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Subharmonic autoresonance of the diocotron mode *
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This paper investigates the excitation and control of the drivenl 51 diocotron mode in a pure
electron plasma by adiabatic passage through higher order resonances. The excitation takes place
when the driving frequencyvd is swept such that itsnth harmonic passes through the linear
diocotron mode frequencyv0 ; vd'v0 /n, n52,3,. . . . Once past the resonant region, the mode
enters the autoresonant regime characterized by persisting phase locking and strong nonlinearities.
The transition to autoresonance occurs provided that the driving amplitude exceeds a sharp
threshold, which scales asA3/(4n), whereA/2p is the driving frequency chirp rate. The theory of
these thresholds forn52 andn53 is developed and experimental results forn51,2,3,4 and 5 are
presented. ©2000 American Institute of Physics.@S1070-664X~00!90105-8#
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I. INTRODUCTION

Autoresonance is an important phase locking pheno
enon occurring in perturbatively-driven, nonlinear oscillato
systems. Its signature is persisting synchronization betw
the system and its drive when externally controlled para
eters in the system~the driving frequency/wave vector, fo
example! vary in space and/or time. This continuing pha
locking insures that the state of the system adiabatically s
adjusts to the varying external conditions, thereby allow
the excitation to be efficiently controlled. Applications
autoresonance are known in many branches of nonlin
physics; examples include particle accelerators,1 molecular
physics,2,3 nonlinear dynamics,4 nonlinear waves,5,6 and fluid
dynamics.7 Recently, we have reported on the autoreson
excitation of the diocotron mode in a pure-electron plas
by passing through the fundamental resonance.8,9

The l 51 diocotron mode comprises a magnetized el
tron column trapped in a Malmberg—Penning trap,10 which
performs an azimuthalEÃB rotation due to the electric field
of the positive image charge induced on the grounded c
fining cylindrical wall ~see Fig. 1!. The angular frequency
v5v0 /(12r2) of the diocotron mode depends on the no
malized mode amplituder5r /R, (r being the radial position
of the plasma andR being the radius of the cylindrical wall!,
where the linear response frequencyv052cl/BR2 is de-
fined by the line charge densityl of the plasma column. If a
sector of the confining wall is driven with an oscillating p
tentialV(t)5V0 cosC(t), characterized by a slowly varyin
angular frequencyvd(t)5dC/dt[C t then, when certain
conditions are met,8,9 the diocotron mode phase locks to th
drive asvd(t) increases in time and passes, att5t0 , the
fundamental linear resonancevd(t0)5v0. Later the mode
evolves in autoresonance;v0 /(12r2(t))'vd(t) continu-
ously. Thusr(t)'@12v0 /vd(t)#1/2 for t.t0, and the mode

*Paper HI 23 Bull. Am. Phys. Soc.44, 157 ~1999!.
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can be excited to large amplitudes simply by increasing
driving frequency. The process is reversible and the m
can be returned to its unexcited state by reversing the di
tion of variation of the driving frequency. The most difficu
issue in autoresonance is the continuation of the initial ph
locking in the system in transition to autoresonance. O
finds that for a given chirp rateA/2p5(1/2p)dvd /dt, the
transition to autoresonance has a sharp threshold on the
ing amplitude, namelyV0th;A3/4.

In the present work we report on autoresonant contro
the diocotron mode at higher order resonances, i.e., when
driving frequency is a fractionvd5v0 /n, n52,3,... of the
mode frequency. We shall refer to this phenomenon as
subharmonicautoresonance in contrast to thefundamental
autoresonance atn51. Subharmonic autoresonance was
cently studied in a driven dynamical system,11 so this work is
an application of similar ideas to driven non-neutral plasm

We proceed by presenting our experimental results. O
main finding is that, forn51,2,3,4,5, the subharmonic12 au-
toresonance phenomenon has a sharp threshold on the
ing amplitude similar to that seen for fundamen
autoresonance.8,9 The threshold scales with the driving fre
quency chirp rateA/2p as

V0th;A3/(4n). ~1!

This result is illustrated in Fig. 2, which shows both th
experimental results and the scaling.

Qualitatively subharmonic autoresonance can be
plained as follows: Driving at a subharmonic frequen
yields a nonresonant linear response ofO(V0) at the sys-
tem’s driving frequencyvd . Then, thenth order nonlinearity
in either the diocotron mode, the driving field, or both yiel
an O(V0

n) response at frequencynvd . The latter response
serves as an effective drive of strengthVeff;V0

n at frequency
veff(t)5nvd(t), and, when it passes the fundamental line
resonance point, i.e., whenveff(t0)5v0 at some timet0, it
excites autoresonance in the system. The threshold for
2 © 2000 American Institute of Physics
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1713Phys. Plasmas, Vol. 7, No. 5, May 2000 Subharmonic autoresonance of the diocotron mode
excitation scales as (Veff) th;A3/4 similar to the fundamenta
autoresonance case. Returning to the original driving am
tude, V0, yields the subharmonic autoresonance thresh
scaling, Eq.~1!. Section II of the present work is devoted
the quantitative description of this threshold phenomen
We shall see that the theory becomes increasingly com
as one considers higher and higher order resonances. T
we shall limit the theory ton52 and some of the possibl
cases forn53. We summarize our findings and present o
conclusions in Sec. III.

II. THRESHOLD PHENOMENON

Consider the drifting plasma column shown in Fig.
The averaged transverse field acting on the plasma~we ne-
glect the self field of the column! is given by the potential

w~r,u!52~l/b!ln~12br2!1wd~r,u!, ~2!

where the first term represents the contribution of the im
charge, and the factorb generalizes the equation to accou

FIG. 1. Endview of the trap showing the confining wall atR, the plasma at
angleu, and distancer from the trap center, the plasma image, the ima
electric fieldE, and the diocotron drift at frequencyv/2p. For our experi-
ments,v0/2p526.4 kHz. The mode is detected by monitoring the ima
charge on the pickup sectorVu and driven by applying a voltage to the driv
sectorVD . Further details are given in Ref. 9.

FIG. 2. Peak to peak threshold voltage 2V0th vs the chirp rateA/2p, for the
n51 fundamental, and then52,3,4,5 subharmonics. The lines graph t
scaling relationsV0th}A3/(4n), with the proportionalities fit to the data.
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for a broad class of finite plasma length and radius corr
tions to the linear frequency.13 In our experiments,b50.6.9

The second term in Eq.~2!,

wd~r,u!5V0 cos@C~ t !# (
n51

`

anrn cos~nu!, ~3!

is the driving potential in our cylindrical geometry~assum-
ing, at this point, an infinite length driving sector!. The co-
efficientsan in Eq. ~3! are given by the boundary condition
i.e., an5@2/(np)#sin(nu0), where 2u0 is the angular exten
of the driving sector~see Fig. 1!. Next we write theE3B
drift evolution equations for our plasma in normalized Ca
tesian coordinates X5r cosu and Y5r sinu, i.e.,
Xt52(c]w/]Y)/(BR2) andYt5(c]w/]X)/(BR2), or

Xt52v0Y/~12br2!2e cos@C~ t !#]S/]Y, ~4!

Yt5v0X/~12br2!1e cos@C~ t !#]S/]X, ~5!

wheree5(cV0)/(BR2) is the normalized drive’s amplitude
and S(X,Y)5(n51

` ansn , with eachsn5rn cos(nu) simply
related toX andY. The three relations relevant to our anal
sis of subharmonic autoresonance in the system atn51,2,3,
ares15X, s25X22Y2, ands35X(X223Y2).

To study the evolution of our system under differe
driving conditions, we must analyze the slow, phase-lock
solutions to Eqs.~4! and~5!, which we can do using Whith-
am’s averaged variational principle.14 We begin by con-
structing the Lagrangian,

L~X,Xt ,Y,Yt ;t !5
1

2
~XYt2XtY!

1
v0

2b
ln~12br2!2eS cosC~ t !, ~6!

wheree is viewed as a small parameter. As shown below,
smallness ofe makes the autoresonance threshold a wea
nonlinear phenomenon. Consequently, we will expand
logarithm in Eq. ~6! in powers of r25X21Y2 up to r4,
thereby preserving the weak nonlinearity of the diocotr
mode. As the simplest illustration of applying Whitham
method to our problem, and to prepare to study subharmo
autoresonance, we first construct the averaged variati
principle for fundamental autoresonance.

A. Fundamental autoresonance

In this case the angular driving frequencyv
5dC(t)/dt is an increasing function of time passing th
linear mode frequencyv0 at some time, sayt050. For sim-
plicity, we shall assume a linear chirp, i.e.,vd5v01At. We
leave only the lowest order resonant components1;O(r) in
S in the Lagrangian@Eq. ~6!#, and expand ln(12br2)
'2br221

2b
2r4. The resulting approximate Lagrangian is

L15
1

2
~XYt2XtY!2

v0

4
~2r21br4!2eS̃1 cosC~ t !,

~7!

where S̃15a1X. Since the unperturbed (e50) problem
yields a uniform azimuthal rotation of the plasma~the fast
time scale in the problem! and the perturbation has aslow



e

e
lo

lo
rg
,
e
on

e

s

c
en
-

on

in

ia

un
f.
a
s

th
w
eo
h

o

lly

,

e
the

r
akly

as
er

s-
d in
e
ec-
ve
The
me
a-
art

ncy
-

au-
rm,

d
er-
the

1714 Phys. Plasmas, Vol. 7, No. 5, May 2000 Friedland, Fajans, and Gilson
parameter~the driving frequency!, we seek a solution of the
perturbed problem in the formX5U@Q(t),t#, Y
5V@Q(t),t#, which is 2p2periodic in Q and evolves on
both slow and fast temporal scales. The explicit time dep
dence inU andV is assumed to be slow, butQ(t) is the fast
angle variable. At the same time, the angular frequencyV
5Q t is viewed as a slow function of time. Furthermore, w
assume continuing phase locking in the system on the s
time scale, i.e., that the phase mismatchF5Q(t)2C(t)
between the mode and the drive remains bounded and s
Whitham’s method allows us to take advantage of the la
difference between the above-mentioned time scales and
sentially, average out the fast scale. In the weakly nonlin
problem of interest we proceed by writing the driven soluti
by using the functional form of the unperturbed (e50) so-
lution, i.e.,X5a cosQ andY5a sinQ, wherea is assumed
to be slow. Thus, at this stage, we have transformed fromX,
Y to a new set of independent variablesa, Q, but also made
explicit assumptions on the variation time scales of the n
variables. These assumptions requirea posteriori justifica-
tion. Next, we write the interaction term in Eq.~7! as
2ea1Xcos(Q2F) and average our Lagrangian over the fa
angle variable, i.e., calculateL15(2p)21*0

2pL1(Q,t) dQ.
According to Whitham’s procedure,14 in evaluating this av-
erage, the slow time dependence in the integrand is negle
andL1 is calculated by substituting our two scale repres
tation for X and Y into Eq. ~7! and neglecting the time de
rivative of the slow amplitude. The result is

L15L02 1
2 ea1a cosF, ~8!

where the unperturbed part is given byL05 1
2a

2(V2v0)
2 1

4bv0a4. Formally, the averaged Lagrangian is a functi
of slow independent variables only,L15L1(a,F,F t),
where the dependence onF t enters viaV5Q t5(C1F) t

5v01At1F t ~recall thatA/2p is the chirp rate of the driv-
ing frequency!. The next main step of Whitham’s approach14

is to replace the variational principled*L(X,Xt ,Y,Yt) dt
50 in the original problem by the averaged variational pr
ciple d*L1(a,F,F t) dt50.Then variations with respect toa
andF yield the desired slow evolution equations. The var
tion with respect to a gives a(V2v0)2bv0a3

2 1
2ea1 cosF50, or

F t5bv0a22At1
ea1

2a
cosF. ~9!

The variation with respect toF yields (]L1 /]V) t

2]L1 /]F50, i.e.,

at5
1
2 ea1 sin F. ~10!

The set of slow Eqs.~9! and ~10! is identical to that
derived using a Hamiltonian approach to determine the f
damental autoresonance threshold, as described in Re
Thus, the current method and the Hamiltonian method
equivalent. Rather than rederiving the fundamental autore
nance threshold, we shall simply quote the results of
Hamiltonian derivation so that we can employ them when
analyze subharmonic autoresonance. The Hamiltonian th
shows that if the system starts out of resonance, the sync
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nization ~phase locking! in the system takes place prior t
reaching the linear resonance att50, i.e., F(mod 2p)→p
ast approaches zero. Phase locking continues fort.0 andF
remains nearp, providing that the driving amplitudee is
above a sharp threshold

e th
n515

2

a1Abv0
S A

3 D 3/4

. ~11!

At the same time the mode amplitude is a monotonica
increasing function of time given by substitutingF'p in
the right-hand side~RHS! in Eq. ~9! and equating it to zero
i.e.,

bv0a22At2
ea1

2a
'0. ~12!

Superimposed on the monotonic solution fora, as given by
Eq. ~12!, are smallO(e1/2) autoresonant oscillations. Th
most critical time for sustaining the resonance is when
driven mode amplitude reaches the value

ath'~ 1
2 ea1 /bv0!1/3 ~13!

at t'0. Beyond this time the driving amplitudee can be
reduced while still preserving the phase locking. Thus, foe
small enough, the threshold phenomenon is indeed a we
nonlinear effect.

B. nÄ2 subharmonic autoresonance

Now we assume that the driving frequency varies
vd5 1

2v01At, i.e., the drive slowly passes the second ord
resonancevd5 1

2v0 at t50. The linear response of the sy
tem at this frequency is nonresonant, and, as mentione
the Introduction, we look for a frequency doubling of th
linear response due to a nonlinear effect, yielding an eff
tive drive at the fundamental frequency. This effective dri
will be the source of the autoresonance in the system.
frequency doubling in the evolution equations may co
from either the cubic nonlinearity in the unperturbed L
grangian or the quadratic nonlinearity in its interaction p
2eS cosC. Since the unperturbed Lagrangian@in Eq. ~6!#
has only even order nonlinear terms, the desired freque
doubling comes only from thes2 component in the interac
tion. Thus, the lowest order Lagrangian for studying then
52 autoresonance differs from that in the fundamental
toresonance case by the addition of a new interaction te
i.e.,

L25
1

2
~XYt2XtY!2

v0

4
~2r21br4!2eS̃2 cosC, ~14!

where S̃25a1s11a2s2 . We seek solutions of the problem
of form

X5a cosQ1bx cos~ 1
2 Q1hx!, ~15!

Y5a sin Q1by cos~ 1
2 Q1hy!,

where, as in then51 case,Q is the fast angle variable an
the first terms are associated with the solution of the unp
turbed problem, but we also add the terms describing
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linear response of the system at the subharmonic freque
The angular frequencyV5Q t is again viewed as a slow
function of time and we assume the continuing phase lock
in the system on the slow time scale, i.e., that the ph
mismatcheshx , hy andF5 1

2Q(t)2C(t) are bounded and
slow. Now we apply Whitham’s approach. We observe t
the assumed solution is 4p-periodic in the fast angleQ and,
consequently, calculate the averaged Lagrangian in the p
lem, L25(4p)21*0

4pL2(Q,t) dQ. Again, in evaluating the
average, the slow time dependence in the integrand is
glected, andL2(Q,t) is calculated by substituting our tw
scale representation~15! into ~14! and neglecting the time
derivatives of the slow objects. The resulting, lowest or
averaged Lagrangian for studying then52 subharmonic au-
toresonance is

L25L01Lb1Li , ~16!

where Lb52 1
4v0(bx

21by
2)1 1

4Vbxby sin(hx2hy)2
1
2ea1bx

3 cos(F1hx) is the term describing the linear response a
plitudes bx,y and slow phases hx,y , while Li

52 1
2ea2a@bx cos(F2hx)2by sin(F2hy)# represents the in

teraction due to the component withs2 in the driving poten-
tial, leading to autoresonance in the system in then52 case,
as described above. Now we useL2 in the averaged varia
tional principle d*L2(a,bx ,by ,hx ,hy ,F,F t) dt50 and
take variations with respect to all the slow independent v
ables. We proceed from variations with respect tohx and
hy , yielding

V

2
by cos~hx2hy!1ea1 sin~F1hx!5ea2a sin~F2hx!,

V

2
bx cos~hx2hy!52ea2a cos~F2hy!.

Since, to desired order,bx,y;O(e), the RHS of the last two
equations is small for smalla. Therefore,

hx2hy'p/2; F1hx'0. ~17!

The variations with respect tobx andby and the use of Eq
~14! yield two additional lowest order equations,

2v0bx1 1
2 Vby5ea1 , ~18!

2v0by1 1
2 Vbx50. ~19!

Assuming that near the resonanceV'v0 , we solve these
equations forbx,y ,

bx52
4ea1

3v0
; by52

2ea1

3v0
. ~20!

Finally, the remaining variations with respect toa and F
@recall thatF t5

1
2(V2v0)2At], and use of Eqs.~17! and

~20!, yield

2F t5bv0a222At2
e2a1a2

3v0a
cos~2F!, ~21!

at52
e2a1a2

3v0
sin~2F!. ~22!
cy.
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We see that these two variational evolution equations
identical to the set~9! and~10! encountered in the fundamen
tal autoresonance, if, in the latter, we substituteF→2F
1p, A→2A, ande→eeff[2e2a2/3v0 . With these substi-
tutions we can use the same expression Eq.~11! as in the
fundamental autoresonance for the threshold of then52
subharmonic autoresonance, yielding

e th
n525

31/8~v0 /b!1/4

Aa1a2

~2A!3/8. ~23!

Both s1 ~dipolar! ands2 ~quadrupolar! driving potential com-
ponents are necessary forn52 subharmonic autoresonanc
One can choose different angular extents of the driving s
tor, or add additional driving sectors having phase-shif
potentials to manipulate these driving components. For
ample, if the driving sector covers 2u05p, the quadrupolar
component vanishes and no autoresonance is expecte
2u05p/2, both dipolar and quadrupolar components a
present. However, if, in this case, one adds an identical
tor opposite to the original driving sector~the corresponding
functions si for this sector are obtained from the origin
functions by replacingX→2X) and the phase of both drive
is the same, then the dipolar component of the combi
drive vanishes and autoresonance is impossible. If, the
ond driving sector’s phase is shifted byp as compared to the
original driving sector, then the combined quadrupolar co
ponent of the potential vanishes and autoresonance is a
impossible.

One can also analyze more complicated configurati
of driving sectors. For instance, the addition of a sector id
tical to the original one, but rotated by 90°, is equivalent
adding new driving terms obtained from the original ones
swappingX
Y. If the oscillating potential on the new elec
trode is shifted by 180°, the first three combined functionssi

become s15X2Y, s252(X22Y2), and s35(X2Y)(X2

1Y214XY). With these changes Whitham’s techniqu
works as described above. We shall omit the calculati
details and just present the results: forn51, the threshold is
a factor of 21/2 lower than that for the single electrode co
figuration, while then52 threshold decreases by a factor
2.

In the experiment, these sector considerations are c
plicated by finite length effects. The sectors do not exte
the entire length of the plasma and are not centered w
respect to the plasma. Consequently, the effect of posi
and negative biases applied to a sector are not equal a
different biases attract or repel the plasma, causing the o
lap between the sector and plasma to vary. This can in
duce new azimuthal harmonics to the drive potential, a
new paths to autoresonance, even for sector combinat
previously forbidden. In one case these azimuthal harmo
even appear to partially suppress an otherwise allowed p
Nonetheless, the experimental results generally agree
the trends predicted above. Sector combinations predicte
be autoresonant generally are autoresonant, and sector
binations predicted to be nonautoresonant are either not
toresonant or require very large drive voltages to be
toresonant. For example, when the mode is driven wit
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single 49° sector 2.45 cm long, the predictedn52 threshold
excitation voltage atA52p343105 Hz/s is 19.5 Vp–p .
Experimentally, the required voltage is 27.2 Vp–p , 1.39
times greater.~Note that the data reported in Fig. 2 is for th
sector configuration.15! For two 90° sectors, 3.48 cm long
90° apart and driven out of phase, the predicted thresh
voltage is 3.0 Vp–p. Experimentally, 3.8 Vp–pis required, a
factor of 1.27 times greater. These predictions are no
accurate as those forn51 autoresonance; the small sect
requires 0.37 Vp–ptheoretically and 0.32 Vp–p experimen-
tally, and the dual sectors require 0.074 Vp–p both theoreti-
cally and experimentally. The predictions for the dual sec
drive may be more accurate because the drive is bipo
reducing the affect of the bias on the overlap. Note that th
are absolute predictions based on the plasma properties
trap geometry, and the measured values ofv0 andb; there
are no free parameters. To make these predictions, we
reduced the coefficientsa by the appropriate overlap facto
This overlap factor is simply the ratio of the sector length
the plasma length~5.8 cm!, a fact confirmed by a carefu
calculation of the fields from the sectors via a Fourie
Bessel expansion. The plasma length itself was calcula
from the trap geometry and confinement voltages.16

C. nÄ3 fractional autoresonance

Here we assume that the driving frequency varies
vd5 1

3v01At, i.e., one slowly passes the third order res
nancevd5 1

3v0 at t50. In contrast to then52 case, where
there existed a single path to autoresonance in the sys
now we may have three distinct paths and their combi
tions, depending on which of thes2 and s3 components or
their combinations are present in the driving potential. T
dipolar s1 component is necessary for all the three pat
Qualitatively, the three routes ton53 subharmonic au-
toresonance in our system are as follows.

Path I: Suppose the componentss2 ands3 in the driving
potential vanish. Then, near the resonance, the dipolars1)
driving component yields nonresonantO(e) response of the
system at the driving frequency13v0 , while the third order
nonlinearity in the oscillating system yieldsO(e3) response
at the tripled driving frequency, i.e., atv0 . It is this resonant
third order response which plays the role of an effect
drive for exciting autoresonance in the system.

Path II: Here, there exists a nonvanishings3 component
in the driving potential, buts2 is still zero. In this case all the
ingredients of Path I are present, however, one has an a
tional effective driving term due to thes3 component. The
nonresonantO(e) system’s response interacts with this co
ponent and yieldsO(e3) effective drive at the fundamenta
~resonant! frequency.

Path III: In this case we add ans2 component to the
driving potential, but assume that thes3 component is miss-
ing. Then one still has all the ingredients of Path I. No
however, the nonresonantO(e) response of the system to th
dipolar driving component, as well as the resonant respo
at the fundamental frequency, both enter thes2 term yielding
an O(e2) effective drive at frequency23v0 . This effective
drive creates a nonresonantO(e2) response in the system
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which, in turn, interacts with the quadrupolars2 component
in the driving potential to produce a newO(e3) effective
drive, which passes the fundamental frequencyv0. Thus,
Path III involves a three stage process in creating the re
nant effective driving forcing.

We proceed to the analysis of the first two possibilitie
Path III adds a new complicating ingredient, namelyeeff be-
comes dependent on the resonant response amplitude
and we shall not study this case in the present work.
before, the starting point in studying Paths I and II is to wr
the approximate Lagrangian as

L35
1

2
~XYt2XtY!2

v0

4
~2r21br4!2eS̃3 cosC, ~24!

whereS̃35a1s11a3s3and we seta250 to avoid the com-
plications associated with Path III. We seek solutions
form

X5a cosQ1cx cos~ 1
3 Q1yx!, ~25!

Y5a sin Q1cy cos~ 1
3 Q1yy!, ~26!

where the first terms are associated with the fundame
autoresonant solution and, as in then52 case, we add the
terms describing the response of the system at subharm
frequency. As before,Q is the fast angle variable. We as
sume thata, V5Q t , cx,y are slow, and phase mismatch

yx , yy andF5 1
3 Q(t)2C(t) are bounded and slow.

Now, we apply Whitham’s approach. We observe th
the desired solution is 6p-periodic in fast angle variable and
consequently, calculate the averaged Lagrangian in the p
lem L35(6p)21*0

6pL3(Q,t) dQ. The resulting lowest orde
averaged Lagrangian describing then53 subharmonic au-
toresonance in our system is

L35L01Lc1LI1LII . ~27!

Here Lc52 1
4v0(cx

21cy
2)1 1

6Vcxcy sin(yx2yy)
21

2ea1cx cos(F1yx) is the term describing the linear re
sponse amplitudescx,y and slow phasesyx,y . The termsLI

andLII describe Path I and Path II, respectively,

LI52
v0a

8
@cx

3 cos~3yx!2cx
2cy sin~2yx1yy!

1cxcy
2 cos~yx12yy!2cy

3 sin~3yy!#,

LII5
3ea3a

8
@2cx

2 cos~F22yx!1cy
2 sin~F22yy!

12cxcy sin~F2yx2yy!#.

Now we use the LagrangianL3 in the averaged varia
tional principled*L3(a,cx ,cy ,yx ,yy ,F,F t) dt50 and take
variations with respect to all the slow independent variab
We proceed from the variations with respect toyx andyy ,

V

3
cy cos~yx2yy!1ea1 sin~F1yx!'0,

Vcy cos~yx2yy!'0.

Therefore,
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yx2yy'p/2; F1yx'0. ~28!

The variations with respect tocx andcy and the use of Eq
~28! yield two additional lowest order equations,

2v0cx1 1
3 Vcy5ea1 , ~29!

2v0cy1 1
3 Vcx50. ~30!

Assuming, near the resonance,V'v0 , we solve these equa
tions for cx,y ,

cx52
9ea1

8v0
; cy52

3ea1

8v0
. ~31!

Finally, the remaining variations with respect toa and F
@recall thatF t5

1
3(V2v0)2At] and use of the equation

obtained by varying with respect toyx,y and Eqs.~28! and
~30! yield

~3F! t5bv0a223At2
eeff

a
cos~3F!, ~32!

at52eeff sin~3F!, ~33!

whereeeff5(33e3a1
2/27v0

2)(a12a3). We see that these tw
slow equations are identical to the set~9! and ~10! encoun-
tered for the fundamental autoresonance, if in the latter
replacesF→3F1p, A→3A, andea1/2→eeff . With these
substitutions we can again use Eq.~11! for finding the
threshold of then53 subharmonic autoresonance in our s
tem,

e th
n535

27/3v0
1/2A1/4

3b1/6a1~12a3 /a1!1/3
. ~34!

This completes our discussion of then53 subharmonic au-
toresonance of the diocotron mode.

III. CONCLUSIONS

~A! We have studied subharmonic autoresonant exc
tion and control of thel 51 diocotron mode. The subha
monic autoresonance is excited when thenth harmonic (n
52,3,. . . ) of thechirped driving frequencyvd(t) passes the
linear diocotron mode frequency. The reason for the sub
monic autoresonance in the system is the ability ofnth order
nonlinearities of the driven diocotron mode and/or of t
external oscillating field to serve as an effective drive at
fundamental frequencyv0'nvd(t). This effective drive
plays a role similar to that of a resonant fundamental h
monic drive in exciting the fundamental autoresonance in
system. Thus, understanding of subharmonic autoreson
reduces to the study of higher order nonlinear driven
sponse in the system.

~B! For a given chirp rate of the driving frequency, e
tering subharmonic autoresonance requires that the dri
amplitude exceeds a sharp threshold@see Eq.~1!#. Below the
threshold the passage through the resonance does not le
a significant excitation of the mode. In contrast, above
threshold the system phase locks to the drive and the
chronization in the system continues despite the variation
e

-

a-

r-

e

r-
e
ce
-

g

d to
e
n-
of

the driving frequency. As a result, the mode amplitude m
increase significantly as the system self-adjusts its nonlin
response to stay in resonance with the drive.

~C! Because it is a higher order effect, the subharmo
autoresonance requires larger driving amplitudes, but lo
driving frequencies as compared to the fundamental (n51)
autoresonance. The theoretical description of the process
comes increasingly complex as the ordern of resonance in-
creases and new paths to autoresonance associated with
ous order nonlinearities of the mode and/or the driving fi
come into play.

~D! We have developed the theory of the subharmo
autoresonance threshold forn52 and a part of possible path
of n53 case. The theory is based on Whitham’s avera
variational principle, a convenient approach for studyi
slow, phase-locked, autoresonant driven solutions in our
tem.

~E! The results of the theory were compared with t
experiments forn52 in a variety of driving configurations
The agreement between the theory and the experiment
very good not only in terms of the predicted 3/8 power la
for the threshold vs chirp rate, but also in absolute measu
threshold values, found to be within 40% from those p
dicted by the theory. We have also experimentally stud
excitation of higher order (n53,4,5) subharmonic autoreso
nance in the system. The measured dependence of the th
old on the chirp rate for entering these higher order subh
monic autoresonances was found to be in excell
agreement with the theoretically predicted 3/4n exponent in
the power law.

~F! It seems interesting to extend the study of both
fundamental and subharmonic autoresonance in non-ne
plasmas to other oscillatory degrees of freedom, an exam
being the Kelvin mode. Also, studying the multifrequen
autoresonance, where one simultaneously excites and
trols a combination of oscillatory modes, constitutes a ch
lenging goal for future studies. These investigations wo
have a direct impact on similar problems in the driven d
namics of two-dimensional ideal fluids, where vortices a
analogs of non-neutral plasma columns, and oscillat
straining flows correspond to the chirped frequency driv
fields in plasma experiments.
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