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Subharmonic autoresonance of the diocotron mode
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This paper investigates the excitation and control of the drived diocotron mode in a pure
electron plasma by adiabatic passage through higher order resonances. The excitation takes place
when the driving frequencyy is swept such that it harmonic passes through the linear
diocotron mode frequency,; wyg~wq/n, N=2,3,....0nce past the resonant region, the mode
enters the autoresonant regime characterized by persisting phase locking and strong nonlinearities.
The transition to autoresonance occurs provided that the driving amplitude exceeds a sharp
threshold, which scales @M whereA/27 is the driving frequency chirp rate. The theory of

these thresholds faor=2 andn=3 is developed and experimental resultsrier1,2,3,4 and 5 are
presented. ©2000 American Institute of Physids$$1070-664X00)90105-9

I. INTRODUCTION can be excited to large amplitudes simply by increasing the
. . h locki h driving frequency. The process is reversible and the mode
Autoresonance Iis an important phase locking phenomg, he returned to its unexcited state by reversing the direc-
enon occurring in Pertufbat"’e'y'fj”"e“' nonhn_ear.oscnlatorytion of variation of the driving frequency. The most difficult
systems. lts signature is persisting synchronization betweggg, e jn autoresonance is the continuation of the initial phase
the system and its drive _vv_hen externally controlled ParaMygeking in the system in transition to autoresonance. One
eters in the systenthe driving frequency/wave vector, for finds that for a given chirp rat&/2m = (1/2m)dwy/dt, the

example vary in space and/or time. This continuing phase n<ition to autoresonance has a sharp threshold on the driv-

locking insures that the state of the system adiabatically Se”an amplitude, namely o~ A3,

adjusts to the varying external conditions, thereby allowing In the present work we report on autoresonant control of

the excitation to be efficiently controlled. Applications of the diocotron mode at higher order resonances, i.e., when the
autoresonance are known in many branches of nonlineq{riving frequency is a fractiomy=wo/n, N=2,3,... of the

physics; 3examples include particle accelerafog\soleculgr mode frequency. We shall refer to this phenomenon as the
physics: _nonlinear dynamic$pionlinear waves;®and fluid g yharmonicautoresonance in contrast to thendamental
dynamics. Recently, we have reported on the autoresonani, ;iqresonance at=_1. Subharmonic autoresonance was re-

excitatio_n of the diocotron mode in a pure-electron plasmacenﬂy studied in a driven dynamical systéhso this work is

by passm_g thrgugh the fundamenta! resondice. , an application of similar ideas to driven non-neutral plasmas.
Thel=1 diocotron mode comprises a magnetized elec- \ye proceed by presenting our experimental resuilts. Our

tron column trapped in a Malmberg—Penning tfdpyhich i finding is that, fon=1,2,3,4,5, the subharmonfcau-

performs an azimuthdtXB rotation due to the electric field , 0q5nance phenomenon has a sharp threshold on the driv-
of the positive image charge induced on the grounded coqhg amplitude similar to that seen for fundamental

fining cylindrical wall (see Fig. 1 The angular frequency g ioresonancd? The threshold scales with the driving fre-
w=wy/(1— p?) of the diocotron mode depends on the nor-quency chirp rate\/27 as

malized mode amplitude=r/R, (r being the radial position

of the plasma an® being the radius of the cylindrical wall Vo~ A4 (1)
where the linear response frequenoy=2c\/BR? is de-

fined by the line charge densily of the plasma column. If a  This result is illustrated in Fig. 2, which shows both the
sector of the confining wall is driven with an oscillating po- experimental results and the scaling.

tential V(t) =V, cosW(t), characterized by a slowly varying Qualitatively subharmonic autoresonance can be ex-
angular frequencywgy(t)=dW¥/dt="V¥, then, when certain plained as follows: Driving at a subharmonic frequency
conditions are mét? the diocotron mode phase locks to the yields a nonresonant linear responseQf(fV,) at the sys-
drive aswq(t) increases in time and passes,tatty, the  tem’s driving frequencyoy. Then, then™ order nonlinearity
fundamental linear resonaneey(to) = wo. Later the mode in either the diocotron mode, the driving field, or both yields
evolves in autoresonancej,/(1—p?(t))~wy(t) continu- an O(Vg) response at frequenaywy. The latter response
ously. Thusp(t) ~[ 1~ wo/wg(t)]** for t>t,, and the mode  serves as an effective drive of strenythy~ V7 at frequency
wei(t) =nwy(t), and, when it passes the fundamental linear
*Paper HI 23 Bull. Am. Phys. Sod4, 157 (1999. resonance point, i.e., whan(to) = wo at some timet, it
"Invited speaker. excites autoresonance in the system. The threshold for this
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for a broad class of finite plasma length and radius correc-

tions to the linear frequency.In our experiments3=0.6?
The second term in Eq2),
¢a(p,0)=Vo CO§W (D] 2, anp" cosno), 3

is the driving potential in our cylindrical geometfgssum-
ing, at this point, an infinite length driving sectoifhe co-
efficientsa,, in Eq. (3) are given by the boundary conditions,

i.e., ap=[2/(nm)]sin(nhby), where X, is the angular extent
of the driving sector(see Fig. 1L Next we write theEX B
drift evolution equations for our plasma in normalized Car-
tesian coordinates X=p cosfé and Y=p sing, ie.,

FIG. 1. Endview of the trap showing the confining wallRitthe plasma at ~ X,= — (cdp/dY)/(BR?) andY,= (cde/ 9X)/(BR?), or
angle 4, and distance from the trap center, the plasma image, the image

electric fieldE, and the diocotron drift at frequeney/27. For our experi- Xi=— on/( 1- ,BPZ) —€ Coi\lf(t)]é’S/&Y, (4)
ments, wy/2m=26.4 kHz. The mode is detected by monitoring the image 2
charge on the pickup sect®i, and driven by applying a voltage to the drive Y= woX/(1—Bp°)+ € cod V(t)]dS/ X, (5

sectorVp . Further details are given in Ref. 9. . . L, .
b g wheree=(cV,)/(BR?) is the normalized drive’s amplitude,

and S(X,Y)=Z=,_,@,S,, with eachs,=p" cosfé) simply
o o related toX andY. The three relations relevant to our analy-
excitation scales as\g)in~A®* similar to the fundamental  gis of subharmonic autoresonance in the system=at,2,3,
autoresonance case. Returning to the original driving ampliareslzx' $,=X2—Y2, ands;=X(X2—3Y?).
tude, V,, yields the subharmonic autoresonance threshold 1 study the evolution of our system under different

scaling, Eq.(1). Section Il of the present work is devoted to driving conditions, we must analyze the slow, phase-locked
the quantitative description of this threshold phenomenonggytions to Eqs(4) and(5), which we can do using Whith-

We shall see that the theory becomes increasingly complexn s averaged variational principté.We begin by con-

as one considers higher and higher order resonances. Thugycting the Lagrangian,
we shall limit the theory ta=2 and some of the possible
cases fon=23. We summarize our findings and present ourl_(X X, Y.Y, )= E(XY ~X.Y)
conclusions in Sec. Il b TR T

wo
+_

— Bp2)—
IIl. THRESHOLD PHENOMENON 2p N(1=Bp7)—eScosW(n), (6

Consider the drifting plasma column shown in Fig. 1.wheree is viewed as a small parameter. As shown below, the
The averaged transverse field acting on the plaémeane- smallness ok makes the autoresonance threshold a weakly
glect the self field of the columris given by the potential  nonlinear phenomenon. Consequegtly, 2We ;Nill expar:d the

. 2 logarithm in Eq.(6) in powers of p*=X“+Y~ up to p*,
¢(p,0)==(\B)IN(L=Bp7) + ¢ulp. ), @ thereby preserving the weak nonlinearity of the diocotron
where the first term represents the contribution of the imagenode. As the simplest illustration of applying Whitham’s
charge, and the factgs generalizes the equation to account method to our problem, and to prepare to study subharmonic
autoresonance, we first construct the averaged variational
principle for fundamental autoresonance.

Y 102

= A. Fundamental autoresonance

% 10' L * In this case the angular driving frequencw

g b =dW¥(t)/dt is an increasing function of time passing the

oo 10°f . linear mode frequency, at some time, saty=0. For sim-

> 1 E f/5 9 g . L

-5 §. f0/4 ] plicity, we shall assume a linear chirp, i.@4= wy+ At. We

_% < 107'L "/3 E leave only the lowest order resonant comporggrtO(p) in

= ZE /2/2 ] S in the Lagrangian[Eq. (6)], and expand In(%Sp?)

§ 107 f, 3 ~—Bp>—3B%p". The resulting approximate Lagrangian is

St F 0 ]

ﬁ 10'3 I R R R R 1 g 2 4 ~

102108 10* 105 105 107 10% Li=5 (XYy=XiY) = 7=(2p"+ Bp") — €S, cos¥ (1),

Chirp Rate (Hz/s) (7)

FIG. 2. Peak to peak threshold voltag€ g, vs the chirp rated/2sr, for the Where S= _alx' Slr_]ce the unp_erturbedeé 0) problem
n=1 fundamental, and the=2,3,4,5 subharmonics. The lines graph the YleldS a Un!form azimuthal rotation of the P'asr(the fast
scaling relations/qc A¥M  with the proportionalities fit to the data. time scale in the problejand the perturbation has siow
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parametefthe driving frequency we seek a solution of the nization (phase lockingin the system takes place prior to
perturbed problem in the formX=U[O(t),t], Y  reaching the linear resonancetatO, i.e., ®(mod 2r)—
=V[O(t),t], which is 2r— periodic in® and evolves on ast approaches zero. Phase locking continues*dd andd
both slow and fast temporal scales. The explicit time depenremains nearr, providing that the driving amplitude is
dence inU andV is assumed to be slow, b@X(t) is the fast above a sharp threshold

angle variable. At the same time, the angular frequeficy 3l
=0, is viewed as a slow function of time. Furthermore, we n=1_ 2 (ﬁ
assume continuing phase locking in the system on the slow B a\Bwy\ 3

time scale, i.e., that the phase mismatbh= O (1) ~ W (t) At the same time the mode amplitude is a monotonically

between the mode and the drive remains bounded and slow. ; . ) . o .
Increasing function of time given by substituting~ 7 in

Whitham’s method allows us to take advantage of the lar : : . S
difference between the above-mentioned timegscales and,ge?sh-e right-hand sidéRHS) in Eq. (9) and equating it to zero,
sentially, average out the fast scale. In the weakly nonlinear
problem of interest we proceed by writing the driven solution ) €ay

by using the functional form of the unperturbee=<0) so- Bwoa”—At— E“O' (12
lution, i.e.,X=a cos® andY=a sin®, wherea is assumed ) ) ) )

to be slow. Thus, at this stage, we have transformed fom SuPerimposed on the monotonic solution &ras given by
Y to a new set of independent variabs®, but also made Eq. (12).,_are .smaIIO(e 2 _agtoresonant osmllat.lons. The
explicit assumptions on the variation time scales of the neynoSt critical time for sustaining the resonance is when the
variables. These assumptions requirgosteriori justifica- ~ dfiven mode amplitude reaches the value

tion. Next, we write the interaction term _in Eq7) as ay~(Lea,/Bwy)?? (13)
—eaXcos@®—®) and average our Lagrangian over the fast

angle variable, i.e., calculatélz(277)*1f§”L1(®,t) do. at t~0. Beyond this time the driving amplitude can be
According to Whitham'’s proceduﬁé,in eva|uating this av- reduced while still preserving the phase Iocking. Thus,efor
erage, the slow time dependence in the integrand is neglect&nall enough, the threshold phenomenon is indeed a weakly
and L is calculated by substituting our two scale represenhonlinear effect.

tation for X andY into Eq. (7) and neglecting the time de-

rivative of the slow amplitude. The result is B. n=2 subharmonic autoresonance

(12)

L1=Lo— 3 ea,a cosd, (8 Now we assume that the driving frequency varies as
o wg= 300+ At, i.e., the drive slowly passes the second order

where the unperturbed part is given W=3a%(Q—wo)  resonancaewy= 2w, att=0. The linear response of the sys-
—iBwoa’. Formally, the averaged Lagrangian is a functiontem at this frequency is nonresonant, and, as mentioned in
of slow independent variables onlyZ;=72;(a,®,®y), the Introduction, we look for a frequency doubling of the
where the dependence @by enters viaQl=0.=(V+®); |inear response due to a nonlinear effect, yielding an effec-
= wo+ At+ @, (recall thatA/27 is the chirp rate of the driv-  tjye drive at the fundamental frequency. This effective drive
ing frequency. The next main step of Whitham's approdth il be the source of the autoresonance in the system. The
is to replace the variational principlé/L(X,X;,Y,Yy) dt  frequency doubling in the evolution equations may come
=0 in the original problem by the averaged variational prin-from either the cubic nonlinearity in the unperturbed La-
ciple 8f £,(a,®,®,) dt=0.Then variations with respect &  grangian or the quadratic nonlinearity in its interaction part
and® yield the desired slow evolution equations. The varia-_ g cosW. Since the unperturbed Lagrangifin Eq. (6)]
tion with respect to a gives a(Q—wo)—Bwoed®  has only even order nonlinear terms, the desired frequency

— ea; cosP=0, or doubling comes only from the, component in the interac-
€ay tion. Thus, the lowest order Lagrangian for studying the
d,=Bwa’— At+ 2a cos®. (99 =2 autoresonance differs from that in the fundamental au-
toresonance case by the addition of a new interaction term,
The variation with respect tod® vyields (9£,/9Q); i.e.,
—dLq10P=0, i.e.,

_1 “o ., 2 4 _ 7

atZ%eal sind. (10 L2—2(XYt XiY) 2 (2p°+ Bp*)— €S, cosW¥, (14)

The set of slow Eqgs(9) and (10) is identical to that whereS,=a;S;+ @,s,. We seek solutions of the problem
derived using a Hamiltonian approach to determine the funef form
damental autoresonance threshold, as described in Ref. 9.
Thus, the current method and the Hamiltonian method are
equivalent. Rather than rederiving the fundamental autoreso-
nance threshold, we shall simply quote the results of the
Hamiltonian derivation so that we can employ them when wewnhere, as in them=1 case® is the fast angle variable and
analyze subharmonic autoresonance. The Hamiltonian theotie first terms are associated with the solution of the unper-
shows that if the system starts out of resonance, the synchrturbed problem, but we also add the terms describing the

X=a cos®+b, cos(30+ 7,), (15

Y=asin®+b, cos(;0+ 7)),
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linear response of the system at the subharmonic frequencWe see that these two variational evolution equations are
The angular frequency§)=0, is again viewed as a slow identical to the sef9) and(10) encountered in the fundamen-
function of time and we assume the continuing phase lockingal autoresonance, if, in the latter, we substitdie-2®

in the system on the slow time scale, i.e., that the phase 7, A—2A, and e— e.s=2€?a,/3w,. With these substi-

mismatchesy,, 7y and® =10 (t)—W¥(t) are bounded and

tutions we can use the same expression #d) as in the

slow. Now we apply Whitham’s approach. We observe thatundamental autoresonance for the threshold of rike2

the assumed solution is#periodic in the fast angl® and,

subharmonic autoresonance, yielding

consequently, calculate the averaged Lagrangian in the prob-

lem, £,=(47) " 1[§"L,(®,t) d®. Again, in evaluating the

average, the slow time dependence in the integrand is ne-
glected, and_,(®,t) is calculated by substituting our two

scale representatiofl5) into (14) and neglecting the time

31/8( ® /B) 1/4

n=2_ 0 3/8

= 2A)°°, 23
€th s (2A) (23

Both's; (dipolan ands, (quadrupolardriving potential com-

derivatives of the slow objects. The resulting, lowest ordeponents are necessary fioe=2 subharmonic autoresonance.

averaged Lagrangian for studying the=2 subharmonic au-

toresonance is
£2:£0+ 'Cb+ ﬁi , (16)

where L, = — swo(bZ+0J) + 3Qb,by sin(m—n)— 3earb,

One can choose different angular extents of the driving sec-
tor, or add additional driving sectors having phase-shifted
potentials to manipulate these driving components. For ex-
ample, if the driving sector coversdg= =, the quadrupolar
component vanishes and no autoresonance is expected. If

X cos@+ 7,) is the term describing the linear response am26o= /2, both dipolar and quadrupolar components are

plitudes b,, and slow phases »,,, while £;
= —Zea,a[b, cosP— n)—by sin(@— )] represents the in-
teraction due to the component wish in the driving poten-
tial, leading to autoresonance in the system inrtke2 case,
as described above. Now we usg in the averaged varia-
tional principle 8fL,(a,by,by, 7y, 7y, ®,®,) dt=0 and

present. However, if, in this case, one adds an identical sec-
tor opposite to the original driving secttthe corresponding
functions s; for this sector are obtained from the original
functions by replacing— — X) and the phase of both drives

is the same, then the dipolar component of the combined
drive vanishes and autoresonance is impossible. If, the sec-

take variations with respect to all the slow independent variond driving sector’s phase is shifted yas compared to the

ables. We proceed from variations with respectzipand
7y, Yielding

Q . .
Eby Cog 7 — 77y)+ eay sin(®+ 7,) = eaza sin(P —7,),

Q
be coy 7y~ 77y): —€aza cog P — 77y)-

Since, to desired ordeb, ,~O(¢€), the RHS of the last two

equations is small for smadl. Therefore,
o+ 5,~0. a7

The variations with respect o, andb, and the use of Eq.
(14) yield two additional lowest order equations,

Nx— Ny~ ml2;

— woby+ 3Qby=€ay, (19

— wob,+ 30b,=0. (19

Assuming that near the resonan@e~ w,, we solve these

equations fomb, ,,

266!1

466!1
vy 3(1)0 '

b=

~Suy (20
Finally, the remaining variations with respect &and ®
[recall that®,= 3(Q) — wy) —At], and use of Eqs(17) and
(20), yield

62(116(2

20,= Bwa’—2At— 3woa cog2®), (21)
2011“2 .

a;=— sin(2d). (22)
3(1)0

original driving sector, then the combined quadrupolar com-
ponent of the potential vanishes and autoresonance is again
impossible.

One can also analyze more complicated configurations
of driving sectors. For instance, the addition of a sector iden-
tical to the original one, but rotated by 90°, is equivalent to
adding new driving terms obtained from the original ones by
swappingX=Y. If the oscillating potential on the new elec-
trode is shifted by 180°, the first three combined functigns
become s;=X—Y, s,=2(X?—Y?), and s3=(X—Y)(X?
+Y24+4XY). With these changes Whitham’s technique
works as described above. We shall omit the calculations
details and just present the results: fer 1, the threshold is
a factor of 2/? lower than that for the single electrode con-
figuration, while then=2 threshold decreases by a factor of
2.

In the experiment, these sector considerations are com-
plicated by finite length effects. The sectors do not extend
the entire length of the plasma and are not centered with
respect to the plasma. Consequently, the effect of positive
and negative biases applied to a sector are not equal as the
different biases attract or repel the plasma, causing the over-
lap between the sector and plasma to vary. This can intro-
duce new azimuthal harmonics to the drive potential, and
new paths to autoresonance, even for sector combinations
previously forbidden. In one case these azimuthal harmonics
even appear to partially suppress an otherwise allowed path.
Nonetheless, the experimental results generally agree with
the trends predicted above. Sector combinations predicted to
be autoresonant generally are autoresonant, and sector com-
binations predicted to be nonautoresonant are either not au-
toresonant or require very large drive voltages to be au-
toresonant. For example, when the mode is driven with a
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single 49° sector 2.45 cm long, the predicted 2 threshold  which, in turn, interacts with the quadrupolsy component
excitation voltage atA=27x4X10° Hz/s is 19.5 Vp- in the driving potential to produce a ne@®(e°) effective
Experimentally, the required voltage is 27.2,}, 1.39 drive, which passes the fundamental frequemgy Thus,
times greater(Note that the data reported in Fig. 2 is for this Path Il involves a three stage process in creating the reso-
sector configuratiof®) For two 90° sectors, 3.48 cm long, nant effective driving forcing.

90° apart and driven out of phase, the predicted threshold We proceed to the analysis of the first two possibilities.
voltage is 3.0 \_,. Experimentally, 3.8 Y_is required, a Path Il adds a new complicating ingredient, namely be-
factor of 1.27 times greater. These predictions are not asomes dependent on the resonant response amplitude itself
accurate as those for=1 autoresonance; the small sectorand we shall not study this case in the present work. As
requires 0.37 Y_jtheoretically and 0.32 y., experimen-  before, the starting point in studying Paths I and Il is to write
tally, and the dual sectors require 0.074_) both theoreti- the approximate Lagrangian as

cally and experimentally. The predictions for the dual sector

drive may be more accurate because the drive is bipolar, L3=—(XYI—XtY)—ﬂ(2p2+ﬂp4)—6§3 cosV, (24)
reducing the affect of the bias on the overlap. Note that these 2 4

are absolute predictions based on the plasma properties, tWhereég: a;8;+ as;and we setr,=0 to avoid the com-

trap geometry, and the measured valuessgfand §; there  yjieations associated with Path 11l We seek solutions of
are no free parameters. To make these predictions, we haYSrm

reduced the coefficients® by the appropriate overlap factor.

This overlap factor is simply the ratio of the sector lengthto ~ X=a cos®+c, cog50 +v,), (25)
the plasma lengtt{5.8 cm, a fact confirmed by a careful
calculation of the fields from the sectors via a Fourier— Y=asin®+c, cos(§®+vy), (26)

Bessel expansion. The plasma length itself was calculated . . .
from the trap geometry and confinement voltalfes. where the first terms are associated with the fundamental

autoresonant solution and, as in the2 case, we add the
terms describing the response of the system at subharmonic
C. n=3 fractional autoresonance frequency. As before@ is the fast angle variable. We as-

Here we assume that the driving frequency varies agime thata, =0, ¢y, are slow, and phase mismatches

wg=L1wo+At, i.e., one slowly passes the third order reso-Ux: vy and®=30(t) ¥ (t) are bounded and slow.
nancewy= 3wy att=0. In contrast to the=2 case, where Now, we apply Whitham’s approach. We observe that
there existed a single path to autoresonance in the systefhe desired solution is#-periodic in fast angle yar@ble and,
now we may have three distinct paths and their combinagonsequently, Caleculate the averaged Lagrangian in the prob-
tions, depending on which of the ands; components or €M Ls=(6m) 1/5"L3(®,t) d®. The resulting lowest order
their combinations are present in the driving potential. TheAveraged Lagrangian describing the=3 subharmonic au-

dipolar s; component is necessary for all the three pathstoresonance in our system is

Qualitatively, the three routes ta=3 subharmonic au- La=Lo+ Lot L+ Ly (27)
toresonance in our system are as follows. . s a1 _
Path I: Suppose the componergsands; in the driving ~ Here L=~ zwo(Cy+Cy) +52cyCy sin(—1)

potential vanish. Then, near the resonance, the dipsiar ( — 26216 Cos{b+u) is the term describing the linear re-
driving component yields nonresonadf e) response of the SPonse amplitudes, , and slow phasesy . The termsc.,
system at the driving frequenciw,, while the third order andZ; describe Path | and Path I, respectively,
nonlinearity in the oscillating system yiel@®(e%) response

wod
at_the tripled driving frequ_ency, i.e., aly. Itis this resonant_ Ly=— %[ci cos(3vx)—c)2(cy sSin(2u,+ vy)
third order response which plays the role of an effective
drive for exciting autoresonance in the system. +CXC§ cog v, + 2yy)—c§ sin(3v,)],
Path 1I: Here, there exists a nonvanishiggcomponent
in the driving potential, bus, is still zero. In this case all the _3eaza 2 _ 2 _
ingredients of Path | are present, however, one has an addi- Li=—g [=ck cog@=2u)+cj sin(® = 2vy)

tional effective driving term due to the; component. The )

nonresonan®(e) system’s response interacts with this com- +20,y sin(®— vy

ponent and yield©(e®) effective drive at the fundamental Now we use the Lagrangiafi; in the averaged varia-

(resonantfrequency. tional principle f £z(a,cy,cy vy, vy, ®,P;) dt=0 and take
Path IlI: In this case we add as, component to the variations with respect to all the slow independent variables.

driving potential, but assume that tbg component is miss- We proceed from the variations with respectioand vy,

ing. Then one still has all the ingredients of Path I. Now,

hpwever, .th.e nonresona®f €) response of the system to the ~ ¢, cog v,— 1) + €a; SIN(D+ ) ~0,

dipolar driving component, as well as the resonant response 3 Y

at the fundamental frequency, both enterghéerm yielding

an O(€?) effective drive at frequencgwy. This effective

drive creates a nonresona®(e?) response in the system, Therefore,

Qc, cogv,—vy)~0.
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n—v~ml2; D+u~0. (28)  the driving frequency. As a result, the mode amplitude may
increase significantly as the system self-adjusts its nonlinear
response to stay in resonance with the drive.

(C) Because it is a higher order effect, the subharmonic
(29 autoresonance requires larger driving amplitudes, but lower

driving frequencies as compared to the fundameniat 1)

— wgCy+ 1Qc,=0. (30) autoresonance. The theoretical description of the process be-
comes increasingly complex as the ordeof resonance in-
creases and new paths to autoresonance associated with vari-

The variations with respect tg, andc, and the use of Eq.
(28) yield two additional lowest order equations,

— woCyt %Qcyz €aq,

Assuming, near the resonan€gs= v, we solve these equa-

tions forcy, ous order nonlinearities of the mode and/or the driving field
9ea, 3ea; come into play.
ST T Bag ' T Bag (31 (D) We have developed the theory of the subharmonic

autoresonance threshold foe=2 and a part of possible paths
Finally, the remaining variations with respect @and ®  of n=3 case. The theory is based on Whitham’'s averaged
[recall that®;=3(2—wo)—At] and use of the equations yariational principle, a convenient approach for studying
obtained by varying with respect tg , and Eqs.(28) and  s|ow, phase-locked, autoresonant driven solutions in our sys-

(30) yield tem.
ot (E) The results of the theory were compared with the
(3®),= Bwoa’—3At— a cog3d), (32 experiments fon=2 in a variety of driving configurations.
The agreement between the theory and the experiment was
a;= — €qf SIN(3D), (33)  very good not only in terms of the predicted 3/8 power law

for the threshold vs chirp rate, but also in absolute measured
threshold values, found to be within 40% from those pre-
dicted by the theory. We have also experimentally studied
Excitation of higher orderrn(=3,4,5) subharmonic autoreso-
nance in the system. The measured dependence of the thresh-
old on the chirp rate for entering these higher order subhar-
monic autoresonances was found to be in excellent

whereeqs= (323212 wl) (a1 — a3). We see that these two
slow equations are identical to the $6j and(10) encoun-
tered for the fundamental autoresonance, if in the latter on
replacesb—3® + 7, A—3A, andew /2— €. With these
substitutions we can again use E@.1l) for finding the
threshold of then=3 subharmonic autoresonance in our sys-

tem, agreement with the theoretically predicted rB&xponent in
27/3w(1)/2A1/4 the power law.
en=3 (39 (F) It seems interesting to extend the study of both the

T apll . 1 13 : /

3 (1~ aslay) fundamental and subharmonic autoresonance in non-neutral
This completes our discussion of the=3 subharmonic au- plasmas to other oscillatory degrees of freedom, an example
toresonance of the diocotron mode. being the Kelvin mode. Also, studying the multifrequency
autoresonance, where one simultaneously excites and con-
trols a combination of oscillatory modes, constitutes a chal-
lenging goal for future studies. These investigations would
have a direct impact on similar problems in the driven dy-

(A) We have studied subharmonic autoresonant excitaramics of two-dimensional ideal fluids, where vortices are
tion and control of thd =1 diocotron mode. The subhar- analogs of non-neutral plasma columns, and oscillating
monic autoresonance is excited when & harmonic straining flows correspond to the chirped frequency driving
=2,3,...) of thechirped driving frequency,(t) passes the fields in plasma experiments.
linear diocotron mode frequency. The reason for the subhar-
monic autoresonance in the system is the abilitp'dforder ~ ACKNOWLEDGMENTS
nonlinearities of the driven diocotron mode and/or of the
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1. Friedland, Phys. Rev. Bn press. More precisely, some of the data in Fig. 2 required stronger drives than
2The sine wave generator used to produce the driving signal could have could be obtained with a single 49° sector. For these data, we used one or
confused our results by generating unwanted harmonic components thattwo 90° sectors, and scaled the data appropriately by overlapping data
excite the fundamental autoresonance directly. To rule out this possibility, taken with the 49° and the 90° sectors in their common range.
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