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Plasma temperatures in the range 25 to 2 X 10° K have been measured using a cryogenic, ultra-high
vacuum, pure-electron plasma trap. The rate v at which the temperatures parallel and perpendicular
to the applied magnetic field relax to a common value has been measured over the temperature range
28 to 3.8X 10° K and the magnetic field range 20 to 60 kG. This rate v is closely related to the
plasma collision frequency. When the cyclotron radius r is large compared to the classical distance
of closest approach b (r./b>1), the measured values of v are in agreement with conventional
collision theory. When the cyclotron radius is small compared to the classical distance of closest
approach (r./b<¢1), v drops precipitously as r./b is decreased, in agreement with the
many-electron adiabatic invariant theory of O’Neil and Hjorth. © 1996 American Institute of

Physics. [$1070-664X(96)00604-0]

1. INTRODUCTION

Plasmas consisting of a single-charge species are the
subject of much current research.!? Since recombination
cannot occur in these plasmas, they can be cooled to very
low temperatures. Using a cryogenic, ultra-high vacuum ap-
‘paratus we have obtained pure-electron plasmas with tem-
peratures ranging from 25 to 2 X 10° K. In conjunction with
an applied magnetic field varying from 20 to 60 kG, this
temperature range puts our plasmas in the large and, in part,
unique parameter regime, 1/35<r;/b= 10°. Here r_ is the
cyclotron radius, b=e%/(xT) is the classical distance of
closest approach, e is the charge of an electron, « is Boltz-
mann’s constant, and T is the plasma temperature. The
plasma temperatures parallel and perpendicular to the mag-
netic field need not be equal, and, when unequal, we have
measured the relaxation rate v at which electron-electron
collisions equilibrate these temperatures. Such relaxation is
one of the basic plasma collisional processes.3 We find that
in the high temperature, weakly magnetized regime
r./b>1 the measured relaxation rate is proportional to
T3 The measured rate peaks for temperatures where
r./b~1. As the temperature is lowered further, the plasmas
enter the strongly magnetized regime r./b<<1, where the re-
laxation rate drops precipitously as the temperature is de-
creased. This drop is in agreement with the theoretical pre-
diction of O’Neil and Hjorth.*

In Fig. 1 we show our relaxation rate data combined
with data obtained by Hyatt, Driscoll and Malmberg.s'6 In
this figure we have plotted the normalized relaxation rate
v/(nb2 U) versus r./b, where n is the plasma density,
U=+ kT/m is the average velocity and m is the electron
mass. The solid curve is a Monte Carlo-based prediction due
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to Glinsky et al.;” no adjustable parameters are used in cal-
culating this curve.

In Section II we describe our pure-electron plasma ap-
paratus and how we create and trap pure-electron plasmas. In
Section III we discuss the resuits of plasma cooling via cy-
clotron radiation. In Section IV we present our relaxation
rate measurement procedure and data. In Appendix A we
discuss our density measurement, and in Appendix B we
discuss our temperature diagnostic. In Appendix C we dis-
cuss the procedure used by Hyatt, Driscoll and Malmberg>®
to measure the relaxation rate for the regime
3X10*<r./b=<10°.

Il. APPARATUS

The simplified schematic of our electron trap shown in
Fig. 2 contains the basic elements needed for trap operation:
the electron source, three collimated, cylindrical electrodes,
and five charge collectors. All trap elements are aligned with
a strong static magnetic field. The actual electron trap in-
cludes additional collimated, cylindrical electrodes. All the
electrodes have a wall radius of R,,=1.27 cm. The trap is
sealed into an evacuated vessel, and the entire assembly is
cooled to liquid helium temperature (4.2 K). Cooling the
trap accomplishes two objectives: first, the cold trap surfaces
cryopump the background gas to densities measured to be
less than 10° cm™>. Second, in the absence of any heating
mechanisms, cyclotron radiation will eventually cause the
plasma to cool to 4.2 K.

The static magnetic field confines the plasma radially.®
The well created by biasing the two end electrodes
(G, and G,) sufficiently negatively relative to the central
electrode (G ,) confines the electrons axially. For simplicity,
we assume that the confining electrodes are G, and
G, throughout this paper; more generally, any of the trap
electrodes, including those not shown in Fig. 2, can be used

© 1996 American Institute of Physics
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FIG. 1. Normalized relaxation rate [ v/(nb? i7)] vs. cyclotron radius divided
by distance of closed approach (r./b). The diamond points ¢ were ob-
tained using the balanced heating technique, square points [J were obtained
using the unbalanced technique, and the circular points O are data obtained
by Hyatt, Driscoll and Malmberg. The solid curve is the Glinsky
et al. Monte Carlo prediction.

as a confinement electrode, thereby allowing the plasma
length / to range from about | cm to about 10 cm. Here
plasma length refers to an average axial dimension of the
plasma.

The trap is operated with repeated cycles consisting of
capture, manipulate, and release/dump phases. A cycle be-
gins with the central electrode (G,) grounded and the two
end electrodes (G;, G3;) at —100 V. During the capture
phase the left-most electrode (G ;) is momentarily grounded,
allowing electrons to flow from the negatively biased, hot-
tungsten-filament electron source’ to the center of the trap.
This electrode (G;) is then biased negatively to trap the
plasma in the center electrode (G,). Next, during the ma-
nipulate phase, the plasma is held for a variable length of
time while various plasma manipulations are performed. Fi-
nally, during the dump phase, the plasma is allowed to flow
out of the trap along the magnetic field lines by grounding
G;. The dumped plasma is captured on the charge collection
plates C, through Cs, and the resulting charge and current
time-profile yield the plasma density and temperature infor-
mation respectively. The time between capture and release is
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FIG. 2. Schematic of the confinement apparatus showing a confined plasma.

Phys. Plasmas, Vol. 3, No. 4, April 1996

called the confinement time, ., and can range from | ms to
more than 40,000 s, but is typically on the order of 10 s.

Since most measurements are obtained by releasing the
plasma onto the charge collection plates, we usually obtain
only one measurement per plasma. Many of our results reiy
on the analysis of thousands of cycles; consequently, good
cycle-to-cycle reproducibility of the plasmas is critical.
When the experimental parameters are properly adjusted, the
cycle-to-cycle variation of the charge measured on each col-
lector is at most 2% of the total charge. The cycle-to-cycle
variation of the temperature for nominally identical plasmas
is about 1% at high temperatures and somewhat higher at
lower temperatures. However, this does not mean that the
temperature measurement is accurate to 1% since systematic
errors may be as large as 10% for high temperatures and
larger for low temperatures.

The plasmas cannot be confined indefinitely. Anomalous
loss mechanisms'® cause the plasmas to expand radially (al-
beit slowly); thus the charge measured on the innermost
charge collection plate C,; decreases as the containment time
is increased. We define the lifetime of a plasma to be the
containment time ¢ at which the charge measured on C, is
one half the charge measured when 7.=1s. Depending on
magnetic field, plasma length and plasma density, the mea-
sured lifetime ranges from about 100 s to greater than
10° s. In general, plasma lifetime increases when (1) the
magnetic field is increased, (2) the plasma length is de-
creased, or (3) the plasma density is decreased. This relation-
ship between magnetic field, plasma length and lifetime is in
qualitative agreement with that found by Driscoll, Fine and
Malmberg.lo

Since our plasmas are unneutralized, they induce a radial
electric field E,, which, in conjunction with the axial mag-
netic field, cause the plasma electrons to EXB drift. The net
effect is that the plasma rotates about the z-axis with fre-
quency wg(r)=cE./(rB), where r is the radius from the
axis, and c is the speed of light. Recent results'! indicate that
large @ variations in the density profile disappear on a time
scale of several hundred wg‘. For plasmas in this study
wg '~1 us. After trapping a plasma we always wait at least
100 ms before proceeding; this allows the plasma to come
into local thermal equilibrium (i.e. it allows the plasma dis-
tribution to relax to a Boltzmann distribution along the z
axis). Since 100 ms is about 10° wg' we believe that both
the plasma density and the plasma temperature are, to a good
approximation, azimuthally symmetric.

ll. PLASMA TEMPERATURE MEASUREMENTS

Our plasmas are created with a temperature of approxi-
mately 10* K. We obtain hotter plasmas by pushing the
plasma off a potential hill, and we obtain colder plasmas by
employing cyclotron-radiation cooling. Note that the tem-
perature associated with the degree of freedom parallel to the
magnetic field, Ty, and the temperature associated with the
degree of freedom perpendicular to the magnetic field, T, ,
need not be equal. In addition, each temperature may be a
function of radius and time [e.g. T =T|(r,t)]. However,
since we always measure plasma temperatures after the plas-
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mas have been quiescent for a time which is long compared
to a collision time, we believe that Ty(r,t) will have equili-
brated with T, (r,z) at the time our temperature measure-
ments are made.

A. Cyclotron radiation cooling theory

A single classical electron, orbiting in a magnetic field,
loses energy via cyclotron radiation at a rate given by the
Larmor formula:

dE, 2é* 4e2Q?
=sg3a =5—7E, (1)
dt 3¢ 3mc

where a, =Qu, is the perpendicular acceleration, {} is the
cyclotron frequency, and E, is the perpendicular energy
mvi/2. Averaging Eq. (1) over a Maxwellian distribution
yields

dT, 3T,
& I @
where the radiation time 7, is defined to be
9me®  4x10®
=gl B ®)

When v> 71, ! as is the case for our plasmas, and the plasma
is quiescent, then T (¢)=T(¢)=T(¢) to a good approxima-
tion, and one obtains

drT -T

dt 1 @
The factor of 3/2 in the right hand side of Eq. (2) disappears
from Eq. (4) because the two perpendicular degrees of free-
dom dissipate the energy contained in all three degrees of
freedom.

Equation (4) is strictly applicable only when the tem-
perature of the surrounding heat bath is much less than the
plasma temperature, and when quantum effects are negli-
gible. Inclusion of both of these effects slow the cooling, and
modify Eq. (4) to'?

dT_ TR(ﬁQ ﬁQ)
2= R (5)
where
exp(y) —exp(x)
R(x,y)=x (6)

[exp(y)—1][exp(x)— 1]’

The heat bath correction is important only when the plasma
has cooled to near the heat bath temperature, and the quan-
tum correction is important only when a substantial fraction
of the electrons are in their nonradiating lowest Landau
level, i.e. when xT~#{). Practically speaking, these correc-
tions are relevant only at the very coldest temperatures that
we can measure.

B. Cyclotron radiation cooling results

The measured and predicted [Eq. (5)] plasma tempera-
tures vs. time are shown in Fig. 3. The temperature at =0,
necessary for the solution of T in Eq. (5), is obtained from
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FIG. 3. Measured plasma temperature vs. time for a magnetic field of
61.3 kG. The dashed curve is a plot of Eq. (5).

the experimental data. Initially, the measured temperature de-
cays exponentially with a time constant of 7,=0.147 s.
Here 7.=T"'dT/dt is computed in the high temperature re-
gime. The calculation of the predicted cooling rate {Eq. (3)]
ignores plasma opacity and waveguide effects.!>!* Nonethe-
less, the measured cooling time is within 30% of the pre-
dicted rate. At about 50 K, the measured temperature devi-
ates from exponential decay, but continues to cool to about
20 K. This decrease in the cooling rate could be due either to
an unknown heating mechanism, or to increasing errors in
the temperature measurement at low temperature. The de-
crease occurs at too high a temperature to be explained by
quantum or heat bath effects. Figure 4 shows the measured
and predicted {Eq. (3)] cooling times versus magnetic field.

IV. RELAXATION RATE MEASUREMENT

We determine the relaxation rate by measuring the
change in the temperature, and hence the net work done on
the plasma, after the plasma undergoes several compression/
expansion cycles. Collisions make these cycles irreversible,
and the net work done on the plasma is maximized when the
frequency of the compression cycles is comparable to the
relaxation frequency.

100.0 ¢

100

T. (sec)

1.0

0.1 R T
1 10 100
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FIG. 4. Measured cyclotron radiative cooling time 7. vs. magnetic field
B. The solid curve is a plot of Eq. (3).
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The plasma is compressed by sinusoidally modulating
the potential on the confining electrode G, thereby doing
work against the axial plasma pressure. This pressure is the
sum of the kinetic and electrostatic potential pressures. For
our plasmas, the potential pressure is much larger than the
kinetic pressure. However, since our plasmas are weakly cor-
related (e2n'/(«kT)<¢1) and since the plasma compression
is done quasistatically (f <@, where @, is the frequency of
the lowest plasma mode), the potential pressure does not
directly effect the kinetic pressure.'>'® Consequently, the ki-
netic pressure is well described by the ideal gas law and the
work done to the kinetic energy by the compression is given
by dW=—PydV=—n«TjAdl. Here A is the cross-sectional
area of the plasma that is perpendicular to the length change
and dl is the average differential change in the plasma
length. The rate of change of the average axial kinetic energy
per particle due to the compression is

ldW_ An dl T_lle .
Ndr N a7 Ta 7)
Incorporating Eq. (7) and a cyclotron cooling term [Eq. (2)]
into the standard definitions'’ for v, one obtains the coupled

equations

dT, 3T,
—d;——V(T“_T_L)—z_T: (8)
and
Ty wr,-1y-21% 9)
dt LTS ar

The plasma compression cycle is modeled by a sinusoidal
modulation of the plasma length,

{=1[ 1+ esin(27f1)], (10)

where [y€ is the amplitude of the modulation. Equations (8),
(9) and (10) are solved by performing a perturbation expan-
sion in small €. To order €*, we find that

dT 4€*v P !
— = -—|T, (11)
dr [ g, 3 1+8 7,

where T=(Ty+2T.)/3, the scaled frequency
B=2mfl(3v), and (dT/dt).. denotes an average of
dT/dt over one modulation cycle. We assume (f7,) " '<1.
Thus, the average temperature T slowly changes in response
to the competition between compressional heating and cyclo-
tron radiation cooling. For a single cycle, the temperature
change is

8we* B 1

AT:l\—g—Wz_H T. (12)
The maximum heating per cycle occurs when B=1 (ie.
2wf=3v).

Experimentaily, we measure the heating per cycle by cy-
clically compressing the plasma for a fixed number of cycles
H. After the compression cycles are over, we measure the
parallel temperature of the plasma, T,.. In order to consis-
tently obtain the same amount of cyclotron cooling indepen-
dent of f, the temperature is always measured at a fixed time
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FIG. 5. Plasma temperature after heating T, vs. compression frequency f.
Heating comprised of H = 80 contiguous cycles. The points are experimental
data and the solid curve is a prediction of the model.

after the start of the heating cycles. We have tested Eq. (12)
by constructing a plot of the final temperature T, versus the
compression frequency f, as shown in Fig. 5. Each point in
this figure is obtained with a new, but initially identical,
plasma. The line is calculated by iterating Eq. (12) H times.
As Eq. (12) is iterated, the plasma temperature changes,
thereby changing both the collision frequency v and the
scaled frequency B. Consequently we recalculate v after
each iteration using the modified Ichimaru—Rosenbluth for-
mula v(T)=%nb* tlog(r./b) [see Section IV B]. Using ¥
and € as free parameters, the iterated Eq. (12) is then least-
square fit to the data, yielding €=0.053 and
v=36.3X10° Hz for T=1400 K. We have also tested Egq.
(12) with a slightly different experimental method; instead of
heating for a fixed number of cycles, we heat for a fixed time
ty,. The number of heating cycles, fXt,, now depends on
f. The results of this test are given in Fig. 6. The theoretical
prediction given by the solid line is determined as in the
previous figure. For the data in Figs. 5 and 6, (n)=~7 X 10
cm™? and B=61.3 kG. The data in Fig. 5 were taken with
H=80 cycles and the data in Fig. 6 were taken with

1500
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500 — —

P S S
1 10 100
f (kHz)

FIG. 6. Plasma temperature after heating 7, vs. compression frequency f.
Heating for a ftixed time, 1,= 4 ms. The points are experimental data and the
solid curve is a prediction of the model.
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FIG. 7. Plasma temperature after heating T, vs. compression frequency f
using balanced heating technique.

t,=4 ms. In both figures T, was measured 50 ms after the
start of the heating process.

Other irreversible heating processes exist which are not
included in our model. For example, plasma waves launched
by the compression cycles could, through various damping
processes, transfer their wave energy into plasma kinetic en-
ergy. However, we feel that Figs. 5 and 6 demonstrate that, at
least for certain parameter ranges, other irreversible process
can be ignored and that Eqs. (8) and (9) adequately describe
our experiment.

The dependence of v on T can be determined by repeat-
ing the method outlined in the description of Fig. 5 for a
series of base temperatures. This technique works best at
high plasma temperatures, and was used to obtain the square
points plotted in Fig. 1. Unfortunately, the technique is not
well suited to the low temperature regime because the tem-
perature diagnostic becomes increasingly noisy. In addition,
the relatively large temperature excursions required to obtain
a reasonable peak (almost 40% in Fig. 5), coupled with the
increasingly strong dependence of v on T found at low tem-
peratures, makes the assumed functional form of v(T) overly
critical. Consequently, we developed a more complex
scheme (“balanced heating”’) that makes the heating peak
sharper, while effectively reducing the temperature excur-
sion. This scheme consists of subjecting each plasma to §
heating intervals, each interval having H compression cycles
and lasting for a fixed time that is short compared to the
cyclotron radiation time. The total time and the total number
of cycles remain independent of f. Furthermore, we take
curves of T, versus f for various compression amplitudes €
until an € is found such that, at the heating peak. the plasma
maintains a nearly constant temperature throughout the heat-
ing process. That is, for the appropriate €, heating exactly
balances cyclotron cooling when 2wf=3v. When
2mwf#3v, cyclotron cooling will always be stronger than
compressional heating, and the plasma cools. Since the heat-
ing process lasts many cyclotron cooling times. the tempera-
ture drops sharply even for a slightly mismatched heating
frequency. Data taken with this process are shown in Fig. 7,
in which $=301, H=24 and each interval lasted 5 ms. The
initial temperature of 1130 K is indicated by the horizontal
line. The theoretically predicted response is obtained by nu-
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FIG. 8. Measured relaxation rate v vs. temperature T and r./b for a mag-
netic field of 61.3 kG. The solid curve is the O’Neil-Hjorth prediction. The
dashed curve is the modified Ichimaru—Rosenbluth prediction and the dot-
dashed curve is the unmodified Ichimaru—Rosenbluth prediction.

merically integrating Eqs. (8), (9) and (10) with Glinsky
et al.’s formula’ for »(T) with the only fitted parameter be-
ing €. This prediction is given only to show how well Eqgs.
(8), (9) and (10) model the experiment, and is not used to
determine v. The collision frequency v is measured by de-
termining the frequency fo,,, Which maximizes the tempera-
ture T, and then employing the formula v=2mf,/3. In
their appropriate regimes, both the original and the balanced
heating process yield values of v that are precise to about
5%.

A. Results

In Fig. 8 we plot the measured collision frequency v
versus T (and r./b) for B=61.3 kG along with several
theoretical predictions. In Fig. 9 we plot v versus T for mag-
netic fields of 30.7, 40.9 and 61.3 kG. The data in Figs. 8
and 9 were taken using the balanced heating process. The
plasma parameters for this data are density (n)=8X 108
cm™?, length /=3.5 cm and (T}—T,)/Tj=<4% throughout
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FIG. 9. Measured relaxation rate v vs. temperature T for various magnetic

tields. The plasma density for this data was approximately 8 X 10* cm™3.
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the heating process. In Fig. | this data is gathered with high
temperature measurements using the original heating pro-
cess, the results of Hyatt, Driscoil and Malmberg,>® and the
Monte Carlo prediction of Glinsky et al.” To within experi-
mental error, the experimental data in Fig. 1 are described by
Glinsky’s prediction.

B. Theory

Many theoreticians have worked on the general problem
of collisional processes in plasmas. While there are many
interrelated collisional processes (resistivity, diffusion, Max-
wellianization, etc.), we are principally concerned with the
specific collisional process of temperature isotropization. In
the standard high temperature regime r.>b, Ichimaru and
Rosenbluth'® employ a Fokker—Planck formalism to calcu-
late the relaxation rate for singly-ionized ions in a weakly
magnetized, neutral plasma. Their prediction is trivially
adapted to pure-electron plasmas. Furthermore, theoretical
work by Silin'® and theoretical/numerical work by Mont-
gomery er al.?® have shown that this low magnetic field
theory (i.e. r.;>Ap>b) can be applied to the high magnetic
field regime Ap>r.>b by changing the argument of the
coulomb logarithm factor, A, from A=Ap/b to A=r./b.
Here A\p is the Debye length. Thus the suitably modified
Ichimaru-Rosenbluth prediction for the collision frequency is

Jr
s

v= nb? slog(A). (13)
Since this formula is derived using the dominant-term ap-
proximation, it is valid only when log(A)> L.

In the low temperature, high magnetic field regime
Ap>b>r., O’Neil?! argues that a many electron adiabatic
invariant exists which suppresses scattering between paraliel
and perpendicular energy. When &3> r_, the collision time is
so much slower than the gyroperiod (£2~') that the time
scale separation inhibits the transfer of energy. O’Neil finds
that the total perpendicular action [E(mvi/Z)/B. where the
sum is over all electrons] is an adiabatic invariant, In this
regime O'Neil and Hjorth* calculate v to be

v=2.48nb> i (r./b)Pexp[ —2.34(b/r)*"]. (14)

Glinsky er al.” refined these calculations to include the
intermediate temperature regime r. /b~ 1. They postulate
that only collisions with impact distances of order r. and less
contribute significantly to v when r.<\p. When r.<n™'"3
and the plasma is weakly correlated, a Boltzmann-like colli-
sion operator can be employed to calculate v. For
(Ty—T)/T<1, they conclude that

%

n
p= —

~16J,

AW, |7,
2'n'pdpf i“\[|fr(“\\“u)(—7~_) d'u. (15)

where p is the impact distance. u is the relative velocity
between two electrons, f, is the relative velocity distribution,
and AW, is the change in the perpendicular energy. Because
the magnetic field atfects the orbits of the electrons. an ana-
lytic expression for AW, cannot be obtained. Instead.
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AW, is found numerically for many initial conditions cho-
sen at random, and the integrals in Eq. (15) are numerically
evaluated using Monte Carlo techniques.

C. Uncertainties in measured relaxation rate

Both the theoretical calculations of the relaxation rate
and our model of the relaxation rate measurement technique
assume that the perpendicular and parallel velocities are
Maxwellianized. Since we measure v by cyclically com-
pressing the plasma, we risk modifying these velocity distri-
butions. This risk is greatest in the regime r ./b<€1 where
theory predicts that the dominant contribution to v comes
from the small number of electrons in the tail of the Max-
wellian (i.e. vy~ 0(3mb/r)"”). However, we believe that
the compression cycles do not significantly alter the distribu-
tion for the following reasons: first, simple one-dimensional
(1-d) longitudinal compressions of the plasma preserve Max-
wellian distributions. Second, the compression amplitude is
small. Third, since v~ f, re-Maxwellianization occurs on the
same time scale as compressions might attempt to alter the
distribution. Fourth, in the balanced heating process the heat-
ing is broken up into heating and nonheating phases. Since
the heating duty cycle is only about 50%, and since each
nonheating phase lasts about 50 relaxation times v~ !, there
should be ample time for the plasma to re-Maxwellianize
during the nonheating phase.

At each temperature, we can determine the frequency
which produces the most heating per cycle to within about
5%. If the average heating per electron at radius r were in-
dependent of r and if the density were uniform, then v would
also be determined to about 5%. However, since v < n and
the heating depends on the ratio v/f, radial density variations
cause a radial variation in the heating per electron and add
additional uncertainty to our results. To estimate this uncer-
tainty, we have analyzed our heating procedure for various
density profiles. Since we do not know the radial thermal
conductivity of our plasmas, we studied both zero and infi-
nite radial thermal conductivity. The error bars in our figures
include the uncertainty predicted by this analysis.

To derive Eq. (11) we assumed that € is smail. For the
simple heating process the fitting routine yields a good esti-
mate of €. For the balanced heating process. € is easily es-
timated by using the fact that at the optimal heating fre-
quency, the average heating (~47He>T/9) balances the
average cooling (~1;T/7,) for each interval. Here ¢; is the
time per interval. We conclude that €<0.06 and that correc-
tions to v due to finite € are at most 5%.

Accurately determining »(T) requires us to accurately
measure the temperature 7. Because of the strong depen-
dence of v on T in the regime r./b<1, the possible system-
atic error of 30% in the measured temperatures in this region
is much more important than the uncertainties in the mea-
sured v when comparing theory to experiment.

V. SUMMARY

We have measured pure-electron plasma temperatures
between 25 and 2X 10° K. We have also measured the an-
isotropic thermal relaxation rate v for 1/35<r /b=2X 10°.
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For r./b>1 our results are consistent with the theory of
Ichimaru and Rosenbluth, modified for a strong magnetic
field. For r_ /b<<1, our resuits are consistent with O’Neil and
Hjorth’s prediction that the collisional dynamics is modified
by a many electron adiabatic invariant. Finally, for
ro/b~1, our results agree with the prediction by Glinsky
et al.
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APPENDIX A: DENSITY MEASUREMENT

We infer the plasma density from its line integrated
charge. This charge is determined by measuring the number
of electrons which flow onto the charge collectors C when
the plasma is released by grounding the end electrode Gs.
Each collector C; all the plasma electrons between radius r,
and r;.y,

Fiti

N,-=27TJ' N(r)rdr, (A1)
where r; is the radius of the hole in C; (note that r;=0cm
and r¢=R,) and R(r)=[n(r,z)dz is the line integrated
density at radius r. Typically, about 99% of the electrons are
collected onto C; and C, (with N;==N,); thus, little can be
inferred about the radial dependencies of R(r) or n(r,z).
However, using Poisson's equation, the known boundary
conditions and an assumed radial line density proﬁle,zl24 we
can estimate the average density (n), and average axial
length I, to about 15%.

We can obtain better radial resolution by lowering the
magnetic field prior to releasing the plasma. Since the
plasma column rotation frequency is much greater than the
rate at which we lower the field, the flux enclosed by the
plasma, Br?, is an adiabatic invariant and the plasma ex-
pands radially in a predictable manner. Consequently the line
integrated density measured after the expansion, N (r), is
related to line density before the expansion, R(r), by
X,(r)=a*R,(ar) where a= yB,/B, and By, (B,) is the field
before (after) the field ramping. Thus a significant fraction of
the expanded plasma can be made to fall onto the outer
charge collectors. For one typical setup we obtain an R(r)
which is  well  approximated by  N(r)=N(0)
X exp[—(r/0.048 cm)>]. In our analysis of the uncertainties
in the measured relaxation rate and in the measured tempera-
ture. we use line densities of the form N(r)
= Nexp[ —(r/a)’] where 1 <p<5.

APPENDIX B: TEMPERATURE MEASUREMENT

Normally, the electrons in our plasmas are so well con-
fined that even the most energetic electrons do not have sut-
ficient energy to escape over the potential barriers at the
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plasma ends. By measuring the number of electrons that es-
cape as one of these potential barriers is slowly decreased,
we can determine the plasma temperature.25

In practice, we lower the potential barrier created by
G, by slowly reducing the bias V5. Only electrons with suf-
ficient parallel kinetic energy escape; thus v must be greater
than the escape velocity v.(r,V3), defined by the relation

muz(r,V3)

2 =—-‘—e[V3—(D(r,V3)]. (Bl)

Here ®(r,V;) is the potential at radius r created by both the
plasma space charge and the electrodes. For simplicity, we
evaluate ®(r,V;) at the plasma axial midplane where the
confining potentials are negligible, thus, to a good approxi-
mation, ®(r,V5) is just the electron space charge potential.
However, ®(r,V3) is still a function of V5 since the space
charge changes as electrons escape.

If V5 is decreased sufficiently slowly,?® essentially all
electrons at r with axial velocity v(r)>v(r,V;) escape
while all other electrons remain confined. Assuming that the

“electrons are in thermal equilibrium, the number of electrons

at a given radius r which escape is proportional to the inte-
gral of the Maxwellian distribution from v =v(r,V3) to
vy=%, and equals erfc[v,_(r,V3)/\/§6], where erfc is the
complementary error function. The total number of electrons
N,(V3) collected on C, is found by integrating this error
function weighted by the line density over the area bounded
by r=ry,

Nl(V3)=21rJ'(:lN(r)erfc[ve(r,V3)/\/-2— 5]r dr.  (B2)

The escaped charge N;(V3) is most sensitive to the plasma
temperature if only electrons in the tail of the electron dis-
tribution are allowed to escape. When y=v (r,V3)/ v>1 we
can asymptotically expand the complementary error function
to show that

e dv, T *+35\57 (B3)

to order (1/y*), where (1/y?) is defined as

I3 (WyPYR(r)erfe(y)rdr
(IyPy=—273 :
Jo'R(r)erfe(y)rdr

(B4)

Here we have ignored changes to ®(r,V3) due to the escap-
ing electrons (i.e. we have set d®(r,V;)/dV;=0). When
v.(0,V3)/ 5=2 we can show that (1/y*)/2=<0.10, indepen-
dent of the functional form of N(r) for reasonable N(r).
Thus, so long as only tail electrons are analyzed [i.e.
(V.(0.V3)/ 1=2)], Eq. (B3) simplifies to

| dlogN,(V3) _ 1.05

e dve R (B5)

which is accurate to about *5%, and can be used to deter-
mine the temperature 7. Figure 10 shows a plot of N, and
log,o(N,) versus V for a high temperature plasma. In gen-
eral. the straight line region of log,o(N|) where Eq. (B5) is
valid extends for about one decade in N at a temperature of
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FIG. 10. Normalized number of escaped electrons N, /N, (dash curve)
and log ;o(N, /N) (solid curve) vs. V; taken for the high temperature
analysis. Here N, is the total number of confined electrons. The tempera-
ture determined from the straight line region of log o(N,) is 9.0 10* K.
The solid, straight line through the log o(N,) curve is drawn to aid the eye.
Digitization effects can be seen in both curves.

1000 K and about three decades in N, at higher tempera-
tures. Noise and the tail electron condition
[v(0,V3)/ 0)=2] limits the region.

Below 500 K, the above method fails because the re-
quired straight-line region is no longer observable, as can be
understood by the following argument. In general, as the
confinement barrier is lowered, electrons escape from the
radial center of the plasma first because the plasma space
charge causes the effective confinement barrier potential
there to be the lowest. Since the potential across the plasma
increases with radius as mwner?, the effective confinement
barrier potential will increase in height by one T of energy
in a distance (kT/mne®)'?=2Ap. Consequently, only the
tail electrons within a few Debye lengths of the radial center
escape before the signal is contaminated by escaping bulk
(i.e. non-tail) electrons. Since the Debye length decreases
with plasma temperature, the number of tail electrons avail-
able for analysis likewise decreases.’” Below about 500 K,
the signal produced by these tail electrons is not sufficiently
greater than our amplifier noise, and the straight line analysis
of Eq. (BS) fails.

Bulk electrons still contain some temperature informa-
tion. If we relax the condition that v (0,V3)/ v=2 to
v.(0,V3)/ v=0.5, we can employ about 50 times as many
electrons in our analysis, with a correspondingly improved
signal to noise ratio. However, the approximations used to
derive Eq. (B5) are no longer valid. It remains true that most
of the escaping electrons satisfying the new condition come
from the plasma’s central core; virtually all from within a
radius r=10\. At low temperatures the region bounded by
r=10\p is a small fraction of the total plasma; consequently
we assume that both n(r) and X(r) are uniform over this
region. We then fit our data to the formula for the escaped
charge given by Eq. (B2). The computerized fitting routine!?
minimizes the least squares sum

> [Ngaal V3) = ColNogel V3) + C1 1%, (B6)
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FIG. 11. Normalized number of escaped electrons N| vs. eV, /(«T) taken
for the low temperature analysis, displayed on logarithmic (left) and linear
(right) axis. The dash curves are the measured N, and the dot curves are the
fitted ColN nodet -

where N4 is the number of escaped electrons per unit
length, Vi=(V3;—®_.)/(«T), by varying the parameters
Co, C, T and ®,. The sum is over a window in the data
chosen by the experimentalist. The parameter C; removes
any offset in the data, and the parameter ®_ is the potential
at r=0 due to the plasma charge. Figure 11 shows a plot of
Ny (dashed curve) and [CoN 4. (dotted curve) versus
V, for a low temperature plasma. For 500 K=T=<2000K
we find that this fitting procedure and the simplified formula
Eq. (21) yield the same T to within 5%. However, we use the
simplified formula whenever possible since it is easier to
apply and significantly faster to compute.

In the above discussion we assume that the temperature
does not depend on the radius. If we rederive Eq. (B3) while
allowing T to be a function of radius, we find that the mea-
sured temperature is a weighted radial average of T(r).
Since virtually all of the electrons which we analyze come
from the region inside r=10Ap, and since we only monitor
the charge collected on C,, we effectively measure the av-
erage temperature of the electrons between r=0 and the
minimum of 10Ap and r,. When the temperature is low, the
region bounded by r=10\p is a smali fraction of the total
plasma; thus, for low temperatures the measured temperature
is essentially the on-axis temperature.

For high temperatures, estimates of the maximum radial
temperature variation can be obtained by observing the sig-
nals on C, and C, simultaneously as the voltage on Vj is
slowly ramped to ground. The equation for the number of
electrons collected on C, as a function of V5 is similar to
Eq. (B2). Hence, for sufficiently high temperatures,
(1/e)dlogN,/dV,=1.05/(«T), provided restriction similar to
those used in deriving Eq. (B5) hold. We find that tempera-
tures derived from the N, and N, signals agree to within
10%.

For temperatures above 200 K we believe the error in the
temperature measurement to be about 10%. This error in-
creases as the temperature decreases below T=~200K. At
T=~30K the random error is about 30%, and there may be a
systematic error of about 30%. An independent test of the
parallel temperature T, measurement was done by
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Hyatt® using a similar pure-electron apparatus. The perpen-
dicular temperature T, can be measured on his apparatus to
about 5% accuracy. For plasmas in thermal equilibrium,
Hyatt found that their measured T} and T, agreed to within
10%.

In this discussion, we have ignored the fact that the ac-
tual confinement potential barrier is less than the applied
voltage V5 because electrode G5 is finite in length. We have
also ignored the fact that the plasma expands and cools dur-
ing the measurement. Corrections for both of these phenom-
ena are included in the actual analysis of the data.

APPENDIX C: HYATT, DRISCOLL AND MALMBERG
RESULTS

Hyatt et al.>® used a pure-electron plasma trap similar
y p p p

to ours. However, their magnetic field was much lower
(~280 G), their plasma temperatures were generally higher
(~10* K) and their plasma densities were lower
(~10" cm™?). Consequently, their plasmas are in the re-
gime 3X10*<r./b=<10° with \p/r.~30. They measure
v by first forming a plasma with equal Tj and T, . They then
change T} by quickly compressing or expanding the plasma
axially, leaving 7, unchanged. They determine the relax-
ation rate from the subsequent time evolution of Ty and T,
as these temperatures relax to a new common value. They
measure the relaxation rate as a function of density and tem-
perature over a two decade range, with an uncertainty of
about 10%. They compared their data to the Ichimaru—
Rosenbluth prediction and found agreement to about 10%.
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