSTEMS WITH SYMMETRIES

A. Elliptical equilibria revisited

with representations given by Eq®6) and (27) for any | resonance between tHe=1 and|=2 modes takes place
(21712 is always an integerThus, the generic behavior is the next, leading to the instability.
splitting of eigenvalues for any collision at zero. From nu- This qualitative difference between the elliptical and the

merical computation we see that the application of the extertriangular cases is anticipated by symmetry arguments. In
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0 FIG. 10. Stability diagram for the triangular on-center equilibrium. Passing
FIG. 8. Spectrum for the triangular on-center equilibrium. of I=1 (-+), I=1,2 resonant collision with splitting—).

this casem=23 and we have an absolutely irreducible repre-displaced equilibrium was taken as an initial condition and
sentations (26) and (27) for modes with | the time evolution was investigated with a dynamical CD
=3,6,9, ..,3,... and allother values ol are associated code. The rotation of the center of charge was in the direc-
with the nonabsolutely irreducible representations EB4) tion opposite to the diocotron rotation when no external po-
and (25). In particular, this is true fot=1. Thus, the first tential was present.
observed collision at zero is generically predicted to pass,
not split. Moreover, the generic behavior of such systems i
crossing with an unstable branch of solutions at bifurcation.
The passing bifurcation that takes place is forlthel mode, In the next example a system with a fourfold symmetry
which contains the center of charge coordinates. We thereaXis is considered. The boundary condition is takervas
fore expect a crossing with an off-center equilibrium branch.— Vo cos 4. The center equilibrium has a square shape. An
This additional equilibrium was subsequently found numeri-example of the equilibrium shape corresponding \f
cally. Examples of unstable equilibria found before and after=0.4 andA7 =0.1 is shown in Fig. 11 together with some
the bifurcation point are plotted in Figs(é and 9b). The  equipotential contours. The spectrum reveals the following
outline of the center stable equilibrium is also plotteg a  bifurcation picture: first, a steady-state bifurcation occurs for
solid curve for a reference. The bifurcation diagram for the thel =1 mode. It results in passing of the eigenvalues. Next,
center of charge can be seen in Fi¢c)9 a resonance for thie=1,2 quadruplet is observed. These ei-
The next bifurcation that takes place isla1,2 reso- genvalues also pass. Finally, a steady-state bifurcation for
nance. Numerical results indicate that the1,2 collision thel=2 mode occurs and splitting results. An example of a
results in an instability. The bifurcation diagram is presentedspectrum forA7 =0.1 is presented in Fig. 12.
in Fig. 10, where both the steady-state and Krein collision ~ Again, the motion of eigenvalues at collisions can be
thresholds are plotted. qualitatively understood based on the symmetry properties.
Note that after the steady-state bifurcation takes placéNow m=4, so the absolutely irreducible representations
the frequency of thd =1 mode reverses sign. In the lan- given by Eqs(26) and(27) take place for any even value of
guage of non-neutral plasmas, this can be phrased as tige mode numberand the odd values dfcorrespond to the
reversal of the diocotron mode direction of rotation. In other
words, if in the absence of the external potential a slightly

displaced electron column rotates counterclockwise, after the '
=1 bifurcation a perturbed equilibrium will rotate clock- / v \

T. Square equilibria

wise. This prediction was verified numerically. A slightly

v '=0.095 v '=0.113
0 0 02
x /R N
¢ N
0.1 N
N
<

008 01 . 042
A

FIG. 9. Triangular unstabléshaded off-center equilibria:(a) before, (b)

after the bifurcation point. The stable centered-equilibrium is indicated byFIG. 11. Stable square on-center equilibrium. The plasma covers the shaded
the solid line.(c) The position of the center of charge of different equilibria region. The light solid lines are equipotential contours, and the heavy sur-
present in the system. rounding circle is the trap’s cylindrical boundary.
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0 tems with wall potentiaV= —V, cosmé with m=23,4,5.

FIG. 12. Spectrum for the square on-center equilibrium.

that instability occurs when the value of the external poten-

nonabsolutely irreducible case. Therefore, the steady-staté@l on the plasma surface is of the order of the plasma po-
collision for =1 mode results in passing, and the collisiontential, i.e.,

at zero forl =2 should split, in agreement with the numerical bo(F o)~ boxdT o). (29)
results. Also, considering the=1 collision, note that there LRl Tete

exist two generic bifurcations for a system witd, The value ofge,(rp) can be estimated as

symmetry® crossing with two branche®ne stable, one un- m/2

stablg, or crossing with one unstable branch. Solutions ¢ext(rp)~Vo(R—g) : (30)
found numerically correspond to the first case. A stable

branch at 45°(four equivalent solutionsand an unstable Taking ¢,~enA,, the condition given by Eq29) yields
branch onx axis (four equivalent solutionsare found. The R2\ M2-1

bifurcation is subcritical. An example of these equilibria can _(;8 =C —) ,
be seen in Fig. 13. At the next bifurcation, the collision of Ap

I =1,2 modes, passing of the eigenvalues is observed. At th@here C,,, is a constant, near one, which dependsnon
next bifurcation, i.e., thé=2 collision at zero, the represen- Values forC,, can be determined numerically by finding the
tation for thel =2 mode is isomorphic to the representationinstability threshold at one value & and A, for eachm.

of Z,. This situation was already encountered in the case ofhe threshold of instability, i.e., the value of the potentigl
thel =1 bifurcation of the elliptical equilibrium. A pitchfork at the onset of instability, was obtained numerically for
bifurcation is expected. This unstable branch of solutions=3, 4, and 5 by investigating the eigenvalue spectra for dif-

(31)

m

was found numerically. The bifurcation is subcritical. ferent values of the plasma area. Comparison of the numeri-
cal results(pointg for the threshold of instability with the
D. Threshold of instability scaling law given by Eq(31) (C3=1.08, C,=1.78, and

C5=2.72) is presented in Fig. 14. We get good agreement

__So far, an analytical result predicting the onset of instay, e een analytical and numerical results, especially in the
bility was obtained only for an elliptical equilibrium. We region of small area

have found a scaling law for the threshold of instability when
the wall potential is of the formV=—V, cosméd with m
>2. The scaling law follows from the destabilizing effect of V. CIRCULAR OFF-CENTER EQUILIBRIUM

the external potential overwhelming the stabilizing plasma | this last example, we investigate the stability of equi-
potential. Neglecting the contribution of the image, which is|ipria in the system with no rotational symmetry. We assume
important only for elliptical plasma stability, we postulate that the wall potential corresponds to a circular equilibrium
whose center is located at{,y.) = (X.,0). As discussed in
the companion paper, this wall potential is simply the free
space potential of the cylindrical plasma of afgalocated at
(x¢,0), evaluated at the wall. The stability of these circular
equilibria can be proved analytically using an extremal en-
ergy principlé® for the case whem < A,/ i.e., the trap
002 origin is inside the plasma. The details of the proof are in
@ (b) ' © Vo Appendix B. To extend the stability analysis to plasmas
o which do not encompass the origin, we examine the stability
FIG. 13. (&) Stable off-center square equilibriufshadedt (b) Unstable —n,marically and interpret the results in the mode language.
off-center square equilibriunishadedl The stable-centered equilibrium is . . .
indicated by the solid line(c) The position of the center of charge of The Change of the plasma spectrum with the bifurcation pa-
different equilibria present in the system. rameterx, for A; =0.1 was investigated numerically for the

stable unstable

0.08 | .
r /R
Cc

003}
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XC/R sult in splitting or passing. Furthermore, predictions on the

crossing with other equilibrium branches at bifurcation
points can be made based on the symmetry.
Unfortunately, we have been unable to find any simple
rules for visually determining the stability of a plasma. Gen-
first 80 modes. The absolute values of all frequencies wererally, the more distorted the plasma is, the more likely it is
increasing and no resonant collisions occurred in the regioto be unstable. However, while some relatively circular plas-
of interest Gsx.<R— VA, /. The spectral plot for the first mas may be unstable, other highly distorted plasmas, even
two modes is presented in Fig. 15. As no collisions occurplasmas with concave boundaries, may be staflee com-
the equilibrium must be stable. panion paper shows such a concave stable plaskhare-
over two plasmas which look essentially identical may differ
in stability. For example, the two elliptical solutiohg; and

V1. DISCUSSION Noz can be difficult to distinguish visually, but only the;
solution is stable. The only completely general visual rule

We have considered the linear stability of highly asym-that we have discovered is that any plasma with a sharp
metric plasma equilibria. These equilibria are stable whereorner is unstable. This rule is is easy to establish: Het
small wall potentials are applied, but may become unstablg. andEg be electric fields as shown in Fig. 16. Remem-
when the boundary asymmetries are increased. The eniptiC@ering that the p|asma edge is an equipotenE@j,and ER
equilibrium, for which an elliptical model can be used, must be at right angles to their respective plasma boundaries.
served as a test case to probe different effects that can takgsing the dashed line in the figure as an integration contour,
place. Transition to instability and crossing with other equi-it js clear from Faraday’s law th&, andEr must have the
librium branches were observed. More complicated shapesame magnitude. By continuitf. must share this magni-
were analyzed numerically using a technique based on cofude. But ifE.# 0, the region enclosed by the dashed line in
tour dynamics. A modal approach was also used to relate thgot divergence free. As this region can be shrunk to zero, and
phenomena occurring at bifurcations to general predictiongs there is no surface charge at the plasma boundary, the only
from the bifurcation theory of Hamiltonian systems. way that Faraday and Gauss's laws can be simultaneously

Several different types of bifurcations were identified. satisfied is ifE, = Ec=Eg=0. However, if the electric field
Wall potentials with a dominarit=1 harmonic component, at the corner is zero, charge will stagnate in the corner, lead-
which move the equilibrium off the trap center, have a ten-ing to instability.
dency to increase all eigenvalues. Wall potentials Wit To verify that these results are valid when the plasma
components dominant tend to decrease the mode frequefas a realistically smooth rather than flat-top density profile,
cies, with possible instabilities at the collisions. For the casegye Compared the contour dynamiCS results with a vortex-in-
investigated here, the first collisions were steady-state bifurcell (vVIC) simulation for elliptical plasmas. Details of the
cations of the eigenmode with the smallest eigenvaluepumerical scheme can be found in Ref. 27. We performed a
namelyl=1. We showed that the outcomes of the collisiony|C simulation with the density distribution for a plasma in
are determined by the symmetries present in the systenthermal equilibrium?® (Debye lengthk ,~0.2r ;). All quali-
While thel=1 collisions were followed by instability for tative features, i.e., existence of a stable elliptical equilib-

V=-V, cos ¥, eigenvalue passing was observed Y6+  rium on-center, pitchfork bifurcation to a stable equilibrium
—Vp cos ¥ andV=—V, cos 4. Thus, in the presence of of center, etc., were verified.

certain symmetries, remarkably, some eigenvalue collisions
are harmless.

To analyze a general case, we use the following methodi -« NOWLEDGMENTS
from the perturbation analysis, we deduce the initial direc-
tion of motion of eigenvalues as the external field is in-  The authors thank B. Boghosian for providing assistance
creased. A conclusion on the first collision can often bewith the vortex-in-cell code, and K. Zukor for her helpful
made. Then, the symmetry analysis of the zero eigenvalueomments. We also thank the referee for many helpful com-
subspace determines whether or not the bifurcation will rements on the mathematical aspects of the manuscript. This

FIG. 15. Spectrum for the off-center circular equilibrium.
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APPENDIX A: LINEAR STABILITY ANALYSIS

In the linear stability analysis, the amplitude of the ve-
locity perturbatiorV must be determined as a function of the

boundary perturbatiod. Separating the contributions from
the plasma, image and external fields, the velocity is

(A1)

Consider the velocity due to the plasmg From Eq.(11)
we obtain

V=Vt Vit Vey

2enc

V.= — ——

=% (A2)

Injr—r'|dx’.
c
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* -1
=2 (L) [—ReV/ sin(l—1)6
=1 \R

+1m V| cogl—1)6], (A10)

whereV| stands for the Fourier transform of the radial com-
ponent of the image velocity at the confining wall

1
(A11)

2
dovp(R,0)e"’.
0
We can calculate the component of the plasma velocity at
the confining Wall,vL(R,G), explicitly using Eq.(A2). Ex-
amining the amplitude of the perturbation to linear order,
two contributions are manifest. The contribution due to the
change of the plasma velocity, i.e., the boundary condition
for the image, can be calculated analogously to &®).
The change in the velocity due to the change of the boundary
position is also important. Combining these two effects, the

Assuming that the boundary perturbation is a normal modeamplitude of the image velocity perturbation becomes

the resulting velocity perturbation is

- 2enc (27 ~ o dxg dyg
V(1) = B fo d#n'| & sin nd—n,—cosnd—n,
—¢&'| sin % —Co0s dyo
7' dz g7 7' d
(Yo—Yo,—XoF Xo)
X 5 , (A3)
[ro—rol

wherergo=(Xg,Yo) corresponds to the radius vector of the

equilibrium boundary, and unprimed and primed variables

are computed a#, »’, respectively. Following Dritschel, the
following notations are introduced

R . 4menc|  dx dys "
(7,7')=—F—|sin Tay OS] (A4)
4menc|  dXp dyg
Q(n)=R(7,n)= sin na—cosnd—
(A5)
. Xo—Xg . Yo~ Yo
b (n,7')= 17—z, P(nn)=7—7F3.  (A6)
[ro=rol [ro—rol

Finally, denoting the integration b{(...))=21/2=fd7%’...,
Eqg. (A3) can be rewritten as

7= (2Qb") —E(7)(RD),
= —(2QD) + E(m)(RbY).

(A7)

(A8)

The plasma velocity perturbation is now given as a lineag,; Vi,

functional of £. Turning to the image velocity;, the image

=|§1 [(EQZ)A () +(EQW)B|(7) ]+ ET(7),
(A12)

5¥=|§1 [(EQW)A (1) —(EQZ)Bi(n)1+ET,(7),

(A13)
where
I-1
o
Al(n)= 2(§) cogl—1)6y,
I-1
Io
Bi(7)= 2(5) sin(l—1) 6,
1 Yo COS 8—Xq Sin 0

cosl 6,

2m
Zi(m)= 2m fo do Iro—R|?
27

“L [P
0

T(n)= 22( )

+1m Vi, sin( 7+ (1—2) 8p)],

Ty( n)—zgl (ﬁ)

+1m V{, cod 7+ (1—2) )],

0 COS6—Xg Sin 6
[ro—RJ?

sin| 6,

-2
(I-=1)[Re V|, cog n+ (1 —2)6,)

-2
(I=1)[~ReVjq sin(n(l =2) o)

(A14)

calculating using the equilibrium shape. Similarly,

the amplltude of the external velocity perturbation is

potential is a solution of Laplace’s equation subject to the

boundary conditiong;(R, #) = — ¢,(R, #). Calculatingv;=

—cV ¢;X2/B in polar coordinates, and expressing it through

the boundary condition for velocity, we obtain

* -1
”‘X:2|21 (rﬁ) [Re V| cogl—1)6+Im V| sin(l—1)86],
(A9)

Th= €S ), (A15)

vext §Sy( 7),

where

® |1-2
sx<n>=2|§1 (%") I(1-1)[Re V, sin( 7+ (1—2)6p)

—Im V, cog 7+ (1—2)6y)],
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*° 1-2
sy<n>=2|21(r§°) (1~ D)[Re V| cos +(1-2)6)

+1m V, sin( p+(1—2) 60)]1, (A16)

and whereV, is the Fourier transform of the boundary con-
dition for the potential on the confining wall

1 (2= _
Vi=-— dov(e)e'’. (A17)
7 Jo
Combining Egs.(A7), (A8), (Al12), (A13), and (Al5) the
total velocity perturbation is
V=V, +V+Veye (A18)

Expanding Eq(18), the boundary disturbance is
N|

Em)=¢&(n) lim 2 Cifi(7). (A19)

N|~>oo =
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D=2, rE [ReN cogk—1)6,
k=1
+1Im Ny Sil"(k_l)ao],
N;/2

Fi=—22, rE"Re Ny sin(k—1) 6,
k=1

—Im Ny, cogk—1) 6],

N = f;%eé'“{% Yo COS 6—Xq Sin 0)>.
(A23)

APPENDIX B: STABILITY OF CIRCULAR OFF-AXIS
EQUILIBRIA

The stability for circular equilibria can be readily proved
using O’'Neil and Smith’s energy principf8.Since we as-

In practice, only a finite number of basis functions are kepisume that the plasma motion is solely dué&te B drifts, the
in this expansion. Upon substitution into the equation of mo-electrostatic energy of the plasma is conserved if the wall

tion given by Eq.(17):
d E 7,d& 1

8=0§+vnoﬁ & g—oa— vno(vxvyo_vyvxo)io'
(A20)

Following the Galerkin method, we demand that the egror
is orthogonal to each of the basis functidns i.e.,

2w
d7]8f|:0, |:1,2...N|. (A21)
0

This requirement results i, equations forN, unknown
coefficientsC,, which can be written in matrix form as
N

acm=|§1 GnC, (A22)

where
Gmi= G+ G+ G+ G+ G

_ Uﬂo df
G = 2’7T< £, fmdn>

Gml_2W< f m<fI§0Rby>>
U0
+2w< Ox m<f|§0RbX)>
v 060
G3m|=—277<—5y0fmf|<Qby>>—27T<—vxofmf|<be>>,
70 vr]O
an|=27-r<—zyofmf|(SX+TX)>
70

2 2% ¢
—em 0_770 m I(Sy+Ty) )

Uyo Uxo
G 27'r< fnD > 27T< fmF >,
7]050 7]050

voltages are time independent. If the electrostatic energy of a
given plasma is extremal, there are no nearby accessible
states because such states would have different energy. Con-
sequently the plasma must be stable. Using this principle,
Chuet al. proved that slightly deformed plasmas are energy
maxima and, consequently, are stable. Here we prove that
any circular, off-axis plasma which encompasses the origin,
is stable.

Given any circular plasma of radius,, all nearby
shapes can be represented by the series,

©

R3(0)=r5( G)erz,l (F,, sinmé+G,, cosmd), (Bl

where ,,,G,,) are small. As is required foEXB drifts,
this series conserves the area of the plasma. To first order,
the old boundary is perturbed a distance

0

1
AR,(6) = E (F,, sinmé+G,, cosmd). (B2

Think of this new boundary as having been generated by the
superposition of appropriate amounts of positive and nega-
tive charge. Charge of density, =n extends the boundary
outward, while charge of density_ = —n pushes the bound-
ary inward. The energy necessary to create this perturbation
can be split into two parts: the self-assembly endigynec-
essary to create the surface chaod#) =neAR,(6) on the
original boundaryr ,, and the distribution energy, neces-
sary to distribute this charge off the original boundary. Since
the original boundary is an equipotential, no energy is nec-
essary to distribute the surface charge along the boundary
itself.

The distribution energy equalkdor ,E,a(68)AR,(6)/2
where E, is the electric field created by the bulk plasma.
Evaluating yields

(7-ren)2

Up=-— }_‘, (F2+G2), (B3)
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and is negative definite. The self-assembly energy equals U, =Up+Ug+Up

Jdor,o(0)V(6)/2, whereWis the potential created by the .

surface charge itself. Since the boundary is circular, this po- (men)? 2 2

tential is readily evaluated. Ignoring the surface charge in- VAT T mzl (FatGm| 1=
duced image charges, the self-assembly energy equals

, (B8)

is negative definite for any nonzero perturbation. Therefore

(men)? < Fﬁﬁ' Grzn any circular plasma that encompasses the origin is stable.
Upo=—7— 2 : (B4)
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