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Stability of highly asymmetric non-neutral plasmas
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The stability of non-neutral plasma equilibria subjected to external, azimuthal–asymmetric
potentials is studied. The system exhibits a wide range of complex, symmetry-dependent,
bifurcation phenomena. ©1999 American Institute of Physics.@S1070-664X~99!01601-8#
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I. INTRODUCTION

When non-neutral plasma columns are subject to
muthally asymmetric electrostatic potentials, they defo
into azimuthally asymmetric shapes.1–3 A typical asymmet-
ric shape is shown in Fig. 1. The companion paper4 presents
methods of predicting the form of these shapes. Here
analyze the shapes’ stability. Stability is normally studi
through modal analysis, in which nonlinear equilibria a
calculated and subsequently perturbed. Eigenvalue collis
are often assumed to engender instability. However, a
well known in bifurcation theory,5–7 symmetries can stabi
lize eigenvalue collisions. We have two goals in this pap
~1! to describe the various, often surprising, responses
the plasma makes to the applied perturbations, and~2! to
illustrate, in a realizable physical system, some of the co
plicated Hamiltonian bifurcation phenomenon that occur
systems which possess a high degree of symmetry.

The non-neutral plasma columns are confined
Penning–Malmberg traps.8 A schematic of the system i
shown in the companion paper.4 The plasma is held within a
conducting cylindrical wall of radiusR. Radial confinement
is provided by a uniform axial magnetic field (B5Bẑ),
while axial confinement is provided by an electrostatic we
More detailed descriptions of Penning–Malmberg traps
be found in the literature.9,10

We make the common assumption that the axia
( ẑ)-directed motion bounce averages out, and that the sys
can be described by the two-dimensional~2D! drift Poisson
equations. Then only motion in the (r ,u) plane perpendicu-
lar to B is important, and the particles followE3B orbits,
where theE field is determined by both the plasma itself a
the imposed boundary condition at the cylindrical wall,V
5V(u). The 2D drift Poisson equations are isomorphic
the 2D Euler equations for incompressible, inviscid fluids11

In this isomorphism, the plasma charge density correspo
to the fluid vorticity and the electrostatic potential corr
sponds to the stream function. Thus results obtained for n
neutral plasmas are also applicable to 2D fluid flows.

In the case of a grounded confining wall@V(u)50#, the
steady-state solution of the equations of motion is a cente
circular plasma.12 Breaking the symmetry@V(u)Þ0# de-
forms the plasma. While Chuet al.13 used perturbation tech
niques to prove that the plasma remains stable under s
external potentialsV(u), it seems intuitively plausible tha
sufficiently large potentials should lead to instability. How
191070-664X/99/6(1)/19/12/$15.00
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ever, some experimentally stable plasmas are so disto
that they cannot be described by perturbation theory. Und
standing the stability properties of these highly deform
plasmas was the original motivation for this work.

Contour dynamics-based14,15 numerical studies of asym
metric plasmas reveal complicated dynamical behaviors
cannot be interpreted easily. In an attempt to clarify the p
ture of the transition to instability, we employ a framewo
developed for the study of bifurcations in Hamiltonia
systems.16 Two types of bifurcations occur in our system
steady-state and Krein–Hopf collisions. We use recen
proven theorems5,7 on the generic behavior of Hamiltonia
systems with a single bifurcation parameter to make gen
predictions for the behavior of our system. These predicti
strongly depend on the system symmetries. We numeric
investigate several systems with different symmetries,
compare the results with our predictions. As no disagr
ments are observed, we conclude that the symmetry a
ments can be employed profitably.

The influence of symmetry on stability has been stud
theoretically in both dissipative and Hamiltonian system
While many practical dissipative systems~Taylor–Couette
flow, Rayleigh–Benard convection to name a few! can be
found in the literature, few practical Hamiltonian system
have been discussed. Asymmetric plasma equilibria ar
good practical example of a complicated Hamiltonian syst
with symmetries determined by the boundary condition. T
flexibility of the boundary condition makes these syste
particularly interesting.

We begin, in Sec. II, by studying elliptical equilibria, fo
which there exists a simple analytical treatment that allo
us to probe the stability problem. In Sec. III, the method
contour dynamics, here slightly modified, is presen
briefly, and the linear stability analysis is developed. Sect
IV studies the stability of symmetric systems. The change
the eigenvalue spectrum is investigated numerically as
strength of the external potential is varied. Crossings w
other equilibrium branches are studied. Comparisons sho
clear agreement between predictions based on the bifurca
theory for Hamiltonian systems and numerical results for
steady-state bifurcations. We show the scaling of the in
bility threshold with the plasma area. Stability in a syste
with no rotational symmetries is investigated in Sec. V, us
the example of a circular off-center equilibrium. Appendix
gives a detailed derivation of the contour dynamics eq
© 1999 American Institute of Physics
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tions, and Appendix B gives a proof, based on energet
that circular, off-axis plasmas are stable.

II. ELLIPTICAL EQUILIBRIA

Elliptical plasmas can be described by a simple anal
cal treatment—the elliptical plasma model developed by C
et al.13 In this model, which is valid for plasmas of sma
area, extended patches of charge are assumed to have
tical shapes. Chuet al. approximate the exact particl
guiding-center Hamiltonian by including only a finite num
ber of degrees of freedom, namely the center of charge w
coordinates (xc ,yc), the aspect ratiol, and the angle be
tween major axis andx-axisw. We use a boundary potentia
V52V0 cos 2u, which we expect to result in an elliptica
equilibrium for small plasmas. Without loss of generality t
bifurcation parameterV0 is taken to be positive.

To lowest order in the plasma areaAp , the system is
described by the equations of motion:13

ẋc52
2c

B S V0

R2 1
enAp

R22xc
22yc

2D yc , ~1!

ẏc52
2c

B S V0

R2 2
enAp

R22xc
22yc

2D xc , ~2!

l̇52
4enc

B

Apl

~R22xc
22yc

2!2 @2xcyc cos 2w

2~xc
22yc

2!sin 2w#2
4clV0

BR2 sin 2w, ~3!

ẇ5
4pcenl

B~l11!2 1
2cen

B

l211

l221

S Ap

~R22xc
22yc

2!2

3@~xc
22yc

2!cos 2w12xcyc sin 2w#

2
V0

enR2 cos 2w D . ~4!

FIG. 1. Elliptical on-center plasma equilibrium. The plasma covers
shaded region. The light solid lines are equipotential contours, and the h
surrounding circle is the trap’s cylindrical boundary.
s,
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The system governed by Eqs.~1!–~4! is Hamiltonian and the
explicit expression for the Hamiltonian can be found in R
13. Note that the equations of motion possessZ23Z2 sym-
metry with reflections (xc ,yc ,l,w)→(2xc ,2yc ,l,w) and
(xc ,yc ,l,w)→(xc ,yc ,l,w1p). The first reflection corre-
sponds to the reflection of the center of charge and the
ond to the rotation of the ellipse byp. From Eqs.~1! and~2!
it is clear that a centered plasma@(xc ,yc)5(0,0)# is a likely
equilibrium. Solving Eqs.~3! and ~4! for l̇50 and ḟ50
with (xc ,yc)5(0,0) we obtain an equilibrium forf50,p
andl5l0 , wherel0 satisfies the equation

V0

2penR2 5
l0~l0

221!

~11l0!2~11l0
2!

. ~5!

As expected, the strength of the external potential determ
the ellipticity of the equilibrium. The plot of the right-han
side of Eq.~5!, presented in Fig. 2, shows that there are t
solutions of Eq. ~5! (l01,l02;l01,l02) for V0/4penR2

<0.07507 and no solution forV0/4penR2.0.07507. Thus
there are two~up to thep rotation of the ellipse! on-center
solutions with different ellipticity.

To determine the stability of these equilibria, we linea
ize the equations of motion. The equations for the position
the center of charge and the ellipticity separate. The Jaco
of the linearized form for the center of charge is

Jxy52
4c2

B2R4 ~V02enAp!~V01enAp!. ~6!

Thus the instability threshold for the on-center equilibrium

V0
th5enAp , ~7!

because forV0<V0
th the JacobianJxy is positive and the re-

sulting eigenvalues are pure imaginary, yielding stable m
tion of the center of charge. Note that the trap radiusR does
not appear in threshold criterion, as both the applied a
image fields vary as 1/R2 for a small plasma close to th
origin.

The cause of instability in this system is apparent fro
the center of charge equations of motion@Eqs.~1! and ~2!#.
In the small plasma approximation, the motion of the cen
of charge is along the equipotential line of the combin
image and external potentials. If the equilibrium is displac
from the origin, the image charge attempts to induce a sta
rotation around the origin. The external potential, howev

e
vy

FIG. 2. Equilibrium ellipticityl0 vs the external potentialV0 , from Eq.~5!.



, a
te
bi
g
di
n

co

-
d
s
ge
m

es
he
lib
n

le

bi
re

a
he

m
ty
th
he
ar
al
fo
ll

-
ze
ion.

e-
c-

nd-

sity
s to
-
el.

ed
a

of

to
ve

er-
ial
en-
s

ny
ma

n.
de

, to

be

,
.
ten-
e

ed
d
lu-
ect

21Phys. Plasmas, Vol. 6, No. 1, January 1999 Backhaus, Fajans, and Wurtele
tends to move the center of charge away from the origin
can be seen in the equipotential plot, Fig. 3. Thus the ex
nal potential attempts to destabilize the equilibrium. Insta
ity results if the external electric field is larger than the ima
charge field. In the language of non-neutral plasmas, the
cotron frequency12,17 goes to zero and the diocotron motio
stalls, and then destabilizes.

The ellipticity equation@Eq. ~3!# must be analyzed to
complete the stability evaluation. After calculating the Ja
bian, one can see that the equilibrium withl01 is stable,
while the one withl02 is unstable. The value of the param
eter V0/4penR250.07507 corresponds to the saddle–no
bifurcation where the stable and unstable branches coale

Combining the stability analysis for the center of char
and ellipticity, we conclude that the on-center equilibriu
with ellipticity given byl01 is stable for 0<uV0u<enAp . At
the instability threshold the JacobianJxy50, and intersec-
tions with other equilibrium branches are possible. To inv
tigate this possibility, a bifurcation analysis close to t
threshold could be performed or, alternatively, other equi
ria may be found by inspection from equations of motio
Following the latter path we find from Eqs.~1! and ~2! that
another equilibrium exists forV0.enAp , with

xc56RA12
enAp

V0
, yc50. ~8!

Equations~3! and ~4! yield the equilibrium values off and
l. Stability analysis reveals that this equilibrium is stab
Thus, at the instability threshold, given by Eq.~7!, the on-
center equilibrium experiences a supercritical pitchfork
furcation. A new branch of solutions appears which cor
sponds to the off-center equilibrium Eq.~8!. An exchange of
stability occurs. Note that this new equilibrium, as is typic
in bifurcation theory, is not symmetric with respect to t
reflection of the center of charge.

In summary, the elliptical plasma model provides so
insight into the stability problem. The transition to instabili
of the on-center static shape is observed. Crossing with o
equilibrium branches occurs. Further investigations of ot
equilibria corresponding to different boundary conditions
needed to generalize the results to arbitrary wall potenti
Unfortunately, the elliptical plasma model is not suitable
investigating the equilibria and stability for arbitrary wa

FIG. 3. Potential contours for elliptical external potential.
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potentials as moments beyond the first and second~i.e., cen-
ter of charge and ellipticity! become important in the dynam
ics. A technique that allows us to find equilibria and analy
stability in the general case is developed in the next sect

III. CONTOUR DYNAMICS AND STABILITY ANALYSIS

Consider the full equations of motion for a long, magn
tized electron column: the continuity equation for the ele
tron density (n), the E3B drift equation, and Poisson’s
equation for the electrostatic potential satisfying the bou
ary condition f(R,u)5V(u). When, as is common, the
plasma temperature is so low that the Debye lengthlD is
small compared to the plasma radius, the electron den
becomes nearly constant in the plasma interior and decay
zero on the scale oflD ~Ref. 18! at the plasma edge. There
fore we will use the flat top, constant density plasma mod
More realistic, smooth density equilibria will be consider
in Sec. VI. To simplify the problem further only plasm
shapes consisting of a single simply connected region
nonzero density are considered.

In Sec. IV symmetries of the system will be used
predict instability. The equations of motion themselves ha
SO~2! symmetry, and the symmetry of the problem is det
mined by the boundary condition, i.e., by the wall potent
V(u). For example, a system with a constant applied pot
tial has SO~2! symmetry. The family of external potential
given by V(u)52V0 cosmu, which will be considered in
Sec. IV, results inZm(2p/m) symmetry~the symmetry gen-
erated by rotations inu of 2p/m).

In-flows with constant charge density, the velocity at a
point in space depends solely on the location of the plas
boundary. The methodology of contour dynamics14,19 ~CD!,
first developed for fluid dynamics, uses this simplificatio
Here we must modify the standard CD formalism to inclu
the boundary condition at the confining wall.15 We use CD
throughout this paper to obtain static shapes numerically
investigate stability, and to perform dynamic simulations.

The electrostatic potential for the system at hand can
represented as

f5fp1f i1fext, ~9!

wherefp corresponds to the free space plasma potentialf i

is the image contribution, andfext is the external potential
For flat top plasmas, the expression for the free space po
tial written using the Green’s function combined with th
Stoke’s theorem yields14

fp~x,y!5neS 2Ap1 R
C

lnur2r 8u

3@~x82x!dy82~y82y!dx8# D , ~10!

where Ap is the plasma area and integration is perform
over the plasma boundaryC. We express the image an
external contributions inside the cylindrical domain as so
tions of Laplace’s equation in cylindrical coordinates subj
to the boundary conditionsf i(R,u)52fp(R,u) and
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fext(R,u)5V(u). We calculate the velocity of the flow from
the electrostatic potential asv52c“f3 ẑ/B, giving

v~x,y!52
2enc

B R
C

lnur2r 8udx82c
¹~f i1fext!3 ẑ

B
.

~11!

Turning to the static problem of equilibrium plasm
shapes, recall that inE3B dynamics, the guiding centers o
the plasma electrons drift along the equipotential conto
Therefore, for flat top plasmas the shape is stationary if
electrostatic potential on the plasma boundaryr p(u) is equal
to a constant,13 i.e.,

f~r p~u!,u!5const. ~12!

Writing the CD expression for the potential on the plas
boundary, a static shape can be found using Eq.~12!. Details
of the numerical calculation can be found in Refs. 15 and
What about the stability of asymmetric equilibria subject
possibleE3B perturbations? Though general nonlinear s
bility conditions would be preferable, we consider weak
spectral stability conditions due to the complicated nature
the problem. Our analysis is similar to that in Ref. 21, whe
stability of different vortex configurations was investigate
extended here to include the external and image potenti

Two cylindrical coordinate systems will be used fr
quently in this paper: (r ,u) centered on the trap, and~j,h!
centered inside the plasma atxc ,yc . The plasma boundary in
the second system is

xp~u!5xc1j~h!cosh, yp~u!5yc1j~h!sin h. ~13!

Let j0(h) be the equilibrium state of the system. Then t
perturbed state can be represented as

j~h!5j0~h!1dj~h!, ~14!

where dj~h! is assumed to be small. The perturbatio
dj(h)5 j̃(h)est is assumed to be a normal mode of t
system. Velocities are represented as

v~h!5v0~h!1 ṽ~h!est. ~15!

The flow velocity determines the evolution of the bounda

Dj

Dt
5

]j

]t
1

vh

j

]j

]h
5vj . ~16!

Linearizing this equation of motion using Eqs.~14! and~15!
yields

sj̃1
vh0

j0

dj̃

dh
1

ṽh

j0

dj0

dh
2

vh0

j0
2

dj0

dh
j̃5 ṽj . ~17!

We express the velocity amplitude as a linear functiona
the boundary shapej, using the contour dynamics equatio
@Eq. ~11!#, and substitute it into Eq.~17!. The normal mode
amplitude functionj̃(h) is represented in the form

j̃~h!5j0~h!(
l 51

`

Cl f l~h!, ~18!
s.
e

a

.

-
r
f

e
,
s.

,

:

f

where$ f l% stands for a set of orthonormal functions and t
expansion is multiplied by the basic statej0 for convenience.
Due to the periodicity of the system inh a natural choice for
the basis$ f l% is

$ f l%5
1

Ap
H 1

&
,cosh,cos 2h . . . ,sinh,sin 2h . . . J .

~19!

Using Galerkin’s projection method, we keep only a fin
numberNl of basis functions. Taking the inner product
Eq. ~17! with f l yields an eigenvalue problem

sCm5(
l 51

Nl

GmlCl . ~20!

Explicit expression for theNl3Nl matrix Gml can be found
in Appendix A. The stability of the equilibrium can now b
deduced from the spectrum ofG. If all the eigenvaluess j

have nonpositive real parts, the system is stable; otherwis
is unstable. We can compute numerically the eigenval
and eigenvectors for any equilibrium shape of interest.

When no external potential is present, the equilibrium
a circle of arbitrary radiusr p , and the perturbed states a
the much studied diocotron modes.12,17 The eigenvalues are
well known ~see, for example, Ref. 12! and are given by

s l56 i
2pecn

B
@ l 211~r p /R!2l #. ~21!

Using a coordinate system centered in the plasma trap,
xc5yc50, h5u, the eigenfunction corresponding to the e
genvalues l is given bye7 i l h[e7 i l u. The numerically com-
puted eigenvalues agree with the analytical result given
Eq. ~21!.

Due to the use of some group theoretic consideration
Sec. IV, let us consider the action ofZm(2p/m) group on
the basis eigenvectors

j l
c~u!5cos lu, ~22!

j l
s~u!5sin lu, ~23!

which span the eigenspace for the eigenvalues l for a con-
stant potentialV(u). These eigenfunctions transform und
the action ofZm(2p/m) as

R~2p/m!j l
s~u!5cos

2p l

m
j l

s~u!2sin
2p l

m
j l

c~u!, ~24!

R~2p/m!j l
c~u!5cos

2p l

m
j l

c~u!1sin
2p l

m
j l

s~u!, ~25!

whereR(2p/m) denotes a rotation by 2p/m. Two different
cases should be distinguished. If 2l /m is not an integer then
this is an irreducible but not an absolutely irreducible22 rep-
resentation of groupZm(2p/m). In the case where 2l /m is
an integer, however, the transform reduces to

R~2p/m!j l
s~u!5~21!2l /mj l

s~u!, ~26!

R~2p/m!j l
c~u!5~21!2l /mj l

c~u!. ~27!
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This representation is a reducible representation ofZ2 when
2l /m is an odd integer and of an identity group when 2l /m is
an even integer.

When a nonconstant wall potentialV(u)52V0 cosmu
is turned on, the eigenvectors are no longer represente
simple sinusoidal waves due to the coupling between wa
with different l . However, the irreducible representations
Zm(2p/m) associated with the eigenspace for model should
persist by continuity. We will label the modes by their co
responding values ofl in the absence of the external pote
tial. Consider a family of equilibria of a fixed areaAp , and
the wall potentialV5V0F(u), whereF(u) is some function
of the angleu andV0 stands for the strength of the extern
field. For V050 the eigenvalues are purely imaginary a
are given by Eq.~21!. When the bifurcation parameter rise
from zero, the eigenvalues move on the imaginary axis
the spectrum changes. If, at some value ofV0 , an eigenvalue
with a positive real part appears, then the correspond
equilibrium becomes unstable.

This problem can be considered in a more general c
text. The dynamical equations for 2D Eulerian fluids are w
known to be Hamiltonian.23 The time evolution of the
plasma boundary given by Eq.~16! will be assumed to be
Hamiltonian as well. The bifurcation theory of Hamiltonia
systems16,24 predicts that the simplest loss of stability occu
along one of two paths. The first path is through a collis
of two eigenvalues at the origin, resulting in the appeara
of two eigenvalues with complementary real parts. This p
is usually referred to as a steady-state bifurcation. At t
bifurcation the system possesses a zero-valued eigenval
multiplicity two, and the possibility of crossing with othe
equilibrium branches must be taken into account. On
second path to instability, two eigenvalues collide at so
nonzero frequency and a quadruplet of eigenvaluess,s* ,
2s,2s* with the nonzero real parts emerge. This bifurc
tion corresponds to a 1–1 resonance, and is calle
Hamiltonian–Hopf bifurcation or a Krein collision. Follow
ing the terminology used in Ref. 7 the appearance of eig
values with real parts as a result of collisions of pure
imaginary eigenvalues will be referred to as a splitting
eigenvalues, or simply splitting. As proven in Ref. 7~and
reference therein! splitting is the generic behavior o
symmetry-free Hamiltonian systems. In practice, often due
the restrictions imposed on the system by symmetries, eig
values do not always follow this generic behavior. Instead
splitting, the eigenvalues sometimes remain on the imagin
axis after collisions and no instability occurs. We will ref
to this process as passing.

Let us reconsider the elliptical equilibrium problem wi
V52V0 cos 2u. We first introduce dimensionless variabl

Ap* 5
Ap

pR2 , V0* 5
V0

4penR2 , s l* 5
s lB

2pecn
. ~28!

An example of a highly deformed but stable equilibrium w
area Ap* 50.3 at V0* 50.05 is presented in Fig. 1. As ex
pected, this on-center equilibrium possesses all symme
of the problem and looks elliptical. The spectrum for
plasma withAp* 50.2 is obtained numerically for differen
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V0 as a solution of the eigenvalue problem given by Eq.~20!.
The results for first two modes are presented in Fig. 4. As
potential V0 rises from zero, all the eigenvalues begin
move toward the origin on the imaginary axis. The first c
lision occurs at Imsl50, and is between thel 51 mode and
its complex conjugate. As a result, the eigenvalues split
instability occurs.

These numerical results are in agreement with
reduced-Hamiltonian analytical results of Sec. II, but, as
numerical procedure keeps additional harmonic compone
it should be more accurate. Numerically, the equilibrium b
comes unstable to thel 51 diocotron mode. Appropriately
this instability corresponds to the center of charge instabi
identified in Sec. II. A typical bifurcation diagram with nu
merical~solid line! and analytical~dashed line! predictions is
plotted in Fig. 5. Stable and unstable regions can be see
the graph.~Note that the stability regions are also limited b
the geometrical constraints imposed on the system by
presence of the cylindrical wall.! The analytical model also
predicts that another stable equilibrium appears at the bi
cation point. To check this prediction, off-center equilibr
were sought with an equilibrium code and their stability w
analyzed. No off-center equilibria for potentials below t

FIG. 4. Spectrum of the elliptical equilibrium.

FIG. 5. Stability diagram for the elliptical equilibrium. Threshold of inst
bility from the elliptical plasma model~ !, from CD ~ !, geo-
metrical constraint~–•–•–•!, limit of confinement~•••!.
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instability threshold were found, but equilibria on thex axis
at 6xc were obtained above the threshold. An example of
unstable centered and a stable off-center equilibria, w
Ap* 50.2 andV0* 50.06, is presented in Fig. 6.~The unstable
on-center equilibrium with ellipticityl02 was also found nu-
merically.!

IV. STABILITY OF SYSTEMS WITH SYMMETRIES

While the detailed physical mechanism responsible
instability is often hard to deduce, some general aspect
the behavior can be predicted based on the symmetries a
As was mentioned in Sec. III, the generic behavior, i.e., sp
ting at first collision, can be altered if a symmetry is pres
in the system. We will merely use the main results derived
Refs. 5 and 7 as they apply to the relation between the t
of the symmetry group representation, i.e., absolutely i
ducible or nonabsolutely irreducible, and splitting and pa
ing of the eigenvalues at the collision at zero. In a stea
state bifurcation the representation of the symmetry group
the generalized zero eigenspaceE0 ~the space spanned by th
mode undergoing the collision! is either nonabsolutely irre
ducible and the eigenvalues pass with nonzero speed, or
a direct sum of two isomorphic absolutely irreducible su
spaces and the eigenvalues split. The eigenvalue motion
1–1 resonance is more complicated. Here, the conclus
cannot be made based on the symmetries alone, as en
arguments must be considered as well. General results fo
resonant collisions can be found in Ref. 7. Both steady s
and resonant collisions will be encountered in the followi
examples. We will compare the numerical results for ste
state bifurcations with the general predictions based on
symmetry of the system. No attempt will be made to co
pare the resonant collisions with the generic behavior du
the lack of an explicit expression for the symplectic struct
of contour dynamics. This is a topic for future work. We fir
illustrate the use of symmetry arguments by returning to
elliptical equilibrium.

A. Elliptical equilibria revisited

For V52V0 cos 2u the system hasZ2(p) symmetry
with representations given by Eqs.~26! and ~27! for any l
~2l /2 is always an integer!. Thus, the generic behavior is th
splitting of eigenvalues for any collision at zero. From n
merical computation we see that the application of the ex

FIG. 6. ~a! A stable off-center elliptical equilibrium~shaded!. The centered
unstable equilibrium~solid line! is plotted for comparison.~b! The position
of the center of charge for the center and of center equilibria.
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nal potential results in the decrease of the diocotron m
frequencies. The first observed collision is a steady state
furcation for the mode with the smallest frequency, i.e.,
the l 51 mode, which results in the instability in accordan
with the expected generic behavior. Moreover, a pitchfo
bifurcation, which is generic in systems withZ2 symmetry,25

is expected. These predictions agree with the results of s
plasma analysis and numerical calculations.

We conclude that the numerically observed behavior
the elliptical equilibrium is in agreement with the pictu
deduced by the symmetry arguments. We expect that all
main features~splitting at the first collision, pitchfork bifur-
cation for l 51 instability! present for the boundary cond
tion V52V0 cos 2u will remain the same for wall potential
with a twofold axis of symmetry for which the first occurrin
bifurcation is anl 51 steady state collision, but where th
potential contains higher order (cos 4u, cos 8u, etc.! terms.
This expectation was verified for the wall potentialV5
2V0 applied to two 90° patches centered on thex axis.

B. Triangular equilibria

We proceed to a system with a threefold rotation ax
The wall potential is now assumed to beV52V0 cos 3u
with V0.0. The on-center equilibrium appears triangu
and possesses all symmetry properties of the system. An
ample of an equilibrium withAp* 50.2 andV0* 50.1 together
with its equipotential contours is shown in Fig. 7. Investig
tion of the spectrum reveals a qualitatively different pictu
than that for the elliptical plasma. An example of a typic
spectrum is presented in Fig. 8 for a plasma withAp* 50.1.
As the bifurcation parameter increases, the eigenvalues m
in the direction of Ims50 up until the steady state bifurca
tion for thel 51 mode occurs. However, this collision resu
in passing andno instability takes place. Under the furthe
increase of the bifurcation parameterV0 , the frequency of
l 51 mode changes sign and moves away from Ims50. All
other eigenvalues continue to decrease in absolute value.
resonance between thel 51 and l 52 modes takes place
next, leading to the instability.

This qualitative difference between the elliptical and t
triangular cases is anticipated by symmetry arguments

FIG. 7. Triangular on-center equilibrium. The plasma covers the sha
region. The light solid lines are equipotential contours, and the heavy
rounding circle is the trap’s cylindrical boundary.
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this casem53 and we have an absolutely irreducible rep
sentations ~26! and ~27! for modes with l
53,6,9,. . . ,3n, . . . and allother values ofl are associated
with the nonabsolutely irreducible representations Eqs.~24!
and ~25!. In particular, this is true forl 51. Thus, the first
observed collision at zero is generically predicted to pa
not split. Moreover, the generic behavior of such system
crossing with an unstable branch of solutions at bifurcatio5

The passing bifurcation that takes place is for thel 51 mode,
which contains the center of charge coordinates. We th
fore expect a crossing with an off-center equilibrium bran
This additional equilibrium was subsequently found nume
cally. Examples of unstable equilibria found before and a
the bifurcation point are plotted in Figs. 9~a! and 9~b!. The
outline of the center stable equilibrium is also plotted~as a
solid curve! for a reference. The bifurcation diagram for th
center of charge can be seen in Fig. 9~c!.

The next bifurcation that takes place is al 51,2 reso-
nance. Numerical results indicate that thel 51,2 collision
results in an instability. The bifurcation diagram is presen
in Fig. 10, where both the steady-state and Krein collis
thresholds are plotted.

Note that after the steady-state bifurcation takes pla
the frequency of thel 51 mode reverses sign. In the lan
guage of non-neutral plasmas, this can be phrased as
reversal of the diocotron mode direction of rotation. In oth
words, if in the absence of the external potential a sligh
displaced electron column rotates counterclockwise, after
l 51 bifurcation a perturbed equilibrium will rotate clock
wise. This prediction was verified numerically. A slight

FIG. 8. Spectrum for the triangular on-center equilibrium.

FIG. 9. Triangular unstable~shaded! off-center equilibria:~a! before, ~b!
after the bifurcation point. The stable centered-equilibrium is indicated
the solid line.~c! The position of the center of charge of different equilibr
present in the system.
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displaced equilibrium was taken as an initial condition a
the time evolution was investigated with a dynamical C
code. The rotation of the center of charge was in the dir
tion opposite to the diocotron rotation when no external p
tential was present.

C. Square equilibria

In the next example a system with a fourfold symme
axis is considered. The boundary condition is taken asV5
2V0 cos 4u. The center equilibrium has a square shape.
example of the equilibrium shape corresponding toV0*
50.4 andAp* 50.1 is shown in Fig. 11 together with som
equipotential contours. The spectrum reveals the follow
bifurcation picture: first, a steady-state bifurcation occurs
the l 51 mode. It results in passing of the eigenvalues. Ne
a resonance for thel 51,2 quadruplet is observed. These e
genvalues also pass. Finally, a steady-state bifurcation
the l 52 mode occurs and splitting results. An example o
spectrum forAp* 50.1 is presented in Fig. 12.

Again, the motion of eigenvalues at collisions can
qualitatively understood based on the symmetry propert
Now m54, so the absolutely irreducible representatio
given by Eqs.~26! and~27! take place for any even value o
the mode numberl and the odd values ofl correspond to the

y

FIG. 10. Stability diagram for the triangular on-center equilibrium. Pass
of l 51 ~•••!, l 51,2 resonant collision with splitting~ !.

FIG. 11. Stable square on-center equilibrium. The plasma covers the sh
region. The light solid lines are equipotential contours, and the heavy
rounding circle is the trap’s cylindrical boundary.



ta
on
a

-
n
bl

an
o
t t
-

on

n

ta
e
en

of
m
is

te

en-
po-

e

dif-
eri-

ent
the

ui-
me
m

ee

lar
n-

in
as
ility
ge.
pa-
e

s
f

26 Phys. Plasmas, Vol. 6, No. 1, January 1999 Backhaus, Fajans, and Wurtele
nonabsolutely irreducible case. Therefore, the steady-s
collision for l 51 mode results in passing, and the collisi
at zero forl 52 should split, in agreement with the numeric
results. Also, considering thel 51 collision, note that there
exist two generic bifurcations for a system withZ4
symmetry:5 crossing with two branches~one stable, one un
stable!, or crossing with one unstable branch. Solutio
found numerically correspond to the first case. A sta
branch at 45°~four equivalent solutions! and an unstable
branch onx axis ~four equivalent solutions! are found. The
bifurcation is subcritical. An example of these equilibria c
be seen in Fig. 13. At the next bifurcation, the collision
l 51,2 modes, passing of the eigenvalues is observed. A
next bifurcation, i.e., thel 52 collision at zero, the represen
tation for thel 52 mode is isomorphic to the representati
of Z2. This situation was already encountered in the case
the l 51 bifurcation of the elliptical equilibrium. A pitchfork
bifurcation is expected. This unstable branch of solutio
was found numerically. The bifurcation is subcritical.

D. Threshold of instability

So far, an analytical result predicting the onset of ins
bility was obtained only for an elliptical equilibrium. W
have found a scaling law for the threshold of instability wh
the wall potential is of the formV52V0 cosmu with m
.2. The scaling law follows from the destabilizing effect
the external potential overwhelming the stabilizing plas
potential. Neglecting the contribution of the image, which
important only for elliptical plasma stability, we postula

FIG. 12. Spectrum for the square on-center equilibrium.

FIG. 13. ~a! Stable off-center square equilibrium~shaded!. ~b! Unstable
off-center square equilibrium~shaded!. The stable-centered equilibrium i
indicated by the solid line.~c! The position of the center of charge o
different equilibria present in the system.
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that instability occurs when the value of the external pot
tial on the plasma surface is of the order of the plasma
tential, i.e.,

fp~r p!;fext~r p!. ~29!

The value offext(r p) can be estimated as

fext~r p!;V0S Ap

R2D m/2

. ~30!

Taking fp;enAp , the condition given by Eq.~29! yields

V0

enR2 5CmS R2

Ap
D m/221

, ~31!

where Cm is a constant, near one, which depends onm.
Values forCm can be determined numerically by finding th
instability threshold at one value ofR and Ap for eachm.
The threshold of instability, i.e., the value of the potentialV0

at the onset of instability, was obtained numerically form
53, 4, and 5 by investigating the eigenvalue spectra for
ferent values of the plasma area. Comparison of the num
cal results~points! for the threshold of instability with the
scaling law given by Eq.~31! (C351.08, C451.78, and
C552.72) is presented in Fig. 14. We get good agreem
between analytical and numerical results, especially in
region of small area.

V. CIRCULAR OFF-CENTER EQUILIBRIUM

In this last example, we investigate the stability of eq
libria in the system with no rotational symmetry. We assu
that the wall potential corresponds to a circular equilibriu
whose center is located at (xc ,yc)5(xc ,0). As discussed in
the companion paper, this wall potential is simply the fr
space potential of the cylindrical plasma of areaAp located at
(xc ,0), evaluated at the wall. The stability of these circu
equilibria can be proved analytically using an extremal e
ergy principle26 for the case whenxc,AAp /p, i.e., the trap
origin is inside the plasma. The details of the proof are
Appendix B. To extend the stability analysis to plasm
which do not encompass the origin, we examine the stab
numerically and interpret the results in the mode langua
The change of the plasma spectrum with the bifurcation
rameterxc for Ap* 50.1 was investigated numerically for th

FIG. 14. Numerical~ ! and analytical~d! instability thresholds for sys-
tems with wall potentialV52V0 cosmu with m53,4,5.
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first 80 modes. The absolute values of all frequencies w
increasing and no resonant collisions occurred in the reg
of interest 0<xc<R2AAp /p. The spectral plot for the firs
two modes is presented in Fig. 15. As no collisions occ
the equilibrium must be stable.

VI. DISCUSSION

We have considered the linear stability of highly asy
metric plasma equilibria. These equilibria are stable wh
small wall potentials are applied, but may become unsta
when the boundary asymmetries are increased. The ellip
equilibrium, for which an elliptical model can be use
served as a test case to probe different effects that can
place. Transition to instability and crossing with other eq
librium branches were observed. More complicated sha
were analyzed numerically using a technique based on
tour dynamics. A modal approach was also used to relate
phenomena occurring at bifurcations to general predicti
from the bifurcation theory of Hamiltonian systems.

Several different types of bifurcations were identifie
Wall potentials with a dominantl 51 harmonic component
which move the equilibrium off the trap center, have a te
dency to increase all eigenvalues. Wall potentials withlÞ1
components dominant tend to decrease the mode freq
cies, with possible instabilities at the collisions. For the ca
investigated here, the first collisions were steady-state bi
cations of the eigenmode with the smallest eigenva
namely l 51. We showed that the outcomes of the collisi
are determined by the symmetries present in the sys
While the l 51 collisions were followed by instability for
V52V0 cos 2u, eigenvalue passing was observed forV5
2V0 cos 3u and V52V0 cos 4u. Thus, in the presence o
certain symmetries, remarkably, some eigenvalue collisi
are harmless.

To analyze a general case, we use the following meth
from the perturbation analysis, we deduce the initial dir
tion of motion of eigenvalues as the external field is
creased. A conclusion on the first collision can often
made. Then, the symmetry analysis of the zero eigenv
subspace determines whether or not the bifurcation will

FIG. 15. Spectrum for the off-center circular equilibrium.
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sult in splitting or passing. Furthermore, predictions on
crossing with other equilibrium branches at bifurcati
points can be made based on the symmetry.

Unfortunately, we have been unable to find any sim
rules for visually determining the stability of a plasma. Ge
erally, the more distorted the plasma is, the more likely it
to be unstable. However, while some relatively circular pl
mas may be unstable, other highly distorted plasmas, e
plasmas with concave boundaries, may be stable.~The com-
panion paper shows such a concave stable plasma.! More-
over two plasmas which look essentially identical may dif
in stability. For example, the two elliptical solutionsl01 and
l02 can be difficult to distinguish visually, but only thel01

solution is stable. The only completely general visual ru
that we have discovered is that any plasma with a sh
corner is unstable. This rule is is easy to establish: LetEL ,
EC, andER be electric fields as shown in Fig. 16. Remem
bering that the plasma edge is an equipotential,EL and ER

must be at right angles to their respective plasma bounda
Using the dashed line in the figure as an integration conto
it is clear from Faraday’s law thatEL andER must have the
same magnitude. By continuity,EC must share this magni
tude. But ifEcÞ0, the region enclosed by the dashed line
not divergence free. As this region can be shrunk to zero,
as there is no surface charge at the plasma boundary, the
way that Faraday and Gauss’s laws can be simultaneo
satisfied is ifEL5EC5ER50. However, if the electric field
at the corner is zero, charge will stagnate in the corner, le
ing to instability.

To verify that these results are valid when the plas
has a realistically smooth rather than flat-top density profi
we compared the contour dynamics results with a vortex
cell ~VIC! simulation for elliptical plasmas. Details of th
numerical scheme can be found in Ref. 27. We performe
VIC simulation with the density distribution for a plasma
thermal equilibrium18 ~Debye lengthlD;0.2r p). All quali-
tative features, i.e., existence of a stable elliptical equi
rium on-center, pitchfork bifurcation to a stable equilibriu
of center, etc., were verified.
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FIG. 16. A blowup of the fields near a sharp corner in a plasma.
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APPENDIX A: LINEAR STABILITY ANALYSIS

In the linear stability analysis, the amplitude of the v
locity perturbationṽ must be determined as a function of th
boundary perturbationj̃. Separating the contributions from
the plasma, image and external fields, the velocity is

v5vp1vi1vext . ~A1!

Consider the velocity due to the plasmavp. From Eq.~11!
we obtain

vp52
2enc

B R
C

lnur2r 8udx8. ~A2!

Assuming that the boundary perturbation is a normal mo
the resulting velocity perturbation is

ṽp~h!5
2enc

B E
0

2p

dh8FjS sin h
dx08

dh8
2cosh

dy08

dh8
D

2j8S sin h8
dx08

dh8
2cosh8

dy08

dh8
D G

3
~y082y0 ,2x081x0!

ur 02r 08u
2 , ~A3!

where r 05(x0 ,y0) corresponds to the radius vector of th
equilibrium boundary, and unprimed and primed variab
are computed ath, h8, respectively. Following Dritschel, the
following notations are introduced

R~h,h8!5
4penc

B S sin h
dx08

dh8
2cosh

dy08

dh8
D , ~A4!

Q~h!5R~h,h!5
4penc

B S sin h
dx0

dh
2cosh

dy0

dh D ,

~A5!

bx~h,h8!5
x02x08

ur 02r 08u
2 , by~h,h8!5

y02y08

ur 02r 08u
2 . ~A6!

Finally, denoting the integration bŷ(...)&51/2p*dh8...,
Eq. ~A3! can be rewritten as

ṽp
x5^j̃Qby&2 j̃~h!^Rby&, ~A7!

ṽp
y52^j̃Qbx&1 j̃~h!^Rbx&. ~A8!

The plasma velocity perturbation is now given as a lin
functional of j̃. Turning to the image velocityvi, the image
potential is a solution of Laplace’s equation subject to
boundary conditionf i(R,u)52fp(R,u). Calculatingvi5
2c¹f i3 ẑ/B in polar coordinates, and expressing it throu
the boundary condition for velocity, we obtain

v i
x52(

l 51

` S r

RD l 21

@Re Vl
r cos~ l 21!u1Im Vl

r sin~ l 21!u#,

~A9!
ir
of

-

e,

s

r

e

v i
y52(

l 51

` S r

RD l 21

@2Re Vl
r sin~ l 21!u

1Im Vl
r cos~ l 21!u#, ~A10!

whereVl
r stands for the Fourier transform of the radial com

ponent of the image velocity at the confining wall

Vl
r52

1

2p E
0

2p

duvp
r ~R,u!eil u. ~A11!

We can calculate ther component of the plasma velocity a
the confining wall,vp

r (R,u), explicitly using Eq.~A2!. Ex-
amining the amplitude of the perturbation to linear ord
two contributions are manifest. The contribution due to t
change of the plasma velocity, i.e., the boundary condit
for the image, can be calculated analogously to Eq.~A3!.
The change in the velocity due to the change of the bound
position is also important. Combining these two effects,
amplitude of the image velocity perturbation becomes

ṽ i
x5(

l 51

`

@^j̃QZl&Al~h!1^j̃QWl&Bl~h!#1 j̃Tx~h!,

~A12!

ṽ i
y5(

l 51

`

@^j̃QWl&Al~h!2^j̃QZl&Bl~h!#1 j̃Ty~h!,

~A13!

where

Al~h!52S r 0

R D l 21

cos~ l 21!u0 ,

Bl~h!52S r 0

R D l 21

sin~ l 21!u0 ,

Zl~h!5
1

2p E
0

2p

du
y0 cosu2x0 sin u

ur 02Ru2 cos lu,

Wl~h!5
1

2p E
0

2p

du
y0 cosu2x0 sin u

ur 02Ru2
sin lu,

Tx~h!52(
l 51

` S r 0

R D l 22

~ l 21!@Re Vl0
r cos~h1~ l 22!u0!

1Im Vl0
r sin~h1~ l 22!u0!#,

Ty~h!52(
l 51

` S r 0

R D l 22

~ l 21!@2Re Vl0
r sin~h~ l 22!u0!

1Im Vl0
r cos~h1~ l 22!u0!#, ~A14!

with Vl0
r calculating using the equilibrium shape. Similarl

the amplitude of the external velocity perturbation is

ṽext
x 5 j̃Sx~h!, ṽext

y 5 j̃Sy~h!, ~A15!

where

Sx~h!52(
l 51

` S r 0

R D l 22

l ~ l 21!@Re Vl sin~h1~ l 22!u0!

2Im Vl cos~h1~ l 22!u0!#,
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Sy~h!52(
l 51

` S r 0

R D l 22

l ~ l 21!@Re Vl cos~h1~ l 22!u0!

1Im Vl sin~h1~ l 22!u0!#, ~A16!

and whereVl is the Fourier transform of the boundary co
dition for the potential on the confining wall

Vl5
1

2p E
0

2p

duV~u!eil u. ~A17!

Combining Eqs.~A7!, ~A8!, ~A12!, ~A13!, and ~A15! the
total velocity perturbation is

ṽ5 ṽp1 ṽi1 ṽext. ~A18!

Expanding Eq.~18!, the boundary disturbance is

j̃~h!5j0~h! lim
Nl→`

(
l 51

Nl

Cl f l~h!. ~A19!

In practice, only a finite number of basis functions are k
in this expansion. Upon substitution into the equation of m
tion given by Eq.~17!:

«5sj̃1vh0

d

dh

j̃

j0
1

ṽh

j0

dj0

dh
2

1

vh0
~ ṽxvy02 ṽyvx0!Þ0.

~A20!

Following the Galerkin method, we demand that the erro«
is orthogonal to each of the basis functionsf l , i.e.,

E
0

2p

dh« f l50, l 51,2 . . .Nl . ~A21!

This requirement results inNl equations forNl unknown
coefficientsCl , which can be written in matrix form as

sCm5(
l 51

Nl

GmlCl , ~A22!

where

Gml5Gml
1 1Gml

2 1Gml
3 1Gml

4 1Gml
5 ,

Gml
1 522p K vh0

j0
f m

d f l

dh L ,

Gml
2 52p K vy0

vh0j0
f m^ f lj0Rby&L

12p K vx0

vh0j0
f m^ f lj0Rbx&L ,

Gml
3 522p K vy0

vh0
f mf l^Qby&L 22p K vx0

vh0
f mf l^Qbx&L ,

Gml
4 52p K vy0

vh0
f mf l~Sx1Tx!L

22p K vx0

vh0
f mf l~Sy1Ty!L ,

Gml
5 52p K vy0

vh0j0
f mDl L 22p K vx0

vh0j0
f mFl L ,
t
-

Dl52(
k51

Nl /2

r 0
k21@Re Nlk cos~k21!u0

1Im Nlk sin~k21!u0#,

Fl522(
k51

Nl /2

r 0
k21@Re Nlk sin~k21!u0

2Im Nlk cos~k21!u0#,

Nlk5E
0

2p

dueikuK j0f lQ

ur 02R~u!u2 ~y0 cosu2x0 sin u!L .

~A23!

APPENDIX B: STABILITY OF CIRCULAR OFF-AXIS
EQUILIBRIA

The stability for circular equilibria can be readily prove
using O’Neil and Smith’s energy principle.26 Since we as-
sume that the plasma motion is solely due toE3B drifts, the
electrostatic energy of the plasma is conserved if the w
voltages are time independent. If the electrostatic energy
given plasma is extremal, there are no nearby access
states because such states would have different energy.
sequently the plasma must be stable. Using this princi
Chu et al. proved that slightly deformed plasmas are ene
maxima and, consequently, are stable. Here we prove
any circular, off-axis plasma which encompasses the ori
is stable.

Given any circular plasma of radiusr p , all nearby
shapes can be represented by the series,

Rp
2~u!5r p

2~u!1 (
m51

`

~Fm sin mu1Gm cosmu!, ~B1!

where (Fm ,Gm) are small. As is required forE3B drifts,
this series conserves the area of the plasma. To first or
the old boundary is perturbed a distance

DRp~u!5
1

2r p
(

m51

`

~Fm sin mu1Gm cosmu!. ~B2!

Think of this new boundary as having been generated by
superposition of appropriate amounts of positive and ne
tive charge. Charge of densityn15n extends the boundary
outward, while charge of densityn252n pushes the bound
ary inward. The energy necessary to create this perturba
can be split into two parts: the self-assembly energyUA nec-
essary to create the surface charges(u)5neDRp(u) on the
original boundaryr p , and the distribution energyUD neces-
sary to distribute this charge off the original boundary. Sin
the original boundary is an equipotential, no energy is n
essary to distribute the surface charge along the boun
itself.

The distribution energy equals*dur pErs(u)DRp(u)/2
where Er is the electric field created by the bulk plasm
Evaluating yields

UD52
~pen!2

4 (
m51

`

~Fm
2 1Gm

2 !, ~B3!
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and is negative definite. The self-assembly energy eq
*dur ps(u)Cs(u)/2, whereCs is the potential created by th
surface charge itself. Since the boundary is circular, this
tential is readily evaluated. Ignoring the surface charge
duced image charges, the self-assembly energy equals

UA05
~pen!2

4 (
m51

` Fm
2 1Gm

2

m
, ~B4!

and is positive definite. The image of the surface charg
some angleu0 is atR2/r p . Using a standard expansion,28 the
image charge field is

C I~u!522E
0

2p

du0r ps~u0!H 2 lnFR2

r p
G

1 (
p51

`
1

p F r p

RG2p

~cospu0 cospu1sin pu0 sin pu!J .

~B5!

This expansion is only valid forr p,R, and limits this proof
to plasmas which encompass the origin. The image field
ergy is*dur ps(u)C I(u)/2. Substituting fors, and rearrang-
ing gives terms of the form

2~en!2(
p51

`
1

pR2p E
0

2p

dur p
p11DRp~u!H cospu

sin pu
r p

2p J
3E

0

2p

du0r p
p11DRp~u!H cospu0

sin pu0

ln@R2/r p#
J . ~B6!

The first two rows of this expression gives terms which
the square of a single integral, and the last row integrate
zero. Thus the self-assembly energy from the image cha
equals

UAI52
~en!2

2 (
p51

`
1

pRp H F E
0

2p

du (
m51

`

~Fm sin mu

1Gm cosmu!r p
p cospuG2

1F E
0

2p

du (
m51

`

~Fm sin mu

1Gm cosmu!r p
p sin puG2J , ~B7!

and is negative definite. The total energy is the sum of th
three contributions:
ls

-
-

at

n-

e
to
ge

se

U tot5UD1UA01UAI

5UAI2
~pen!2

4 (
m51

`

~Fm
2 1Gm

2 !S 12
1

mD , ~B8!

is negative definite for any nonzero perturbation. Theref
any circular plasma that encompasses the origin is stabl
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