Non-neutral plasma shapes and edge profiles
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Non-neutral plasma shapes and edge profiles are investigated for various plasma and trap
parameters. The equilibrium plasma shape is found numerically and compared to the
analytically predicted shape. Special attention is given to the profile at the plasma end.

I. INTRODUCTION

Interest in non-neutral plasmas is steadily increasing.
Non-neutral plasmas are unusually stable and quiescent;
pure electron plasmas have been confined for longer than
40 000 sec, and densities of 5X 10" cm~—? have been
achieved. Applications of these plasmas currently include
basic plasma physics research, positron research, nuclear
physics targets, low-temperature plasmas, and highly cor-
related plasmas.’

Many experiments use traps similar to the one shown
in Fig. 1. The cylindrically symmetric plasma is trapped
inside a series of gate cylinders. Radial confinement is pro-
vided by an axial magnetic field. Axial confinement is guar-
anteed by appropriately biasing the end gates. The shape of
the plasma in the trap depends on the system parameters—
specifically on the plasma density, radius, and temperature,
and on the externally imposed electric fields that axially

confine the plasma. Experiments often rely on exact knowl-

edge of the plasma density. Frequently, however, only the
density integrated along field lines is measured directly;
knowledge of the plasma shape is required to construct the
volume density.>® Prasad and O’Neil studied the finite
length global thermal equilibrium of non-neutral plasmas.*
The problem of equilibria in a slab geometry is explored by
Turner.’ The plasmas considered in this paper need only be
in equilibrium along individual field lines; they are not
required to be in global thermal equilibrium. Equilibrium
along individual field lines is attained far sooner than glo-
bal thermal equilibrium.

Very cold plasmas in global thermal equilibrium have
uniformly dense interiors. Changes in the plasma density
occur only near the plasma surface, and have a scale length
approximately equal to the Debye length. Many plasmas,
however, are not well described by this cold, global ther-
mal equilibrium limit. Because cross-field transport occurs
slowly compared to motion along a field line, plasmas are
often in a state of local thermal equilibrium, in which the
plasma density follows a Boltzmann distribution along ax-
ial magnetic field lines.>® Plasmas in local thermal equilib-
rium may fall off axially with a Debye scale length, but
need not fall off radially with this scale length.

In general, the plasma reacts to changes in the vacuum
potential by changing its density or its radius, or occasion-
ally both simultaneously. As shown in Table I, plasmas can
be placed into one of three categories. First, we divide
plasmas into “thin” plasmas and “thick” plasmas accord-
ing to whether the voltage drop across the plasma is less
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than or greater than the plasma temperature. If the voltage
drop is greater than the temperature at the plasma end the
plasma tends to adjust its radius; if the voltage drop is less
than the temperature, the plasma adjusts its density. This
division is equivalent to comparing the radius of the
plasma to its Debye length. Note that thin plasmas are not
true plasmas because collective effects are of little impor-
tance. Second, we further divide thick plasmas into two
groups depending on the ratio of the interior plasma po-
tential to the confining gate potential. (The interior plasma
potential is the potential between the grounded storage
gate and the plasma center, well away from the plasma
end.) Plasmas whose interior potential is just less than the
gate potential are close to escaping, and are designated “ill
confined”’; plasmas whose interior potential is much less
than the gate potential are designated “well confined.” Ill-
confined plasmas have a neck that extends into the con-
fining cylinders, while well-confined plasmas have a
squared off end. At the extreme end of ill-confined plasmas,
the local plasma radius will necessarily become small
enough that the plasma will behave as a thin plasma.

Il. THEORY AND SIMULATIONS

The electric field potential inside the trap can be di-
vided into two distinct parts: the gate potential ®, and the
plasma potential ®,. The gate potential satisfies Laplace’s
equation with appropriate boundary conditions, namely,

Vi, (rz) =0,
(1
D (r,z)=V,(2),
where V,(2) is the potential on the gate walls and r,, is the
radius of the wall. The plasma potential @, satisfies Pois-
son’s equation with a grounded wall boundary condition:

Vi, (r,z) = — 4men(r,z),
(2)

®,(r,2) =0,
where n(r,z) is the local particle density and e is the par-
ticle charge. The unique self-consistent solution for the
potential and the charge density inside the trap is found by
assuming that the charges along each field line obey
Boltzmann’s relation:

n(ryz) « exp| — e®(re,z)/T], (3)

where ® = ®, + &, is the total potential and T is the
plasma temperature. The Boltzmann equation is normal-
ized by assuming that either the total charge on a field line
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FIG. 1. Plasma confinement geometry. Axial confinement is achieved by
appropriately biasing the end cylinders with voltages ¥ and V).

is known or that the density at some interior value of z is
known. Although experimental data are often of the first
type, we adopt the latter condition because it is numeri-
cally more convenient to work with a fixed central density.
The same general types of behaviors are found for either
condition.

If the plasma is sufficiently thin, hot, or tenuous, col-
lective effects are unimportant. The plasma particles will
closely conform to the gate potential ®, and the plasma
shape will be largely determined by the external control
voltages. In the opposite limit of thick, cold, and dense
plasmas, collective effects are very important. Figure 2
shows the end shapes of three plasmas with different tem-
peratures. In Fig. 2(a), the plasma is thin and the thermal
energy is larger than the potential across the plasma. The
charge at all radii reacts similarly to the gate voltage and
the density contours are aligned with the gate potential
contours. There is a gradual change in density and little
change in radius. In Fig. 2(c), the plasma is thick and the
potential across the plasma is larger than the temperature.
Here the plasma radius shrinks gradually, but the interior
density remains unchanged. In Fig. 2(b) the plasma pa-
rameters are intermediate between these two extremes, and
the plasma profile adjusts by changing both its radius and
its density. These distinctions are conveniently parame-

TABLE 1. Conceptual division of plasma types.

Thick (True Plasmas})
rp > Ap
Well Confined 1l Confined
Vo> Vp [ Vg2 Vg
[
) =
]
T T T T
VQ ' VQ
Thin (Not True Plasmas)
Tp < AD
I I_
Vg
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FIG. 2. Comparison of three plasma shapes with n = 10° cm =3, r, =2
cm, and R values of (a) 0.036, (b) 3.6, and (c¢) 182. In (a) and (b)
contours mark changes of 10% of the central density. In (c) contours
mark changes of 20% of the central density. One contour (c) is shown in
(d) with different axis scaling to give a clearer picture of the actual
plasma shape. The transition between the biased end cylinder and the
grounded central cylinder is shown at the top of (a).

trized by R, the ratio of the potential across the plasma to
the plasma temperature:

R=mrnee’/T=(r,/22p)? (4)

where 7, is the plasma radius well away from the plasma
end and n, is the central density. Note that thin plasmas,
defined by R <1, do not satisfy one of the common condi-
tions that define the plasma state, namely, that r, > Ap-
Here Ap = (T/4mnge?)/? is the Debye length.

If R»] and if 7, < r,, then the plasma shape is largely
determined by the degree of confinement, i.e., by the ratio
of the potential at the center of the plasma to the maximum
stopping potential. In Fig. 3, we show the plasma shape for
three different gate voltages. The plasmas range from well
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FIG. 3. Numerical (solid) and theoretical (dotted) shapes of a single
plasma with R = 182 for three confinement voltages of (a) 104 V, (b)
125 V, and (c) 500 V. Solid lines mark 20%, 50%, and 80% of the
central density.

to ill confined with r,/r,, = 0.1 and R = 182. For the most
ill-confined plasma, Fig. 3(a), the interior plasma potential
V,=103.44 V is almost equal to the confining gate voltage
V,=104 V, and the plasma protrudes well into the con-
fining gate. For V, sufficiently close to ¥, the plasma will
end near the position of the voltage maximum in the con-
fining gate (normally, but not always, in the center of the
confining gate).

For plasma radii T, well less than wall radii r,, we find
that for constant ¥, and ¥V, the plasma shape is roughly
independent of 7,. Only when r, is comparable to 7, do the
off-axis components to the external gate fields greatly affect
the plasma shape. In Fig. 4, we show the shape for an
ill-confined plasma for three values of 7,

We have routinely simulated plasmas with R values as
high as 450. For a density of 10° cm ~* and a radius of 0.1
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FIG. 4. Numerical (solid) and theoretical (dotted) shapes for plasmas
with R = 182 and (a) r,,/rw = 0.1, (b) r,,/r,,, = 0.5, and (c¢) rp/rw = 0.9.
Solid lines mark 20%, 50%, and 80% of the central density. The con-
finement voltage and density are chosen so that the plasma ends at the
same axial position.

cm, this limit corresponds to a plasma temperature of 0.01
eV. The plasma profiles are found iteratively; Poisson’s
equation is used to find the electric fields from an assumed
density distribution, and then the charge is redistributed
along field lines according to the Boltzmann relation.
These steps are repeated until adequate convergence is ob-
tained. Unphysical numeric instabilities cause simulations
of high density, low-temperature plasmas to converge very
slowly, and, without careful control, slight density and po-
tential errors grow rapidly. Unless the grid spacing inside
the plasma is on the order of the Debye length or smaller,
these instabilities will prevent adequate convergence. This
algorithm, which we adapted for our numeric simulation,
was originally developed by Prasad, and relies on a Poisson
solver algorithm developed by Hughes.” We have modified
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the Poisson solver algorithm to allow variable size grid
spacing in the r direction. All simulations are run until
further iterations do not significantly alter the plasma
shape, and the numerical results presented here are inde-
pendent of any change in the grid spacing.

In the limit of constant density thick plasmas
[Ap—0,n(7,z) —ng), for which r, < r,, the plasma shape can
be found analytically. We will assume that far from the
confining gates, the on-axis plasma potential is V¥, the
problem to be solved is to determine the local plasma ra-
dius p(z), given a varying on-axis confinement gate poten-
tial ®,(z). In the Appendix we demonstrate that potential
of a plasma of variable radius is approximately

’
21rn0ep2 In (Tw) s r>p,

5
()33} e
nl—fj+x - y I'<ps
p) 20 TP
where p(z) is the sought after function describing the
plasma shape. This approximation is most accurate when
the plasma is narrow compared to the wall radius, and its

radius changes sufficiently slowly with z.
On the r =0 axis, Eq. (5) reduces to

@ ,(2) =2mneep*[In(r,/p) +3}. (6)

The Boltzmann condition assures that the potential along
field lines is constant inside the plasma. As shown above,
the plasma meets this condition by varying its local radius
p(z). Thus the total potential must be constant along the
r=0 axis:

Vy=®,(2) + P,(2)

d>p( rz)=
2mngep?

=®,(2) + 2mngep*[In(r,/p) + 31, (7

where V), is the value of the total potential at the plasma
center. This equation is easily solved for p(z), to wit

p*In(r,/p) +31=(1/2mnee) [V, — P (2)]. (8)

As shown in Figs. 3 and 4, the solution of Eq. (8) is often
in close agreement with the numeric simulations. For p
=~ r,, however, the agreement is not nearly as good [Fig.
4(c)]. Since this analytic method is much faster than sim-
ulations (seconds instead of days, in the extreme), it
should be employed whenever possible. Although we are
unable at this time to numerically simulate off-axis plas-
mas, we speculate that the analytic method given here
could be easily adapted to finding the shapes of such plas-
mas.

lil. EDGE BEHAVIOR

As expected, we find that all thick plasmas have inte-
rior densities independent of z;all density variations occur
near the plasma edge. In addition, all of the edge density
profiles are qualitatively similar, differing only in the
length scale for the dropoff. Most plasmas exhibit three
fundamentally different types of edge behavior. First, well
away from the plasma end, the plasma surface extends
normal to the radial direction. The edge behavior here is
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FIG. 5. The density field at the edge of the plasma, near its ends, as a
function of distance perpendicularly outward from the plasma surface.

governed by slow cross-field transport, which eventually
causes the plasma to approach global thermal equilibrium.
Rather than model this extremely complicated process, we
simply choose the radial density profile to be physically
reasonable. Second, at the extreme tips of the plasma
where the plasma radius is almost zero, the plasma is tech-
nically thin (R«1) and requires numerical treatment. Fi-
nally, the plasma away from the extreme tip, but not yet in
the bulk of the plasma, can be treated analytically. The
edge thickness in this region is on the order of the Debye
length.

Figure 5 shows the density as a function of u, the
distance outward normal to the plasma surface for a thick
plasma. Numerically, it is found that the density near the
plasma (n > ny/2) can be modeled as

n=ny(1 — %), (9)

while outside the plasma (n < ny/3) the dependence be-
comes

n«ngexp[ — (u — up)?/2L%). (10)

For plasmas in global thermal equilibrium, these relations
are in agreement with the “universal function” of Ref. 4.
The numerically obtained results shown in Fig. 5, however,
are not restricted to plasmas in global thermal equilibrium.
All that is required is that the plasma be in local thermal
equilibrium along a magnetic field line. In Fig. 6, Egs. (9)
and (10) are used to determine the scale length L for
plasmas with varying degrees of confinement and various
Debye lengths. We find that away from the extreme tip the
length L is approximately equal to the Debye length and is
independent of the confining voltage. At the extreme tip,
however, the length L scales with both the Debye length
and the degree of plasma confinement. For well-confined
plasmas L approaches the Debye length, but for ill-
confined plasmas L can be many times greater than the
Debye length. [Note that Fig. 3(a) shows a typical ill-
confined plasma.]

If we assume that the plasma potential is well modeled
by Eq. (5), then we can find an analytical form for the
density falloff away from the plasma interior. Qur argu-
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FIG. 6. Falloff distance near the plasma tip (triangles) and away from
the tip (circles) as a function of confinement voltage. All falloff distances
scale with the Debye length. The plasma escapes when V, is lowered
below 80 V.

ment requires only that the plasma be in local thermal
equilibrium, not global thermal equilibrium. To find the
total potential we assume that the plasma has an abrupt
edge at 7,, which changes by an amount r as a result of the
change in gate potential with z. Figure 7 shows the geom-
etry for this calculation. Since by assumption <Dg(b)
= ®,(d), we find from Eq. (5) that

(b b —(I) d —2” (44 l —lll .

Similérly, ‘
®(c) —<I>(f)=1rn0e(rp+5r)2. (12)

Since voltage is constant along field lines inside the plasma
we have ®(b) =P (c). Then the potential difference be-
tween two points of the same radius but at different z and
with different gate potentials is

&(d) — O(f) =2mnge(6r) + O[(6r)3]. (13)

Using the Boltzmann equation, Eq. (3), we can solve for
the density dependence:

—e[®(d) —‘1>(f)]) (
=exp

(r—r,)?
()

n(r)ocexp( 2/1]2)

(14)

By comparing this result with Eq. (10), we conclude that
L can be identified as the Debye length. Although here we

Confining Cylinder

oz

FIG. 7. Geometry for the edge profile calculation.
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assume a constant density in the interior of the plasma, our
argument could easily be adapted to more complicated ra-
dial density profiles.

Because the potential far from the plasma edge is in-
dependent of the detailed form of the density dropoff, Eq.
(14) accurately describes the density profile far outside the
plasma. Since away from the plasma tip the normal to the
plasma surface is nearly in the radial direction, Eq. (14)
agrees with the numerically observed dropoff of Eq. (10).
The approximations used to derive this result break down
when 8z~ 6r, i.e., when the plasma radius is changing rap-
idly. However, this happens only at the plasma’s extreme
tip, where the plasma shape has necked down to
r,S2Ap. Here R<1, and the plasma will begin to adjust its
density instead of its shape. The density will be given by
the Boltzmann relation, with the controlling voltage ap-
proximately equal to the gate potential. For ill-confined
plasmas, this narrow region occurs well inside the con-
fining cylinder. Because the gate potential here varies
slowly, the density falloff is similarly siow. Thus the den-
sity falloff can occur over many Debye lengths. For well-
confined plasmas, however, the gate potential varies
quickly, and the plasma scale length remains approxi-
mately equal to the Debye length.

V. CONCLUSION

In summary, we have examined the shapes and profiles
of general non-neutral plasmas. These plasmas need only
be in equilibrium along individual field lines. The shape
assumed by a non-neutral plasma is determined largely by
its value of R, its degree of confinement, and by its radius.
For many experimentally relevant cases, where R»1 and
r, € r,, a simple analytic theory accurately predicts the
plasma shape. Plasma edges governed by charge transport
along field lines are normally several Debye lengths thick
and have the form of the universal function shown in Fig.
5. However, the edge thickness at the tip of an ill-confined
plasma exhibits a strong dependence on confining voltage.
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APPENDIX: POTENTIAL FROM A ROD OF CHARGE

In this appendix we justify our expression [Eq. (5)] for
the potential of a variable radius plasma. We will find the
appropriate Green’s function, perform the required convo-
lution integral, and show that for many plasmas the poten-
tial is well approximated by Eq. (5). Finally we explicitly
calculate the dominant error in Eq. (5) and show, via a
numerical example, that the error is indeed small.
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FIG. 8. On-axis potential near the end of a charged rod for (a) r/r,
= 1.0, (b) r/r, = 001, (¢) r/r, = 0.0001. The rod extends from minus
infinity and terminates abruptly at z=0.

First we calculate the potential of a semi-infinite, con-
stant density charged rod of radius 7,, extending from mi-
nus infinity to z = 0. Anticipating the result, in Fig. 8 we
show the on-axis potential near the ends of several semi-
infinite rods of different radius. Note that if the rod radius
rp is much less than the wall radius r,, then the length scale
of the potential dropoff near z = 0 is substantially less than
the wall radius. Thus, when calculating the potential of a
plasma with varying radius, only contributions from a
small local neighborhood need be retained.

The potential of a semi-infinite charged rod of charge
with radius 7,, density n, and extending from minus infinity
to z=0 and inside a grounded conducting wall at r

= r,, is given by the Fourier-Bessel series:

Xz

Ty

D, e(7) — ZkaJo()‘ik—r)eXP(

szkJo()%{)exp (erz),

w

), z<0,
P(rz)=

2>0,

(A1)
where J, is a Bessel function of the first kind, y, are the
Bessel function zeros satisfying Jo(yx) = 0, and D, are
unknown coefficients. The infinite length rod potential ®;,¢
is

rw
21rner12, ln(—), r>"1p
r
D (r)= ,,2 v 1 2 (A2)
2mne f ln(a) + z(l — 7/}) ], r<r,.

The Fourier-Bessel series automatically satisfies all the
wall boundary conditions and the z = O derivative match-
ing condition. The coefficients, D,, are determined by
matching the solutions for z <0 and z> 0 across the z=0
boundary, and thus

r
o vnerﬁln(f), r>r
k
2D ’flo(r_) - 17 '
k ¢ 7| 1n T +=l1—= r<r,
mhe ) rp 7 ri P
(A3)
698 Phys. Fluids B, Vol. 2, No. 4, April 1990

Multiplying both sides by »J,(ys7/7,,) and integrating from
0 to r, eventually yields the coefficients Dy:

daner,r, Jy(Xitp/Tw)
Dy=——y 7
Xk 1(xe)

By adjusting the density so that n = V,/{2mer);
+ In(r,/r,)]}, we fix the voltage, ¥, at the center of the
rods. Thus the potential dropoff for z> 0, as shown in Fig.
8, is

(A4)

2V,
P, o(r=0,) =_l—”r_“i___
rp(i +In r,,/rp)
. J (xXurs/rw) — XiZ
X Z ] 3 2/ = ex ( )
x Xeh(ad Tw (AS)
For narrow plasmas this further simplifies to
2V, S (xar/ 1) ( _sz)
= —_— x .
D, 0(r=02) iy, & 0 exp| —
(A6)

It can be shown that this dropoff contains roughly equal
contributions from all length scales between the radius of
the rod and the radius of the wall. Consequently the
dropoff approaches an idealized step function when the
radius of the plasma approaches zero (see Fig. 8).

Next we rewrite Eq. (A1), the potential of the semi-
infinite charged rod, as the sum of two distinct parts,

¢>(r=0,z)=u( _Z)q)inf(r) +(berr(z)7 (A7)

where u(z) is the unit step function, ®;¢(r) is the infinite
rod potential, and P, (z) is the difference between the
actual solution and the step function idealization. If only
the step function term in Eq. (A7) is kept, the Green’s
function is obvious (a delta function) and the convolution
of this Green’s function leads immediately and exactly to
Eq. (5). [Note that the convolution is with a constant
density disk of radius p(z).] The error incurred by using
Eq. (5) to approximate the plasma potential is solely due
to ®,(z). This error is found by forming the Green’s
function corresponding to ®.,. Carefully accounting for
the change in sign at z = 0, the Green’s function is found
by differentiating @ ( — 2z):

dmnep (2 Y[ xw(2')/1,]
¥t ()

( — XklZ ~Z|)
Xexp| ————

Ty

Gerr(z”z;p) = %

— V., [p(2)]16(z —2), (A8)

where p(z) is the local, varying plasma radius and
V. (r) is the axis voltage of an infinite length rod of plasma
of radius p.

The correction to the potential in Eq. (5), ®.,,, is given
by the convolution integral
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q)err(z): - Voo [P(Z)}
2mne o
2¢.
+ zk: oo )L )

—xkl|Z —z
Xexp(—)-(—l-(-l;———l)dz', (A9)

w
where we have wused the approximation that
Jilxkp(z)/r,) = xwp(z')/2r,. This expression can be
simplified by canceling the first term with the zeroth-order
contribution from the integral:

® z 2mne © 2( 3
(D)= 2w ) P

—xi|Z —z
—pX(2) ]exp(llr——————l)dz’.

w

(A10)

The above expression is generally valid and can be used to
estimate the errors inherent in Eq. (5).
In order to provide a specific numerical example, we

use Eq. (8) to express the plasma radius in terms of the -

gate potential. Assuming for simplicity that the plasma is
poorly confined [V, = ®,( — )] gives the result

Ourle) = I A [ICXCREXED

— x|z —z
Xexp(Lklr———l)dz,'

w

(Al11)
with

A={xro i) [In(r,/p) +313 71
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and where we have approximated the plasma radius as p
inside the logarithm. As expected, we find that the error as

[In(r,/p)]
To proceed, we approximate the r = 0 vacuum poten-
tial as ‘
1V, exp(x12/1,), z<0,

) (A12)

o V,[1—lexp( — xiz/r,)], z>0,

where V, is the confining wall voltage. Carrying out the

integration in Eq. (A11) and assuming each term sepa-
rately attains its maximum value yields the result

@, ~0.06V,

for a plasma with »,/r,, = 0.1 and a central voltage V), far
from the plasma ends. Although the magnitude of &, can
be larger for well-confined plasmas, the rapidly changing
gate potential causes this greater error to have little impact
on the plasma shape. We conclude, therefore, that as long
as p/r, €1, Eq. (5) accurately approximates the true
plasma potential.
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