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Experimental Dynamics of a Vortex within a Vortex
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We report the experimental dynamics of a new two-dimensional (2D) fluid phenomenon that occurs
when an intense, pointlike vortex is placed within a diffuse, circular vortex. Our observations, made
using strongly magnetized electron columns to model the 2D fluid, support the analysis performed by
Jin and Dubin.

PACS numbers: 47.32.Cc, 47.15.Ki, 52.25.Gj
Two-dimensional (2D) fluid flows are common in na-
ture; hurricanes, ocean eddies, Jupiter’s Great Red Spot,
and protoplanetary nebulae are intriguing examples. In
the study of these flows, a number of fundamental vortex
phenomena have been identified: the rollup of a vorticity
filament into vortices via the Kelvin-Helmholtz instability;
the mutual advection of vortices; the merger of two vor-
tices; the axisymmetrization and filamentation of a vortex
in a shear flow; the emergence and stability of a vortex
pattern. Jin and Dubin recently identified a new 2D fluid
phenomenon that occurs when an intense, pointlike vortex
is placed within a diffuse, circular vortex (a disk of uni-
form vorticity) [1,2]. The pointlike vortex induces a wave
on the disk’s perimeter, which subsequently evolves into a
vorticity hole within the disk. The hole is identical to an
antivortex in the disk’s rotating frame.

Figure 1 illustrates the dynamics of a vortex within a
vortex. The black dot is the intense, pointlike vortex and
the grey disk is the diffuse, circular vortex. In general, a
vortex produces a rotational flow around its center, in a
direction dependent on the vorticity’s sign; the positive-
vorticity dot and disk both generate a clockwise flow.
Unperturbed, the disk would rotate uniformly (time is

FIG. 1. The dynamics of a vortex (dot) within a vortex (disk).
The dot induces a wave on the disk’s perimeter, which then
breaks (0.5t) and spawns a filament (1.0t). The filament elon-
gates (2.0t) and reattaches to the disk (3.0t), enclosing a vor-
ticity hole. The dot then pulls the hole into the disk’s interior
(4.0t).
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measured in units of the disk’s rotation period, t). The dot,
however, perturbs the disk’s flow and distorts its perimeter,
inducing a wave. The distorted perimeter self-consistently
contributes to the wave’s growth, and the wave eventually
breaks (0.5t). The hole being excavated in the disk’s
perimeter behaves as a negative-vorticity region super-
imposed upon the original positive-vorticity disk. This
negative-vorticity region produces a counterclockwise
flow, which draws vorticity from the disk and into a fila-
ment (1.0t). The flow elongates the filament (2.0t) and
reattaches it to the disk, enclosing a vorticity hole (3.0t).
Then the dot’s clockwise flow pulls the hole into the disk’s
interior (4.0t). Thereafter the system behaves chaotically.

Figure 1, and all the figures and data herein, is obtained
using strongly magnetized electron columns confined in
a Malmberg-Penning trap (Fig. 2) to model the 2D fluid
[3,4]. Under certain experimental conditions, the system
behaves two dimensionally in the plane perpendicular to
the imposed magnetic field B, evolving by the E 3 B
interaction where E is the columns’ self-electric field. This
evolution is governed by equations identical to those that

FIG. 2. The Malmberg-Penning Trap [12] consists of three
coaxial, conducting cylinders contained within a high vacuum
chamber. The electron columns are confined radially with a
static magnetic field (B � 1 T) and axially with electric fields
(2V is the confining potential). We create the desired ini-
tial 2D electron distribution by projecting the appropriate light
image onto a cesium antimonide photocathode [13] and ground-
ing the left cylinder; electrons are emitted only where there is
light, and they stream along the magnetic field lines into the
central confinement region, preserving their distribution. The
electrons are confined by applying a negative electric potential
to the left cylinder. The distribution is allowed to evolve for
a given time, after which the right cylinder is grounded and
the electrons are destructively imaged by streaming them onto
a phosphor screen. A charge coupled device (CCD) camera de-
tects the resulting image. The image’s intensity is proportional
to the electron density, and therefore to the vorticity.
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FIG. 3. The strong interaction of R � 0.80 and G � 0.093
leaves the dot centered inside the vorticity hole (4.0t).

describe the behavior of an ideal 2D fluid. As electron den-
sity is equivalent to fluid vorticity, a strongly magnetized
electron column is equivalent to a 2D fluid vortex.

Strongly magnetized electron columns are a valuable
tool with which to study 2D fluids. Laboratory fluids are
difficult to manipulate and diagnose, and are subject to
undesired viscous and boundary effects. Numerical simu-
lations, such as vortex-in-cell and contour dynamics, are
computationally intensive, and are subject to numerical
dissipation and discretization effects. Contour dynamics
also fails when filaments form.

The dynamics of a vortex within a vortex depend on
the dot’s radial position (R) and circulation (G). R is
normalized to the disk’s radius; the disk’s radius is fixed
at 0.60 cm � 0.3rwall, which is sufficiently far from the
trap’s wall that its influence is minimized (rwall is the trap’s
wall radius). G is normalized to the disk’s circulation
and is given by �nr2�dot��nr2�disk, where n is the electron
density and r is the radius; the densities are fixed at ndot �
1.0 3 107 cm23 and ndisk � 1.8 3 106 cm23. We vary
G from 0.019 to 0.093 by changing the dot’s radius.

The closer R is to one and the greater G, the stronger
the interaction and the larger the induced wave’s ampli-
tude. For the intermediate interaction displayed in Fig. 1,
R is 0.70 and G is 0.053. When the interaction is strong,
as in Fig. 3 with R � 0.80 and G � 0.093, the dot domi-
nates the flow and winds the disk’s perimeter around it-
self, leaving the dot centered inside the vorticity hole.
When the interaction is weak, the dot’s influence may
be insufficient to pull the hole from the disk’s perime-
ter. Wave amplitudes smaller than 0.10 are suppressed en-
tirely, consistent with an electron-temperature dependent,
finite-column-length blurring effect unique to magnetized
electron columns and not described by the 2D fluid-flow

FIG. 4. Repeated hole formation for R � 0.60 and G �
0.093. (a) A new wave breaks inside the existing hole.
(b) Three resulting holes.
FIG. 5. (a) The time until a wave breaks, tWB, versus R for
five different G’s. (b) tWB scaled by G21 lnG21 versus R.

Euler equations [5] (for n � 2 3 106 cm23, T � 2 eV,
and Lp � 20 cm, the predicted blurring length is 0.05; the
imaging resolution is 0.01).

When the dot remains close to the disk’s perimeter after
the hole has formed, the process may repeat, inducing a
new wave (often within the existing hole) and generating
another hole, as in Fig. 4. Such successive hole generation,
however, is rare and not reproducible.

The time until the wave breaks (tWB) is defined to be the
time at which the perimeter’s distortion develops a purely
radial step. Figure 5(a) plots tWB versus R for five differ-
ent G’s. A notable feature of the data is that tWB asymp-
totes to the same value for large R, independent of G. As
the dot approaches the perimeter, the perimeter appears flat
and passively advects in the dot’s flow. In this limit, the
wave breaks when nonlinear effects become significant;
this occurs approximately when the circulation of the hole
that is excavated from the original flat perimeter (Ghole) is
equal to Gdot. We can estimate tWB’s asymptotic value by
placing the dot on the perimeter, as diagrammed in Fig. 6.

FIG. 6. Setup for calculating tWB’s asymptotic value.
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FIG. 7. The values of R��1 2 R� versus G for when tWB � 1.
The line is the best fit.

At a distance r from the dot, a point will passively advect
about the dot with velocity y�r� � Gdot��2pr�. After a
time t, the point has swept out an angle u�r, t� � y�r�t�r .
Therefore,

Ghole�t� � ndisk

Z r2

r1

u�r , t�r dr � Gdot�t�t�2 ln�r2�r1� ,

where r1 is given by the point labeled in Fig. 6 (note that
it moves outward with time) and t � 4p�ndisk. Apply-
ing the condition that the wave breaks when Ghole � Gdot
yields

tWB �
t

2 ln�r2�r1�
.

We approximate r2 as the point where y�r2��y�r1� � 0.1,
giving r2 � 10r1. Therefore, tWB � 0.2t, consistent with
our data.

Jin and Dubin mathematically analyzed the propagation
of Kelvin waves on the disk’s perimeter and thereby pre-
dict that, for R , 0.7, tWB should scale as G21 lnG21.
Our data, replotted in Fig. 5(b), support this scaling. Fur-
thermore, they predict that when tWB is equal to one, R
and G should be related by R��1 2 R� � G2j , where
j � 0.566 as determined from contour dynamics simu-
lations. We extract these values of R for each G from
Fig. 5(a) and plot them in Fig. 7. The slope of the best fit
line gives j � 0.54 6 0.04, in excellent agreement with
predictions.

We now examine the dynamics of multiple vortices
within a vortex and first consider the evolution of six
symmetrically distributed dots within a disk, each with
R � 0.70 and G � 0.053, in Fig. 8. As in the single dot
case, each dot induces a wave and generates a hole. Each
dot’s flow carries its hole clockwise, moving it both inward
and closer to the neighboring dot (2t). The hole is then
passed off to the neighbor (4t), whose flow also carries
it around clockwise, but now outward, ejecting the hole
from the disk (10t). The initial dot pattern is a known
stable configuration, and it persists during the course of
the evolution, though it decreases in size.

We next explore the evolution of an initially unstable dot
pattern within a disk into a stable pattern via the vortex-
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FIG. 8. Six dots within a disk. Each dot generates a hole,
which, unlike in Fig. 1, is then expelled. The disk expands as
the dots move inward, conserving the total angular momentum.
The energy of the dots increases and the energy of the disk
decreases, conserving the total energy; because the entropy of
the disk also increases, this energy exchange is irreversible.

within-a-vortex phenomenon, a process relevant to the
relaxation of 2D turbulence. In the relaxation of 2D
turbulence, an initially turbulent vorticity distribution will
coalesce into a number of intense vortices in a diffuse
background of vorticity; the vortices chaotically advect,
merge, and filament, often until one vortex or a positive
and negative vortex pair remains [6]. Sometimes, however,
the relaxation is arrested by the “crystallization” of the
vortices into a stable pattern [7,8]. Jin and Dubin proposed
that the vortices crystallize by exchanging energy with the
background, and that the interaction described here ergodi-
cally mixes the background, making the energy exchange
irreversible and maximizing the “regional fluid entropy”
[9,10]. Vortex-in-cell simulations support this analysis
[11]. To test this theory experimentally, we randomly
placed seven dots (each with G � 0.053) within a disk;
the dots quickly crystallized into a stable pattern (Fig. 9).
Future experiments will study the crystallization’s de-
pendence on the disk’s size, circulation, and uniformity.

FIG. 9. Vortex crystallization. Seven initially randomly placed
dots crystallize by interacting irreversibly with the disk.
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