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Recent experiments demonstrated that the cyclotron cooling rate of an electron plasma in a Penning-Malmberg trap can
be increased by placing the plasma in a cavity and adjusting the magnetic field to make the cyclotron motion resonant
with a cavity mode. Here this physics is studied with a coupled oscillator model and analyzed both analytically and
numerically. Plasma cooling performance is evaluated over a wide range of system parameters, including the number
of electrons, the coupling to the local electric field, the magnetic field gradient, and the detuning between the cavity
and cyclotron frequencies. Scaling the equations shows that the system is well-described by a few key dimensionless
quantities.
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I. INTRODUCTION

Cold nonneutral lepton plasmas are employed in a wide
range of applications1. Some of these applications, such as an-
tihydrogen synthesis2, require temperatures in the low tens of
Kelvin. The steady-state temperature of these trapped plasmas
is determined by the balance between heating (which arises
from external noise sources, the temperature of the confine-
ment environment3, and plasma expansion) and cooling (from
energy radiated away through the cyclotron emission). Except
at the lowest temperatures4, collisions between the charged
particles in the plasma rapidly equilibrate the perpendicular
and parallel temperatures5. In the absence of a heating mech-
anism, the plasma would thus come into thermal equilibrium
with the black body radiation of its environment, but with
heating the equilibrium temperature is higher6. A simplistic
but useful model yields Teq = T0 +H/γ , where T0 is the envi-
ronment temperature, H is the heating rate, and the radiative
energy loss rate for electrons is γ = 0.26 B2 s−1 when B is in
Tesla. If the rate of radiative loss can be increased, then the ef-
fects of any heating sources H can be concomitantly reduced.
One method, which is impractical beyond a few Tesla is to
increase the magnetic field. Another is to utilize the Purcell
effect, placing the plasma in a microwave cavity where a mode
is resonant with the cyclotron frequency, as first proposed by
O’Neil7 in 1980.

The original discussion of the Purcell effect8 concerned the
nuclear magnetic resonance of nuclear spins in a cavity. One
way to think of this system is that the cavity concentrates the
electromagnetic modes to a small range of frequencies, en-
hancing the relaxation rate. The corresponding electron cy-
clotron resonance with one electron in a cavity has been care-
fully studied9. The cavity plus one electron can be thought of

a)Electronic mail: k-gene@berkeley.edu
b)Electronic mail: robichf@purdue.edu

as two coupled oscillators one of which, the cavity, is more
highly damped; the interaction between the cavity and the
nearly undamped cyclotron motion causes energy to flow from
the cyclotron motion to the cavity, where the energy is lost by
damping. The plasma case7 is analogous to having multiple
oscillators. They all interact with a single cavity mode, which
couples their dynamics and facilitates rapid transfer between
the electron cyclotron motion and the cavity.

The first experimental verification came in 2015, where
enhanced cooling was demonstrated6 for low numbers of
plasma electrons (< 106). The plasma was kept in a Penning-
Malmbeg trap, with the walls of the trap slightly bulged to
produce an effective cavity10 with Q ∼ 1000. In these exper-
iments significant enhancement over free-space cooling was
obtained (factor of 10 or more). Subsequent experiments11,12

further explored the efficacy of plasma cavity cooling as a
function of particle number and magnetic field gradient, and
demonstrated cooling for particle numbers approaching 108.

While the theory for one electron interacting with a cav-
ity mode is well understood, Ref. 6 found several counter-
intuitive results for the many-electron case. For example, the
single electron rate is larger the closer the electron is to an
antinode of the cavity mode, yet Ref. 6 found the radiative
decay rate was often largest when the plasma was trapped at
a node of the cavity mode. Furthermore, the cooling rate de-
creased as the number of electrons increased, well before the
cavity was overloaded (the cavity temperature remained com-
parable to or below the plasma temperature).

We describe a simplified model for treating this system and
perform calculations in several limits of the plasma parame-
ters. The simplified model is cast as a set of coupled, damped
oscillators with the oscillation amplitude scaled so that the cy-
clotron motion and the cavity oscillation are treated on the
same footing. We describe how the parameters in the sim-
plified model are related to physical parameters in an exper-
iment and how to incorporate features like a spatially depen-
dent magnetic field, spatially dependent coupling to the cav-
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2

ity mode, and collisions with background neutrals. We also
describe how to modify the equations to treat plasmas with
millions of electrons using only a few thousand representative
electrons. In the limit that the fastest rate in the system is the
cavity decay rate, we give a set of rate equations involving
4 coupled temperatures. In all examples, we give a physical
description for the behavior of the plasma.

This paper is organized as follows. In Sec. II we derive the
coupled oscillator model. In Sec. III the model is analyzed
under the simplifying assumption that axial dynamics is not
important. We find that the dynamics is described by a com-
bination of single-electron and multi-electron effects, and we
identify different regimes of cooling depending on ratios of
an appropriately defined coupling strength to the cavity mode
and the frequencies NΓ1, Γ, δΩ, and ∆. Here Γ1 is the single-
electron decay rate at a cavity resonance, Γ is the cavity mode
decay rate, δΩ is the spread in electron detuning and ∆ is
the mean detuning between the electron cyclotron motion in
the plasma and the cavity mode. Comparisons with numerical
simulation are provided in Sec. IV. The case of axially bounc-
ing electrons is considered in Sec. V and collisions are briefly
considered in Sec. VI. Conclusions are presented in Sec. VII.

II. BASICS OF MULTI-ELECTRON INTERACTIONS
WITH RESONANT CAVITY

In this section we derive equations describing the interac-
tion of a cavity mode with electrons located near the axis of
the cavity. Our main result of the paper is the set of Eqs. (8),
which provide a tractable description of plasma cooling in a
cavity. These come from Maxwell’s equations and the Lorentz
force law, with approximations made to model a regime typi-
cal of magnetized plasma experiments.

We begin by writing the vector potential Acav(x, t) for a TE
radiation field (a similar analysis holds for TM fields) inside a
cylindrical resonant cavity as

Acav(x, t) =
mec

e
∑
α,λ

a
[λ ]
α (t)h

[λ ]
α (x)exp(−iωα t)+ c.c.. (1)

The electron mass, electron charge, and speed of light are
me, e, and c respectively. Here α = {mnp} is the mode

(multi)index, a
[λ ]
α is the dimensionless mode amplitude, h

[λ ]
α

is the dimensionless mode function, ωα is the normal mode
frequency, and λ = 1,2 labels the degeneracy, as needed
(the m 6= 0 TEmnp modes are doubly-degenerate in a cavity
with perfect azimuthal symmetry). We use the normalization

max(|h[λ ]
α |) = 1 for the mode function h and define the effec-

tive mode volume Vα through

∫
d3
xh

[λ ′]∗
α ′ ·h[λ ]

α =Vα δα ′α δλ ′λ , (2)

where δµµ ′ = 1 when µ = µ ′ and 0 otherwise.
We couple the cavity field (1) to a collection of N elec-

trons, with the jth electron having position x j(t) and veloc-
ity v j(t). We assume there is an additional (external) axial,

nearly-uniform magnetic field Bext = Bẑ that sets the electron
cyclotron frequencies Ω j = e|Bext(x j)|/me and provides ra-
dial confinement. We model inhomogeneities in Bext with
position-dependent cyclotron frequencies, so different elec-
trons will generally have different Ω j. Axial confinement is
provided by an external electric field Eext(x, t) = E(z)ẑ. The
coupled system obtained from Maxwell’s equations and the
Lorentz force law is

−∇2
Acav(x, t)+

1

c2

∂ 2Acav(x, t)

∂ t2
= µ0J(x, t)

=−eµ0 ∑
j

v j(t)δ (x−xj(t)),
(3a)

v̇ j =− e

me

[v j ×Bext +Ecav(x j, t)+Eext(x j, t)] , (3b)

where Ecav = −∂Acav/∂ t is the cavity electric field, we dis-
regard the cavity magnetic field in Eq. (3b) as its effect on the
electron motion is negligible compared to the effects of Bext

and Ecav, and we neglect any direct interactions between the
electrons (though accounting for the electrostatic mean self-
fields would require only minor modifications to the above
equations).

To simplify the coupling equations, we first substitute
(1) into (3), then use the eikonal approximation |ȧ/a| ≪
ω, |ä/ȧ| ≪ ω and introduce the spherical basis ê± = (±x̂−
iŷ)/

√
2, ê0 = ẑ. Recall that a vector written in the spherical

basis v = ∑vmêm has components vm = ê∗m ·v and in particu-

lar v± = (±vx + ivy)/
√

2. We assume the frequency spacing
of cavity modes is large enough that electrons will only be
resonant with a single (degenerate) cavity mode, decoupling
all other modes from our equations. We thus omit the mode
indices for clarity.

We factor out the dominant oscillation in the system by
defining ā via āexp

(
−iΩ̄t

)
= aexp(−iωt) and define v̄ j± ≡

v j± exp
(
∓iΩ̄t

)
, where Ω̄ ≡ ∑ j Ω j/N is the average cyclotron

frequency of the electrons. We discard any remaining fast
(non-resonant) oscillations using the rotating wave approxi-
mation, leaving

˙̄a[1] =

(
i∆− Γ

2

)
ā[1]− iµ0e2c

2meωV
∑

j

v̄ j−h
∗[1]
− (x j), (4a)

˙̄a[2] =

(
i∆− Γ

2

)
ā[2]− iµ0e2c

2meωV
∑

j

v̄ j−h
∗[2]
− (x j), (4b)

˙̄v j− =
(
−i∆ j −

γ

2

)
v̄ j−− iωc

[
ā[1]h

[1]
− (x j)+ ā[2]h

[2]
− (x j)

]
,

(4c)

v̇ jz =−eE(x j)/me, (4d)

where ∆ ≡ Ω̄−ω is the detuning of the average cyclotron fre-
quency from the cavity, ∆ j ≡ Ω j − Ω̄ are the detunings of the
individual cyclotron frequencies from the average cyclotron
frequency, Γ = ω/Q is a damping introduced to model re-
sistive losses in the cavity walls (Q denotes the Q-factor of
the cavity), γ is a damping introduced to model coupling to
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3

traveling wave modes that leave the cavity (since our cavities
are embedded within waveguides), and x j =x j(t) is the time-
dependent position of electron j. The equations for v̄ j+ follow
from v̄ j+ = −v̄∗j−. See table I for a summary of notation and
definitions. The terms that have been dropped are counter-
rotating, oscillating like exp(2iωt), and they contribute cor-
rections of order ∆/ω , Γ/ω or smaller. Dropping them is valid
so long as ω and the Ω j are larger than any other frequency
scale in the system. We assume that the cyclotron radius is
smaller than any other length scale, so that h±(x j) can be
evaluated at the center of the cyclotron orbit (guiding center)
of the jth electron.

In accordance with experiment, we take the plasma to be
near the axis of the cavity. Thus, the guiding centers have
radial coordinates ρ j satisfying ρ j/ρcav ≪ 1, where ρcav is
the radius of the cavity. We can take linear combinations of
the degenerate modes so that near the axis the new modes
are almost completely left/right circularly polarized. We

can then choose a labeling convention such that h
[1]
+ (ρ ≪

ρcav), h
[2]
− (ρ ≪ ρcav)∼ (ρ/ρcav)

2 ≈ 0, hence the λ = 2 mode
approximately decouples and leaves

˙̄a =

(
i∆− Γ

2

)
ā− iµ0e2c

2meωV
∑

j

v̄ j−h∗−(x j), (5a)

˙̄v j− =
(
−i∆ j −

γ

2

)
v̄ j−− iωch−(x j) ā, (5b)

v̇ jz =−eE(x j)/me, (5c)

where we have dropped the degeneracy labels.
Lastly, we introduce oscillator variables

b0 ≡ ā, (6a)

b j ≡
e

ωc
√

2meV ε0
v̄ j−, (6b)

which make Eqs. (5) more symmetrical:

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +∑

j

b jη
∗
j , (7a)

iḃ j =
(

∆ j − i
γ

2

)
b j +b0η j, (7b)

v̇ jz =−eE(x j)/me, (7c)

with η j = eh−(x j)/
√

2meV ε0. Once the external electric field
is specified, Eq. (7c) can be solved for z j(t), which gives the
axial motion of the guiding centers. Substituting the solution
back into Eqs. (7a)-(7b) leaves

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +∑

j

b jη
∗
j (t), (8a)

iḃ j =
(

∆ j(t)− i
γ

2

)
b j +b0η j(t), (8b)

with the guiding center motion providing the time-dependence
of η j and Ω j. In the rest of the paper, we detail the impli-
cations of Eqs. (8) for plasma cooling via electron cyclotron
radiation. From the definitions above, the electron kinetic en-
ergy (which we use as a proxy for the plasma temperature) is

proportional to ∑ j |b j|2. Solving (8) for b j(t) thus allows us
to determine the cooling rate of the plasma.

Eqs. (8) are linear in the (complex) oscillator amplitudes,
so the system may be regarded as a type of Schrödinger equa-
tion id|b〉/dt = M(t)|b〉. The frequency η couples the (cavity
and plasma) oscillators and plays a role similar to the Rabi
frequency, setting the timescale for energy exchange between
the cavity and the plasma (in the absence of dissipation). Al-
ternatively we can view Eqs. (8) as a collection of (N + 1)
oscillators with a special type of non-local coupling (all oscil-
lators coupled to one). See Refs. 13–23 for other applications
of such coupled oscillator systems. Lastly we note that a simi-
lar formalism (with appropriate adjustments to Γ, η , etc.) can
be used to model other cooling mechanisms24 (such as resis-
tive cooling). For example, if we wish to apply our formalism
to ion cooling it may be impractical to use cyclotron cool-
ing since having a cavity mode resonant at the ion cyclotron
frequency requires a very large cavity. However, we can rein-
terpret η as a cavity-plasma coupling strength resulting from
an appropriate alternative cooling mechanism thereby allow-
ing a similar analysis (with equations similar to (8)) for non-
cyclotron cooling.

III. CAVITY INTERACTION WITH AXIALLY
STATIONARY ELECTRONS: THEORETICAL
CONSIDERATIONS

A. Introduction

We first analyze Eqs. (8) in the absence of axial motion.
This fixes the guiding centers in place (equivalent to setting
Eext ≈ 0 and initializing the electrons with no axial velocity)
and gives each electron its own time-independent Ω j, which
results in a time-independent M. The solution for the oscil-
lators is thus |b(t)〉 = exp(−iMt) |b(0)〉. Solving the system
is reduced to diagonalizing M. In this section, we analyti-
cally solve the system for the case of a single electron and the
case of many electrons with identical cyclotron frequencies.
Then we introduce the theoretical framework for understand-
ing the numerical simulations of many electrons with detuning
(Sec. IV). Though in practice, electrons will always have ax-
ial motion, key features of plasma cooling can be understood
without including axial motion, so we postpone discussion of
its additional effects to Sec. V.

B. Behavior of a Single Electron

For a single electron, we expect enhanced radiative power
loss from coupling to the cavity due to the Purcell effect. 8 We
reproduce the calculations here using our notation. Note that
with only one electron, Ω1 = Ω̄ ≡ Ω and thus ∆1 = 0. Eqs. (8)
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become

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +b1η∗

1 , (9a)

iḃ1 =−i
γ

2
b1 +b0η1. (9b)

To find the decay rate, we look for eigenvalues of Eqs. (9) by
substituting b0,b1 ∼ exp(−iαt). The complex frequency α
satisfies the quadratic equation

(
α + i

γ

2

)(
α +∆+ i

Γ

2

)
= |η1|2. (10)

It is instructive to examine the two solutions in the limit η ≪
Γ,∆:

α1 ≃−∆− i
Γ

2
− |η |2

∆+ i(Γ− γ)/2
, (11)

and

α2 ≃−i
γ

2
+

|η |2
∆+ i(Γ− γ)/2

, (12)

where α1 corresponds to the mode where mainly the cavity is
excited and α2 corresponds to the mode where mainly the cy-
clotron motion is excited. We can discard γ from the denomi-
nators as Γ ≫ γ in the cases of interest. The two solutions

α1 ≃−∆−δω − i
Γ−Γ1

2
, (13)

and

α2 ≃+δω − i
γ +Γ1

2
, (14)

thus show a frequency shift

δω ≡ 4|η |2∆

Γ2[1+(2∆/Γ)2]
, (15)

and a change in decay rate

Γ1 ≡
4|η |2

Γ[1+(2∆/Γ)2]
. (16)

The enhanced single-electron decay (16) offers a useful
heuristic for optimizing cooling of plasmas with many elec-
trons, since Γ1 sets the cooling timescale even in the multi-
electron case. For example, cooling is optimized when the
average plasma cyclotron frequency is on resonance (∆ = 0),
when the plasma is at an anti-node (larger η), and at larger
cavity Q (smaller Γ). Conversely, electrons with large detun-
ings will not cool efficiently, so it is important to keep the
cyclotron frequencies within the cavity linewidth.

C. Behavior of Many Electrons

We now turn to the case of many electrons interacting with
the cavity. If the magnetic field is non-uniform, the cyclotron
frequencies will have a spread

δΩ2 = 〈(Ω− Ω̄)2〉. (17)

Eq. (16) suggests we should couple all electrons on resonance
and thus minimize δΩ; however, coupling additional reso-
nant electrons suppresses power loss, as only a single collec-
tive mode, the superradiant mode (Eqs. (18)), couples directly
to the cavity. The superradiant mode experiences enhanced
power loss, while the remaining subradiant modes mix into
the superradiant mode in proportion to their detunings. In the
limit of no detuning (uniform magnetic field), only the super-
radiant mode (containing 1/N of the total energy) will decay,
leaving the electrons with most of their initial energy.

1. Uniform magnetic field

In a uniform magnetic field, all electrons have ∆ j = 0.
Eqs. (8) can be solved exactly in this regime by introducing
the superradiant mode bc that couples directly to the cavity
and the N −1 subradiant modes orthogonal to it,

b j = η jbc/
√

N〈|η |2〉+orthogonal, (18a)

bc = ∑
j

η∗
j b j/

√
N〈|η |2〉, (18b)

where 〈|η |2〉 = (1/N)∑ j |η j|2. (Two modes ∑ j c jb j and

∑ j c′jb j are orthogonal if ∑ j c∗jc
′
j = 0.) The orthogonal modes

decouple from the system and decay with a rate γ , leaving
only the superradiant mode coupled to the cavity,

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +

√
N〈|η2|〉bc, (19a)

iḃc =−i
γ

2
bc +

√
N〈|η |2〉b0. (19b)

These equations have the same form as (9) with |η1|2 replaced
by N〈|η1|2〉. Thus, for N|η1|2 ≪ Γ (equivalently NΓ1 ≪ Γ)
the superradiant mode decays with a rate

ΓN = NΓ1 =
4N〈|η |2〉

Γ[1+(2∆/Γ)2]
. (20)

This is a manifestation of Dicke superradiance,25,26 since the
superradiant mode contains on average

√
N particles and has

a radiation rate of (
√

N)2 = N times that of a single particle.
The condition NΓ1 ≪ Γ ensures the eigenmodes of the sys-

tem are almost pure cavity or plasma modes. For later conve-
nience we define the cavity-plasma mixing parameter

χcrit ≡ ω2/(NQ2η)∼ Γ/(NΓ1). (21)

The cavity and plasma are largely unmixed for χcrit ≫ 1 and
mixing becomes strong as χcrit → 1. In the strong mixing
regime, we need the general form for the superradiant decay
rate (obtained by solving for the eigenfrequencies of (19)):

ΓN =

{
Γ
2

(
1−
√

1−16/χcrit

)
for χcrit > 16,

Γ
2 for χcrit ≤ 16,

(22)

where we have set ∆,γ = 0 for simplicity. We see that strong
mixing causes both the cavity and plasma decay rates to be-
come Γ/2, an effective shift of the cavity Q due to the plasma.
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5

The above result has important implications for cavity cool-
ing of the cyclotron motion. If the magnetic field is too
uniform and there is nothing to disturb the electron normal
modes, then one mode with energy ∼ kBT will lose energy
very rapidly. However, the N − 1 other modes will lose their
energy very slowly. Since N is a large number, this ideal sys-
tem does not significantly benefit from coupling to the cavity
mode.

2. Dephasing due to magnetic field gradient

We now turn to the case where the magnetic field is non-
uniform, so that different electrons have differing cyclotron
frequencies with spread δΩ (17). The superradiant mode can
now mix with the subradiant modes through dephasing due to
the spread in cyclotron frequencies. We study this behavior
and how it affects removal of energy from cyclotron motion
through numerical simulations in Section IV. Here we lay the
theoretical groundwork for understanding the results.

To prepare, we simplify Eqs. (8) further by setting all
η j =η , with η real (this occurs, for example, when the plasma
is small compared to the variation in the shape of the cavity
mode). We introduce dimensionless time τ ≡ ηt, dimension-
less decay rates Γ̃ ≡ Γ/η , γ̃ ≡ γ/η , and dimensionless detun-
ings ∆̃ ≡ ∆/η , ∆̃ j ≡ ∆ j/η . Unless noted otherwise, a tilde on
a quantity with units of frequency will indicate rescaling by
η . In dimensionless variables, the basic coupling equations
become

i
db0

dτ
=−

(
∆̃+ i

Γ̃

2

)
b0 +∑

j

b j, (23a)

i
db j

dτ
=

(
∆̃ j − i

γ̃

2

)
b j +b0. (23b)

We set ∆̃ = 0, as its effect was discussed in Section III B. We
will see that the decay of the energy in cyclotron motion is
generally fast compared with the decay rate γ , so we set γ̃ = 0
as this has little effect on our results. With these simplifica-
tions, Eqs. (23) are governed by three parameters: Γ̃, N, and
δ Ω̃ ≡ δΩ/η , the characteristic spread of the ∆̃ j. Typical ex-
perimental parameters considered in this paper are equivalent
to normalized parameter values Γ̃∼ 103−104, N ∼ 103−107,
and δ Ω̃∼ 0−2Γ̃∼ 0−104. The dimensionless single electron
decay rate satisfies (when ∆̃ = 0) Γ̃1 = 4/Γ̃ ∼ 10−4 −10−3.

With the help of simulations (see Section IV) we identify
several important regimes. When NΓ̃1 ≪ Γ̃ and detuning is
small, δ Ω̃ ≪ Γ̃, the system in (23) can be thought of as a per-
turbation to the uniform magnetic field case discussed in Sec-
tion III C 1. That is, the subradiant modes are weakly coupled
to the superradiant mode – cavity mode system (19). In this
small detuning regime, the rate at which energy is extracted
from cyclotron motion is governed by the parameter

χ ≡ (δ Ω̃)Γ̃/N = (δΩ)ω/(NQη2)∼ δΩ/(NΓ1), (24)

the ratio of average frequency spread to the single-particle de-
cay rate. The transition from small to large detuning occurs as

δ Ω̃ → Γ̃ or equivalently as χ → Γ̃2/N = χcrit. This critical χ ,
χcrit was introduced in Eq. (21), where it was shown to govern
the level of mixing between plasma and cavity.

We can now use χ and χcrit in place of δ Ω̃ and Γ̃ to charac-
terize the behavior of cyclotron cooling, and the above dis-
cussion indicates the existence of four regimes, defined by
whether χ ≪ χcrit or not and whether χcrit ≫ 16 or not (see
Eq. (22)). However, for small χcrit (of order 16 or less), there
is very little cavity-enhanced cooling of the plasma, no mat-
ter the value of χ . This effectively gives us a single regime,
which we refer to as weak cooling. For large χcrit, we have
the small detuning (χ ≪ χcrit) and large detuning (χ & χcrit)
regimes. Both of these regimes can support relatively strong
cooling, with improved cooling at larger χ in the small detun-
ing regime and smaller χ in the large detuning regime. See
Fig. 1 for details on the small detuning regime and Fig. 2 for
a graphical summary of the behavior in the different regimes.

One might wonder how particle number affects these
regimes, but an interesting feature of (23) is that at fixed
χ and χcrit, the behavior of the system in normalized time
Γ̃τ = Γ1t is largely independent of N. Specifically, the dimen-
sionless decay rate (normalized to Γ̃1) for N ∼ 1000 particles
differs from the decay rate at larger N (at fixed χ and χcrit)
by less than ∼ 1%. This is because the particle number N

plays two roles. On the one hand, N sets the parameters of
the system such as χ and χCrit; on the other hand, N sets the
number of random draws from a continuum Vlasov-like dis-
tribution (see Appendix B for more details on this continuum
limit). By disentangling these roles, we can simulate a plasma
of Ne electrons using only Nm ≪ Ne macroparticles (random
draws). Since the current is ∝ Nq and the coupling to the cav-
ity has strength ∝ q/m, we need to keep Nmq2

m/mm =Nee2/me

fixed to ensure the correct system parameters independent
of the number of samples Nm. This corresponds to hold-
ing Nη2 fixed and thus also holding χ = (δΩ)Γ/(Nη2) and
χcrit = Γ2/(Nη2) fixed. After setting χ and χcrit using the true
plasma and cavity parameters (using the true particle number
Ne), the remaining N in our model is just the macroparticle
number Nm, which we can set as low as Nm ∼ 1000 to prop-
erly simulate the plasma.

IV. CAVITY INTERACTION WITH AXIALLY
STATIONARY ELECTRONS: NUMERICAL SIMULATION
AND ANALYSIS

A. Small Detuning, χ ≪ χcrit, χcrit ≫ 16

We now solve Eqs. (23) numerically. We first look at
the regime where the electron cyclotron frequencies are well
within the linewidth of the cavity, δ Ω̃ ≪ Γ̃. The parameters
for the simulations were chosen to match those for the TE121

mode of Ref. 6. The cavity frequency is ω = 2π ×21.8 GHz
with a decay rate of Γ = ω/1580. The effective mode volume
is V = (1/0.83) cm3, which leads to a resonant single-electron
decay rate of Γ1 = 4η2/Γ = 60.9 s−1.

In all calculations, the amplitude of each electron’s cy-
clotron motion, b j, is chosen randomly with a Gaussian distri-
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6

Figure 1. Evolution of the normalized temperature T/T0 of N = 1000
electrons with respect to the dimensionless time parameter Γ̃1τ is
shown. The electrons are given random cyclotron frequencies drawn
from a uniform distribution with standard deviation δΩ. The top
seven curves correspond to χ = 0,1,3,5,10,20, and 30 with greater
cooling at larger χ . The steepest decay corresponds to the single
electron result with decay rate Γ̃1. In this simulation the electrons
are coupled to a T E121 cavity mode with χcrit ≈ 5700.

bution for the real and imaginary parts so that the temperature
starts at 1000 K. This will simulate an initial thermal distribu-
tion for the cyclotron motion. We are interested in how this
temperature evolves with time for different χ = (δ Ω̃)Γ̃/N.
Note that we require Nχ ≪ Γ̃2 ∼ 6×106 to stay in the small
detuning regime considered in this section. At N = 1000 parti-
cles (the number used in our simulations), this corresponds to
χ ≪ 6000. We use the average kinetic energy of the electrons
〈K〉 = (1/N)∑ j m|v j−|2/2 ∝ ∑ j |b j|2 as a proxy for the elec-
tron temperature (ignoring that the distribution may become
non-thermal during cooling). We solved (23) for 50 differ-
ent (random) initial conditions so that 50,000 electrons were
simulated.

The time dependence of the cyclotron temperature is shown
in Fig. 1 for different values of χ . The decay rate increases as
χ increases; the different curves correspond to χ = 0, 1, 3,
5, 10, 20, and 30. For comparison, we also show the single-
electron case, which is the fastest decay in the plot. The final
time in the plot is such that the single electron decay loses
90% of its initial energy through coupling to the cavity (τ f =

ln(10)/Γ̃1). The effect of γ̃ is negligible as γ̃τ f ≃ 9×10−3.

As expected from Section III C 1, the case when χ = 0 ⇒
∆̃ j = 0 gives no appreciable decay when there are a large num-
ber of electrons in the plasma. With increasing spacing (χ),
the decay rate increases because the subradiant modes will
mix with the superradiant mode bc as the individual ampli-
tudes b j accumulate a phase relative to each other. This in-
crease in the decay rate is explicitly shown in Fig. 2, where
the left portion of the solid black curve has the final temper-
atures from Fig. 1 plotted against χ . Note that as χ passes
0.1χcrit ≃ 570, we leave the small detuning regime and the
decay rate starts to decrease with increasing χ .

Figure 2. The dependence of the normalized final temperature
Tf /T0 on the frequency spread χ plotted for different cavity pa-
rameters χcrit. We use the final time t f = ln(10)/Γ1. The
curves with simulated data marked by dots correspond to χcrit =
1,10,100, and approximately 5700 with greater cooling at larger
χcrit. The final temperatures from Fig. 1 correspond to the left por-
tion of the χcrit ≈ 5700 curve. For comparison we display the so-
lutions to the rate Eqs. (26) (the two curves with no markers). The
dash-dot-dotted green and dashed-dotted orange curves correspond
to Γ̃bc = 0.19χΓ̃1 and Γ̃bc = Γ̃1χ2/(4+ 8χ/

√
3) respectively. The

disagreement between simulations and the rate equations begins at
χ ∼ 0.1χcrit for large χcrit and at χ ∼ χcrit for small χcrit. This indi-
cates the onset of the large detuning regime.

B. Adiabatic Approximation, χ ≪ χcrit, χcrit ≫ 16

For the cooling of electrons, it is important to have an esti-
mate of how fast energy is removed from the plasma for non-
zero, but small, average spacing. In this section, we derive the
decay of the cyclotron energy for this case, under the assump-
tion that ∆,Γ are much larger than any other frequency in the
system (η ,∆ j). In this regime, we can adiabatically eliminate
the cavity mode from (8),

b0 ≃−∑
j

iη∗
j

−i∆+Γ/2
b j, (25a)

iḃ j ≃
(

∆ j − i
γ

2

)
b j +∑

j′

η jη
∗
j′

∆+ iΓ/2
b j′ . (25b)

The adiabatic approximation helps with numerical calcula-
tions because numerically integrating the original Eqs. (23)
requires time steps δτ ∼ 1/Γ̃ (δ t ∼ 1/Γ), whereas the ap-
proximate Eqs. (25) can use time steps δτ ∼ 1/(NΓ̃1) (δ t ∼
1/(NΓ1)) that are much larger, at least for N < 106. Eqs. (25)
were numerically tested and worked well in the limit where
η jη

∗
j′/Γ was fixed and Γ → ∞.

C. Rate Equations, χ ≪ χcrit, χcrit ≫ 16

In this section, we explore the possibility for using rate
equations to describe the coupling of the electrons’ cyclotron
motion to a cavity. These equations arise from thinking of
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the system (23) as partitioned into three oscillators that are
coupled together. The cavity is only coupled to the collective
mode so that the energy is transferred with a rate NΓ̃1. The
other modes are coupled to the collective mode with a rate
proportional to the dephasing χ = (δ Ω̃)Γ̃/N. This suggests
the coupled equations (for ∆̃, γ̃ = 0)

dTcav

dτ
=−Γ̃Tcav +NΓ̃1(Tc −Tcav), (26a)

dTc

dτ
=−NΓ̃1(Tc −Tcav)+(N −1)Γ̃bc(Tb −Tc), (26b)

dTb

dτ
=−Γ̃bc(Tb −Tc), (26c)

where Γ̃bc is the rate for energy to be removed from the non-
collective modes and put into the collective mode, Tcav ∼ |b0|2
is the cavity temperature, Tc ∼ |bc|2 is the temperature of
the collective mode, Tb ∼ ∑ j |b j|2 is the temperature of the
N − 1 non-collective modes, and we have assumed the cav-
ity is coupled to a zero temperature bath. These equations
correctly reproduce the χ → 0 limit (Eqs. (19)) and are an
approximate generalization for finite χ . The final tempera-
ture of the electrons is Te = [(N − 1)Tb + Tc]/N. Because
N is typically much larger than 1, we have N − 1 ≈ N and
Te ≈ Tb. The case we consider has Γ̃ ≫ NΓ̃1, which means
Tcav ≪ Tc. Thus the cavity temperature decouples from (26),
leaving Tf /T0 ≃ exp(−Γ̃eτ f ) with Γ̃e ≃ Γ̃bcΓ̃1/(Γ̃1 + Γ̃bc).

The simplest form for the coupling between the collective
and non-collective modes is to take Γbc ∝ δΩ/N (Γ̃bc ∝ χΓ̃1).
This produces the green dash-dot-dotted line in Fig. 2, which
is best fit at large χ (1 ≪ χ ≪ χcrit) when Γ̃bc = 0.19χΓ̃1.
However, it is clear from Fig. 2 that this strongly overesti-
mates the rate at small χ . We used a simple form for Γ̃bc

which has the correct behavior for both small χ (based on
(??)) and larger χ:

Γ̃bc =
12δ Ω̃2/N2

3Γ̃1 +4
√

12δ Ω̃/N
=

χ2

1+2χ/
√

3
(Γ̃1/4). (27)

As can be seen in Fig. 2 (orange dash-dotted line), this form
gives good results for all χ ≪ χcrit, even though it is an ad hoc
fit to the behavior at small and large χ . Since Γ̃e ∝ Γ̃1, with the
proportionality only a function of χ , and since Γ̃1τ f is fixed,
the rate equation solution for Tf /T0 will only depend on χ .
This is a general feature of the system (23): for χ ≪ χcrit the
decay rate rescaled by Γ1 depends only on χ (for γ̃, ∆̃ ≈ 0).

These rate equations only hold when the total spread in fre-
quency is much smaller than the cavity linewidth, Γ. For a
total spread comparable to or larger than Γ, some of the elec-
trons are outside of the linewidth of the cavity, requiring a
modification to the rate equations.

D. Large Detuning and Weak Cooling Regimes, χ & χcrit

The case where there are many electrons coupled to a cav-
ity mode was considered in Ref. 7. There the argument was
made that the optimum spread of frequencies is δ Ω̃ ≃ Γ̃. The
basic idea is that the dephasing rate of the collective mode is

proportional to δ Ω̃, and this is competing with the fact that the
decay rate decreases when the cyclotron frequency is outside
of the cavity linewidth. Since the single-electron decay rate
is Γ̃1/[1+ (2∆̃/Γ̃)2], having ∆̃ > Γ̃/2 quickly decreases the
single-electron decay rate suggesting the fastest decay should
have δ Ω̃ ∼ Γ̃. We refine this discussion below.

The calculations based on (23) are the most relevant for
this case because the cavity response cannot be treated as fast
compared to the other time scales in the problem. Because
δ Ω̃ is comparable to or larger than Γ̃, we will define Γ̃1 to
be the single-electron decay rate exactly on resonance; the
decrease in the decay rate due to detuning will be explicitly
shown when needed.

We now determine what frequency spread is optimal for
maximizing the cooling rate. Fig. 2 shows the final tempera-
ture at a time when the single-electron case has decreased by a
factor of 10 (τ f = ln(10)/Γ̃1). The different curves with mark-
ers are for χcrit = 1, 10, 100, and ≃ 5700, with better cooling
at larger χcrit. The markers are the results of simulations run
for N = 1000 particles, averaged over 50 random initial con-
ditions. Better cooling at larger χcrit is natural since χcrit ∼ Γ̃2

and the faster the cavity mode decays, the more quickly we
can remove energy from the plasma. For a large χcrit (≫ 16),
there is a wide range of χ available for optimal cooling. We
need χ ≫ 1 to have good mixing into the collective mode,
but this effect saturates at χ ∼ 60. From there, the cooling
is essentially constant as a function of χ until we enter the
large detuning regime at χ/χcrit = δΩ/Γ ∼ 0.1. At this point,
more and more electrons fall outside the linewidth of the cav-
ity, resulting in worsening cooling with increasing spread χ .
For smaller values of χcrit, the large detuning regime begins
before the mixing into the collective mode saturates. This in-
creases the optimal frequency spread χ/χcrit, but at the cost
of less cooling at the optimum. From Fig. 2, we see that the
optimal χ/χcrit increases to about 0.2 for χcrit = 100, about
0.5 for χcrit = 10, and about 1 for χcrit = 1.

We may alternatively plot the final temperature as a func-
tion of χcrit for different χ , as shown in Fig. 3. The different
curves are for χ = 0.1, 1, 5, and 30, with larger χ giving lower
temperatures at large χcrit. Since Γ̃ will typically be fixed by
the cavity, we have χcrit ∝ 1/N and may regard Fig. 3 as a plot
versus (inverse) particle number. At small particle number
(large χcrit) increasing the frequency spread improves cooling
since all χ in the figure are much smaller than χcrit. This is in
accord with the results of Fig. 2. For large particle numbers
(small χcrit) we have the opposite effect: decreasing the fre-
quency spread brings many electrons back into the linewidth
of the cavity and improves cooling. We can understand why
the curves in Fig. 3 cross and reverse their ordering by looking
back at Fig. 2. The chosen values of χ = 0.1,1,5,30 will lie on
the decreasing (left) portion of a χcrit curve when χcrit ≫ 30,
so the lowest temperature will belong to the largest χ in this
regime. Conversely, when χcrit . 0.1, the chosen χ will lie on
the increasing (right) portion of a χcrit curve and so the lowest
temperature will belong to the smallest χ in this regime. Be-
tween these regimes, the lowest temperature will switch from
the smallest to the largest χ , depending on how the χ dis-
tribute themselves around the minimum of a χcrit curve.
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8

Figure 3. The dependence of the normalized temperature Tf /T0 on
χcrit for different values of χ is shown. The curves correspond to χ =
0.1 (red dash-dot), 1 (green dot), 5 (blue dash), and 30 (black solid).
At low χcrit there is almost no cooling since most of the electrons are
outside the linewidth of the cavity.

E. Discussion

Putting everything together, we see that plasma cool-
ing is governed by a combination of single- and multi-
electron effects. For optimal cooling, we need to max-
imize the (on-resonance) single-particle decay rate Γ1 =
(2e2/meε0)(|h|2Q/V ω), while allowing for a large detuning
still within the cavity linewidth, NΓ1 ≪ δΩ . ω/Q. From
the simulation results (see in particular Fig. 2), optimal cool-
ing can be achieved by satisfying 10NΓ1 . δΩ . 0.1Γ, and
maximizing Γ1 subject to these constraints. Typically, this re-
sults in equating 10NΓ1 ∼ δΩ ∼ 0.1Γ, which places a strong
constraint on the cavity Q-factor (for a given number of parti-
cles).

For more detailed analysis of the cooling dynamics, we
make use of the dimensionless parameters χ = 4δΩ/(NΓ1)
and χcrit = 4ω/(QNΓ1) together with the simulation results
displayed in Fig. 2 and Fig. 3. For example, if we are inter-
ested in cooling 106 electrons in a cavity with Q-factor 1580 at
a frequency of ω = 2π ×21.8 GHz using a cavity mode with
effective volume V = 1.2 cm3 and a magnetic field gradient of
δB ∼ 10−3 T, we compute χ and χcrit for our setup:

χ =
4δΩ

NΓ1
=

2δB

N

ε0

e

V ω

|h|2Q
∼ 11.5, (28a)

χcrit =
4ω

QNΓ1
=

2

N

mε0

e2

V ω2

|h|2Q2
∼ 5.7, (28b)

where we have assumed our plasma is located near an antin-
ode (h ∼ 1). We can now look at Fig. 2 where χ ∼ 11.5
and χcrit ∼ 5.7 (between the red dashed curve and blue dot-
ted curve). This shows our plasma will lose approximately
15% of its initial energy within ∆t = ln(10)/Γ1 ∼ 38 ms.

We can see from the graph that we are far from optimal
cooling. We can decrease the magnetic field gradient, reduc-
ing χ by about a factor of two so that the plasma loses more

than 30% of its energy in the same amount of time. Alterna-
tively, we can decrease Q by a factor of four, increasing χcrit

to about 90, letting the plasma lose about 75% of its energy in
∆t = 4×38 ms.

As another example, we compare our (axially stationary
electron) model to experimental data in Fig. 4. The experi-
ment cooled N = 3× 107 electrons located near the antinode
of a TE111 cavity mode with ω = 5.1× 1010 s−1, Q ∼ 700,
and mode volume V = 10−5m, as described in Ref. 12. Four
different magnetic field gradients were applied to both short
(L= 36 mm) and long (L= 63 mm) plasmas, resulting in eight
different frequency spreads ∆ f (denoting the full-width fre-
quency spread). This gives dimensionless parameters χcrit =
3.5 and χ = (8.8×10−2)∆ f (MHz). The model curve is con-
structed from simulations using these parameters and a total
of 5×104 macroparticles. The agreement between model and
experiment is reasonable: peak cooling is predicted to within
10%-20% and the optimal frequency spread to within 50%.
The significant disagreement at larger frequency spread re-
sults from the plasma coupling to nearby modes, producing
enhanced cooling. We note that agreement between data and
experiment gets worse at smaller particle number. There the
plasma does not flatten the potential as much, making effects
of axial motion more important. Better agreement can be ob-
tained by accounting for axial motion, additional mode cou-
pling, and uncertainties in experimental parameters (which
can be as large as 30%), but the reasonable success of the
simple model is already promising.

Figure 4. Comparison of experimental cooling rates (squares) with
model predictions using axially-stationary electrons (solid green
line). The black squares are data for short (L = 36mm) plasma and
the white squares are data for long (L = 63mm) plasma. Both plas-
mas were subjected to the same four magnetic field gradients. Peak
cooling rate and optimal frequency spread are predicted reasonably
well. Disagreement at larger frequency spread is expected due to the
plasma coupling to nearby modes and from effects of axial motion.

V. MOVING ELECTRONS COUPLED TO A CAVITY
MODE

In this section we allow the centers of the electron cy-
clotron orbits to move. The centers follow a guiding cen-
ter motion, oscillating axially with characteristic bounce fre-
quencies ωb, j (we ignore any electron-electron interactions,
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including collisions). We characterize the distribution of
bounce frequencies using the average ω̄b ≡ ∑ j ωb, j/N and
RMS spread δωb. This results in time-dependent cyclotron
frequencies Ω j(t) = e|Bext(x j(t))|/me and cavity couplings
η j(t) = eh−(x j(t))/

√
2meV ε0, where x j(t) = r j⊥ + z j(t)ẑ

and r j⊥ is the transverse position of the guiding center for
electron j. The transverse position of the electron relative
to its guiding center is absent from the above equations be-
cause the cyclotron radius is much smaller than the variation
in Bext and h−. The coefficients on the right-hand side of
Eqs. (8) are thus time-dependent, and though we may still re-
gard (8) as a Schrödinger equation id|b〉/dt = M(t)|b〉, the
formal solution is now the time-ordered exponential |b(t)〉 =
T exp(−i

∫
M(t)dt) |b(0)〉. The formal solution is useful

when treating the time-dependence as a perturbation to the
time-independent system; however, for the cases of interest,
the time-dependent contribution will often be large and can-
not be handled perturbatively. Instead, we will numerically
integrate (8) using the methods discussed in Appendix A.

We split our analysis of axial motion into two cases. In
the first case, we examine the effect of the time-dependent
cavity coupling η j(t) assuming the axial magnetic field is
very nearly uniform so that (averaging over axial motion)
Ω j ≈ Ω̄ → ∆ j ≈ 0. This type of axial motion produces side-
bands in the cooling rate (as a function of ∆), allowing the
plasma to cool away from the central resonance. Since the
only cooling is due to the time-dependence of η , axial mo-
tion leading to a strong oscillatory component of η(t) im-
proves the plasma cooling rate. In the second case, we con-
sider the effect of time-dependent cyclotron frequencies as-
suming (as in Section IV) that the plasma is small compared
to the variation in the shape of the cavity mode, so η j(t) = η
is time-independent. Here the cooling is due to the spread in
cyclotron frequencies and axial motion tends to average this
spread away. Thus in this case, we want to reduce the effect
of axial motion to improve the cooling of the plasma.

When reporting our results in this section, we plot only the
cyclotron (transverse) temperature of the plasma. The figures
thus represent the rate at which energy is removed from cy-
clotron motion. Since axial motion is not cooled through cou-
pling to the cavity, the actual cooling rate is typically one third
lower.

Some rough estimates will guide whether we should think
of ω̄b as being large or small. At 1000 K, an electron has a
speed of ∼ 2×105 m/s. Taking the plasma length to be 1 cm
gives a frequency of f̄b ∼ 10 MHz and ω̄b = 2π f̄b ∼ 108 s−1.
This is comparable to the Γ for several of the cavity modes in
Ref. 6. Lower temperatures and longer plasmas would lead to
ω̄b substantially smaller than Γ.

A. Time-dependent Cavity Coupling

In this section, we examine the time-dependence η j(t)
caused by electron axial motion and the spatial variation of
h−(x). We assume the external magnetic field is sufficiently
uniform to take ∆ j = 0. As long as the plasma is not too long
(compared to the cavity mode function), we can Taylor ex-

pand η(z) = eh−(ρ ≈ 0,z)/
√

2meV ε0, choosing z = 0 as the
center of the plasma: η(z) = η +η ′z+η ′′z2/2. In particular,
η j(t) = η(z j(t)) = η +η ′z j(t)+η ′′z2

j(t)/2. We set γ = 0 to
isolate the effect of the time-dependent coupling. This simpli-
fies Eqs. (8) to

i
db0

dt
=

(
−∆− i

Γ

2

)
b0 +∑

j

η∗
j (t)b j, (29a)

i
db j

dt
= η j(t)b0. (29b)

Note that when the plasma is centered on a node, η(t)=η ′z(t)
and when it is centered on an antinode, η(t) = η +η ′′z2(t)/2.
These different forms for η can have important consequences
for cooling. For example, small axial oscillations around
an antinode will have essentially no effect on cooling (since
η ′′δ z2 ≪ η), while small axial oscillations around a node will
produce a small, but typically noticeable effect.

1. Single electron

To understand some of the general features of (29), it is
worthwhile to examine the single-electron case in detail, re-
ducing (29) to two equations as we did in going from (8) to
(9). With only one electron, ωb,1 = ω̄b ≡ ωb, and the analysis
is simplest when Γ1 ≪ ωb ≪ Γ. In this case, the cavity re-
sponds much faster than the changes to the cyclotron motion,
so the cavity can be adiabatically eliminated,

b0 ≃− iη∗(t)
−i∆+Γ/2

b1, (30a)

db1

dt
≃− |η(t)|2

−i∆+Γ/2
b1, (30b)

b1(t)≃ exp

(∫ t

0
[−iδω(t ′)−Γ1(t

′)/2]dt ′
)

b1(0), (30c)

where δω and Γ1 are given by (15) and (16) respectively,
with |η |2 replaced by |η(t)|2. Thus, there is not a substantial
change to the single-electron result in this limit, except for the
substitution of the instantaneous coupling. If the decay rate
Γ1(t) is small compared to ωb, then the long time behavior
is determined by the time average of |η(t)|2 and the energy
in the cyclotron motion decays with a rate equal to the time
average of Γ1(t).

When ωb is of the same order as Γ (or larger) the re-
sults depend in detail on the behavior of η(t). Since z(t) =
∑k zk exp(ikωbt), we can expand η(t) = η(z(t)) as a power
series in exp(iωbt),

η(t) =
∞

∑
k=−∞

η(k)eikωbt . (31)

The coefficients η(k) depend on the functional form of
z(t). For example, when η = η + η ′z(t) + (1/2)η ′′z2(t)

and z(t) = z0 cos(ωzt + φ), the coefficients are η(0) = η +
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Figure 5. The ratio of final to initial cyclotron energy for the case of
one electron with harmonic axial motion plotted versus the cavity de-
tuning. The different curves all have an axial frequency ωb =(3/2)Γ,
but with different amounts of oscillation in η . The final time is
ln(10)/Γ1(β = 0). The curves are for β = π/10 (solid red), π/4
(dashed blue), and π/2 (dotted green). The results of the single-
electron equations are plotted but are indistinguishable from Eq. (37).

η ′′z2
0/4, η(1) = η(−1)∗ = η ′z0 exp(iφ)/2, and η(2) = η(−2)∗ =

η ′′z2
0 exp(i2φ)/8.

Since the single-electron equations have the form i ˙|b〉 =
M(t) |b〉 with M(t) periodic with frequency ωb, we can per-
form a Floquet expansion for the b0 and b1. The two mode
amplitudes can be written in terms of slowly evolving func-
tions multiplied by oscillatory terms with angular frequency
kωb:

b0(t) =
∞

∑
k=−∞

b
(k)
0 (t)eikωbt , (32a)

b1(t) =
∞

∑
k=−∞

b
(k)
1 (t)eikωbt , (32b)

where the b
(k)
µ are slowly varying functions on the time scale

of min(1/ωb, 1/Γ). Substituting (32) into the equation for b0

and using the fact that we are interested in times Γt ≫ 1 gives

b
(k)
0 ≃ 1

∆− kωb + iΓ/2 ∑
ℓ

η(ℓ)∗b
(k−ℓ)
1 . (33)

Setting b
(k)
1 (t) = b

(k)
1 exp(−iαt) and using the equation for b1

gives an eigenvalue equation for the Floquet frequency α ,

(α − kωz)b
(k)
1 = ∑

ℓ

η(ℓ)b
(k−ℓ)
0 . (34)

In general, α will need to be determined numerically. How-
ever, we can use a perturbative approach because we are inter-
ested in the case where η ≪ ∆,Γ,ωb.

The perturbative solution is constructed by starting with

b
(0)
1 = 1 and α = 0. We represent the perturbative parame-

ters η/∆, η/Γ, and η/ωb by the single quantity ε , because all
three perturbative parameters are of the same order (typically

much less than 10−3). One can see that the other b
(k 6=0)
1 are of

order ε2. Thus, to order ε1,

b
(k)
0 =

η(k)∗

∆− kωb + iΓ/2
+O(ε3). (35)

This result can be used in the k = 0 equation to obtain the
solution for the Floquet frequency

α = ∑
k

η(k)b
(−k)
0 = ∑

k∈Nη

η(k)η(−k)∗

∆− kωb + iΓ/2
+O(ε2), (36)

where Nη ≡ {k|η(k) 6= 0} counts the non-zero η(k). Since

η(t) is a real function, η(−k) = η(k), so the single-electron
decay rate Γ1 =−2Im[α] is

Γ1 = ∑
k∈Nη

4|η(k)|2/Γ

1+[2(∆− kωb)/Γ]2
, (37)

which shows Lorentzian sidebands at ∆ = ±kωb with
strengths proportional to the (square of the) appropriate
Fourier component of the coupling.

Fig. 5 shows calculations for the case where the η(t) =

η [cosβ +
√

2sinβ cos(ωbt)]. This form of η was chosen so
that the cycle average of η2 was independent of the strength
of the oscillatory component (as parameterized by β ). This
form for η has η(0) = η cosβ and η(±1) = (1/

√
2)sinβ . We

present calculations for three choices of β : a small oscillatory
component in η (β = π/10), equal strength for the oscillatory
and non-oscillatory components (β = π/4), and a purely os-
cillatory η (β = π/2). The plots show the ratio of the final
to initial energy in the cyclotron motion as a function of the
detuning for a final time t f = ln(10)/Γ1(β = 0) (when a non-
oscillating electron has lost 90% of its energy). In all of the
plots, ωb = 3Γ/2 and all of the other parameters are the same
as in the earlier figures. The plots are from numerical solu-
tions of the single-electron equations, but are indistinguish-
able from using Tf /T0 = exp(−Γ1t) with Γ1 given by (37).

2. Many electrons

The treatment is more subtle for many electrons, since now
each electron can have a different ωb, j and a different ampli-
tude of oscillation. We first examine the case where ωb, j ≪ Γ.
The multi-electron generalization of (30a) and (30b) is

b0 ≃−∑
j

iη∗
j (t)

−i∆+Γ/2
b j, (38a)

db j

dt
≃−∑

j′

η j(t)η
∗
j′(t)

−i∆+Γ/2
b j′ , (38b)

which is the same as (25) except the η’s are now time de-
pendent. In the experimental cases we consider, ω̄b ≫ Γ1 ∼
4|η |2/Γ, so the time dependence of the η will be important.

The simplest case to treat is when ωb, j = ω̄b is the same for
every electron. This occurs if the electrons are hot and in a
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Figure 6. The ratio of final to initial cyclotron energy of 46 = 4096
electrons (averaged over 4 runs) undergoing harmonic axial motion
plotted versus cavity detuning. All curves have β = π/4, ω̄b =

δ̂ωb/2, NΓ1/Γ = 0.2, and a final time of ln(10)/Γ1. The different

curves have an axial frequency spread δ̂ωb/(NΓ1) = 0.1 (solid red),
0.2 (medium-dash blue), 0.5 (short-dash green), 1.0 (long dash-dot
purple), 1.5 (long dash-dot-dot light green) and 2.5 (medium-dash
maroon). At ∆ = 0 the final temperature decreases with increasing

δ̂ωb. The single-electron result is the deepest short-dashed orange
curve. The single-electron result dropping the η(0) term (i.e., the
non-oscillating part of the coupling) is the deepest solid black line.
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Figure 7. Same as Fig. 6 except β = π/10.

harmonic potential. Although all electrons have the same fre-
quency, they will have different random phases to their axial
motion. Since the rate that energy is removed from the plasma
is ∝ Γ|b0|2, it might be tempting to conclude from (38a) that
the different phases will lead to an average of 0 for the cross
terms and, thus, to enhanced cooling. However, this is in-
correct because the b j become correlated with η j. This case
is nearly as ineffective at removing energy from the plasma
as the case where all the detunings are the same (see Sec-
tion III C 1). One can see this by performing a cycle average
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Figure 8. Same as Fig. 6 except ω̄b = Γ/2.

on (38b), which gives

db j

dt
≃−∑

j′
∑

k∈Nη

η
(k)
j η

(−k)∗
j′

−i∆+Γ/2
b j′ , (39)

where Nη = {k|η(k) 6= 0}. The matrix on the right hand side
of this equation is rank |Nη |= 2nη +1, where nη is the num-

ber of non-zero η(k>0). Thus, there will be 2nη +1 modes that
strongly decay and the rest, N−(2nη +1)≃ N, will not decay
at all. This observation is true whether or not each electron has
a random phase or a random amplitude of oscillation.

There are three conditions that must hold for there to be
substantial decay of the energy in the plasma. The first is
that the oscillating part of η must be substantial; these are
the η(k 6=0). The second is that there needs to be a spread in
the axial frequency of oscillation δωb that is larger than the
decay rate of the collective mode, NΓ1 (this corresponds to
large axial χ). Finally, the spread in axial frequencies should
be smaller than or comparable to Γ, otherwise there will be
electrons outside the linewidth of the cavity. As with the case
of stationary electrons, the last two conditions become impos-
sible to simultaneously satisfy when NΓ1 > Γ.

In the calculations that follow, every electron (in a particu-
lar run) has the same β but different phases and axial frequen-
cies: η j(t) = η [cosβ +

√
2sinβ cos(ωb, jt +φ j)]. The phases

are chosen from a uniform distribution between 0 and 2π . The
frequencies are chosen from a uniform distribution centered
on ω̄b with RMS spread δωb. To simplify notation, we let

δ̂ωb =
√

12δωb be the full spread of the frequency distribu-

tion. We require ω̄b ≥ δ̂ωb/2. We draw the cyclotron ampli-
tudes from a thermal distribution as before. The final time was
chosen so that one non-oscillating electron, perfectly on reso-
nance with the cavity, loses 90% of its energy: t f = ln(10)/Γ1.
The calculations were performed varying N, Γ1, β , ω̄b, and
δωb. The calculations used 46 = 4096 electrons per run and
were averaged over 4 runs.

Figs. 6 (β = π/4) and 7 (β = π/10) show the final tem-

perature for different ω̄b with ω̄b = δ̂ωb/2. As in Section IV,
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we found that calculations with nearly the same scaled cou-
plings and frequencies gave nearly identical results. For ex-
ample, runs with fewer (e.g. N = 45) electrons gave nearly
identical plots (not shown) when the rates and frequencies
were appropriately scaled. These figures show two impor-
tant trends. The first is that the energy can only be efficiently
removed from the cyclotron motion when the spread in ax-
ial frequencies becomes comparable to or larger than NΓ1.
As with the results from the stationary electrons, we want
χaxial ≡ δωb/(NΓ1)≫ 1. The second important trend is that
the decay only comes from the oscillating term of the cou-
pling. We can see this by comparing Fig. 6 to Fig. 7 as the
only difference between them is the decrease in the amount
of oscillation. Since the part of the decay rate depending on
oscillation is proportional to sin2 β , there is approximately a
factor of 5 decrease in the decay rate between the figures. The
importance of the oscillating component is particularly clear
in Fig. 7 where the decay rates converge to the single-electron
rate, where the latter is obtained using only the oscillating part
of η .

Fig. 8 uses the same set of frequency spreads δωb as Fig. 6
but with the much larger ω̄b = Γ/2. Comparison of these
two figures shows that for smaller δωb, the large ω̄b = Γ/2
leads to more effective cooling than ω̄b ∼ 0. Based on the
single-electron results, we would expect the opposite effect:
for ω̄b ∼ 0, the Lorentzian sidebands at ±ω̄b combine with
the central resonant peak and enhance cooling, while for
ω̄b = Γ/2, the side bands stay separated. This phenomenon
(better cooling at large ω̄b) occurs because the non-oscillating
part of η is contributing to Γ1, so δωb/Γ1 is proportionally
smaller (the decay is more blocked) when ω̄b ∼ 0. Once δωb

is comparable to or larger than NΓ1, the best decay rate is for
ω̄b ∼ 0, in agreement with previous results since the decay in
this limit approaches the single electron result.

The last case we consider is when the plasma is centered
at an antinode of the cavity mode. We assume the plasma
is sufficiently short compared to the spatial variation in the
cavity mode so that we may use a second-order expansion
η(t) = η +(1/2)η ′′z2(t). When centered at an antinode, the
coupling decreases away from z = 0, which means η ′′ < 0.
The case where the axial motion is essentially harmonic does
not introduce qualitatively new features. Writing the axial
position as z(t) = z0 cos(ω̄bt + φ) gives a time dependence
η(t) = (η +η ′′z2

0/4)+ (η ′′z2
0/4)cos(2ω̄bt + 2φ). This is the

same form as above but the frequencies and their spread are
doubled. From the discussions above, only the oscillating
term will lead to substantial cooling when there are many elec-
trons. On resonance the maximum cooling rate will be half of
the coefficient of the oscillating term: ∼ (1/2)4(η ′′z2

0/4)2/Γ.

Typically, the amplitude of the axial oscillation is such that
the change in coupling is not very large (10-20%) because the
size of the oscillating term is quadratic in the plasma length (as
opposed to linear when the electrons are near a node). This
strongly reduces the amount of coupling that is oscillating
with time. Since the decay rate is proportional to the square of
the oscillating component of η , time-dependent coupling due
to axial motion will have little effect on cooling a plasma near
an antinode, unless the plasma is long enough for η(z) to vary

substantially.

B. Time-dependent Frequency Shift

We now explore the effect of time-dependent cyclotron fre-
quencies Ω j(t) arising from electrons moving through an in-
homogeneous magnetic field. We assume each electron’s cy-
clotron frequency changes linearly with the distance from the
center of the plasma, Ω j(t) = Ω̄+Ω̄′z j(t). As above, z j(t) is a
periodic function, not necessarily a simple harmonic, with pe-
riod 2π/ωb, j. The coupling η between the cyclotron motion
and the cavity will be taken to be a constant in this section.
We again take γ = 0 for simplicity.

In this regime, Eqs. (8) become

i
db0

dt
=

(
−∆− i

Γ

2

)
b0 +η∗∑

j

b j, (40a)

i
db j

dt
= ∆ j(t)b j +ηb0, (40b)

where ∆ j(t) = Ω̄′z j(t). For the plasmas we consider, all of the
electrons oscillate around the same z, which means that the
cycle average of the detuning is approximately the same for
every electron. Thus, we will only consider the case where
the cycle average of ∆ j is zero; the average shift is in the pa-
rameter ∆. All of the results in this section were obtained by
numerically solving (40). The approximations introduced be-
low are mainly for the purpose of understanding the results.

1. Single electron

To understand some of the general features, it is worthwhile
to examine the single-electron case in detail, reducing (40) to
two equations as we did in going from (8) to (9).

We treat only the simplest case, where the time dependence
in ∆1(t) has frequencies much smaller than Γ and ∆. In this
situation, the cavity oscillation can be adiabatically eliminated
(see for example (25) and (30)),

db1

dt
≃− |η |2

−i∆− i∆1(t)+Γ/2
b1, (41a)

b1(t)≃ exp

(
−
∫ t

0
[iδω(t ′)+Γ1(t

′)/2]dt ′
)

b1(0), (41b)

where δω and Γ1 are given by (15) and (16) respectively, with
∆ replaced by ∆+∆1(t). Thus, the amplitude of oscillation is
an exponential of a simple quadrature of the time-dependent
frequency shift and decay rate.

Eq. (41b) exhibits an interesting feature when ωb is much
larger than Γ1 (so there is very little decay during one period
2π/ωb). On the time scale of the decay of the cyclotron mo-
tion,

∫ t

0

[
iδω(t ′)+

Γ1(t
′)

2

]
dt ′ ≃ i〈δω〉t + 〈Γ1〉

2
t, (42)
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where the 〈〉 indicates an average over the period 2π/ωb.
Since 〈∆1〉= 0, we have effectively the same situation as a sta-
tionary electron (∆1(t) = 0) up to a relative error ∼ 〈∆2

1〉/Γ2.

2. Many electrons

As with the case where the coupling was time dependent,
the many-electron case has more subtlety because there is
both an average bounce frequency ω̄b and a spread δωb. We
first examine the case where ωb, j,∆ j,η j ≪ Γ,∆. The multi-
electron generalization of (41) is

b0 ≃− iη∗

−i∆+Γ/2 ∑
j

b j, (43a)

db j

dt
≃−i∆ j(t)b j −

|η |2
−i∆+Γ/2 ∑

j′
b j′ , (43b)

which is the same as (25) except the ∆ j’s are now time depen-
dent and η j = η .

In the following calculations, the ∆ j will have a time de-
pendence given by an approximate triangle function (with
rounded corners) with period 2π/ωb, j. The frequencies ωb, j

are chosen from a Gaussian distribution (with RMS spread
δωb), while the phase of ∆ j(t) is chosen from a uniform dis-
tribution. This approximately leads to a uniform distribution
of detunings.

An extreme case is when the only difference in the ∆ j(t)
is the phase: ∆ j(t) = ∆1(t − Tj). When the frequency ω̄b is
larger than Γ1, the decay is suppressed compared to the case
where the ∆ j are time-independent. Since typically ω̄b > Γ1,
we can expect that electrons oscillating identically but with
different phases will not lead to strong coupling to the cavity.
As with the time-dependent cavity coupling (Section V A), a
spread in axial frequencies couples the plasma more strongly
to the cavity.

Fig. 9 shows the final temperature as a function of the
spread of detunings ζ =

√
3χ/2 for different δωb. For all cal-

culations, NΓ1 = Γ/20 (χcrit = 80) so that all of the electrons
have frequencies within the linewidth of the cavity mode.
We simulated 44 = 512 electrons averaged over 16 differ-
ent random configurations. The different lines correspond to

δ̂ωb/Γ = 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5. The important
point is the cooling rate is similar to that for stationary elec-
trons when δωb ≪NΓ1. As the spread in axial frequencies be-
comes larger, energy is removed more slowly from the plasma.
As long as the cavity cooling rate Γ is much larger than any
other rate or frequency parameters, the plasma cooling rate
is determined by the ratio χaxial = δωb/(NΓ1). For example,

Tf /T0 for NΓ1/Γ = 0.1 and spread δ̂ωb/Γ = 0.2 was nearly

the same as for NΓ1/Γ = 0.05 and spread δ̂ωb/Γ = 0.1.
There is a small but interesting feature in Fig. 9. At larger

values of ζ , the Tf for slowly moving electrons (δ̂ωb/Γ =
0.01 or 0.02) is somewhat lower than for stationary electrons.
This effect is consistently present in the simulations, and we
believe this is because the moving electrons have detuning dis-
tributions that fluctuate with time, giving a small additional
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 0.6

 0.8
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Figure 9. Ratio of final to initial cyclotron energy versus normalized
frequency spread ζ for the case where the detuning oscillates. We
may compare this with the results of non-oscillating detunings dis-
played in Fig. 2. All curves have χcrit = 80. The different lines cor-
respond to different axial frequency spreads χaxial = 0 (solid black),
0.2 (short-dash red), 0.4 (dot-dash blue), 1 (dash-dot-dot green), 2
(medium-dash purple), 4 (solid light green), and 10 (short-dash ma-
roon).

mechanism for dephasing the cyclotron motion, leading to
better mixing with the superradiant mode, and ultimately re-
sulting in better cooling.

VI. COLLISIONS

Electron-electron collisions can affect cooling if they scat-
ter energy into the collective mode. If the plasma is much
smaller than the variation in the cavity mode shape, then
electron-electron collisions have no effect on the collective
mode and do not contribute to cooling. This is because the
collective mode bc = ∑ j η jb j/

√
N = (∑ j b j)η/

√
N reduces

to the center-of-mass mode, which cannot be affected by col-
lisions. If the cavity mode varies along the plasma, then it may
be possible for collisions to scatter into the collective mode,
particularly for collisions whose scale is comparable to the
variation of the cavity mode. Such collisions can occur (even
for slowly-varying cavity modes) near the edge of the plasma,
where Debye shielding produces large electric field gradients.
Electron-electron collisions may thus provide another mecha-
nism for dephasing the collective mode.

In this section we analyze a different type of collision: elec-
trons colliding with background neutral atoms or molecules.
There are two types of electron-neutral collisions to consider.
The first type is inelastic scattering. At low electron energies,
this will mainly result in momentum transfer between the neu-
tral and the electron without any internal change of the neu-
tral. This is a slow process due to the tiny electron to neutral
mass ratio, so we ignore its effect on cooling here. The second
type is nearly elastic scattering where only the direction of the
electron’s velocity changes. For now, we ignore any coupling
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Figure 10. We use the same cavity parameters as in previous figures
(Γ = 8.67×107s−1, Γ1 = 60.9s−1) and look at the effect of only col-
lisions (χ = 0). The two lines correspond to 45 = 1024 (solid red)
and to 46 = 4096 (medium-dash blue) electrons. The final temper-
ature is plotted versus the collision rate scaled by the superradiant
rate: γcol = Γcol/(NΓ1). The third line plotted (short dash green) is
the function exp(− ln[10]γcol/[0.5+ γcol]). The lines are nearly in-
distinguishable.

such a collision might produce between the cyclotron and ax-
ial motion of the electron. Instead, we model the effect as an
instantaneous change in the phase of b j (when the jth electron
collides with a neutral). This abrupt change in phase provides
an additional mechanism for dephasing the collective mode,
allowing energy to flow into it from the orthogonal modes.

For now, we fix the centers of the cyclotron orbits so that
there is no axial motion. In particular, any scattering from
background neutrals will only be in the transverse (non-axial)
directions.

A. Collisions only

To isolate the effect of collisions, we consider (25) for the
case where η j = η and ∆ j = γ = 0. Without collisions, the
cavity quickly removes the energy from the superradiant (col-
lective) mode with a rate NΓ1, but cannot remove energy from
any of the subradiant (orthogonal) modes. To model colli-
sions, we added a stochastic step to the equations. After every
time step, δ t, we cycled through each electron and compared
a random number to a scattering probability Γcolδ t. If the ran-
dom number is less than the scattering probability, then the
b j is multiplied by exp(iφ) where φ is a random number be-
tween −π and π . Perhaps surprisingly, within this model the
rate that energy is lost through the cavity again depends only
on parameters relative to NΓ1.

Fig. 10 shows the results of including collisions for two
different particle numbers N = 45 and 46 (with appropriately
rescaled collision rate). As is clear from the figure, the final
temperature at t f = ln[10]/Γ1 only depends on the collision
rate in units of the superradiant rate, as we again see the fa-
miliar invariance with respect to particle number. This sim-

ple model leads to a rate of energy loss approximately equal
to Γ1γcol/[0.5+ γcol]), where γcol = Γcol/(NΓ1) is the scaled
collision rate. Thus, the single-electron elastic scattering rate
needs to be roughly equal to or larger than the superradiant
rate for collisions to be important.

The scaling can be understood from a simple rate equation.
As in section IV C, Tb is the temperature of the N − 1 sub-
radiant modes, and Tc is the temperature of the superradiant
mode. The rate that collisions scatter energy from the subra-
diant modes into the superradiant one is proportional to the
average energy in a subradiant mode kbTb times the single-
electron collision rate. Similarly, the rate energy scatters out
of the superradiant mode into the subradiant modes is propor-
tional to the energy in the superradiant mode kBTc times the
single-electron collision rate. For simplicity, take the propor-
tionality constant to be C . The rate equations for the energy
flow are then

dTc

dt
= C Γcol(Tb −Tc)−NΓ1Tc, (44a)

dTb

dt
=−C

Γcol

N
(Tb −Tc). (44b)

The fastest possible decay is on a time scale of ∼ 1/Γ1 which
is long compared to the inverse of the rates in (44a). There-
fore, the time derivative of Tc must be small, leading to

Tc ≃
C Γcol

C Γcol +NΓ1
Tb. (45)

Substituting this into the second equation gives

dTb

dt
=−C

Γcol

N

NΓ1

C Γcol +NΓ1
Tb =−Γ1

C γcol

C γcol +1
Tb, (46)

where the scaled collision rate γcol was defined above. We find
C = 2 from the fit line in Fig. 10.

B. Collisions plus a frequency spread

We now include the effects of both collisions and cyclotron
frequency spread. We consider the case δΩ, NΓ1, Γcol ≪ Γ.
We again set ∆ = γ = 0 and solve (30) using random phase
jumps to model collisions. The rate Eqs. (26) and (44) gener-
alize to

dTcav

dt
=−ΓTcav +NΓ1(Tc −Tcav), (47a)

dTc

dt
=−NΓ1(Tc −Tcav)+(NΓbc +2Γcol)(Tb −Tc), (47b)

dTb

dt
=−(Γbc +2Γcol/N)(Tb −Tc), (47c)

where Γbc is from (27), Γcol was discussed in Section VI A, Tc

is the temperature of the collective mode, and Tb is the temper-
ature of the N − 1 non-collective modes. We have also taken
N ≫ 1 and coupled the cavity to a zero-temperature bath. The
electron temperature is Te ≈ Tb. In Fig. 11 we mark the sim-
ulation results (solutions to (25), including the effects of col-
lisions) as a function of frequency spread ζ for four different
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Figure 11. We plot the ratio of final to initial cyclotron energy ver-
sus normalized frequency spread ζ , including the effects of elastic
collisions. We may compare this with results that ignore collisions,
presented in Fig. 2. We illustrate results of four different scaled
collision rates γcol = Γcol/(NΓ1), with markers for γcol = 0 (purple
+), γcol = 0.1 (green X), γcol = 0.2 (blue *), and γcol = 0.4 (orange
square). The lines are from the rate equation model (47).
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 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

T
f/
T

i

ζ

Figure 12. The same as Fig. 11 but for the case where elastic colli-
sions mix in the axial motion. The final temperature (including Tz)
is plotted versus the scaled spread in cyclotron frequency ζ for four
different scaled collision rates γcol = Γcol/(NΓ1) = 0 (purple +), 0.1
(green X), 0.2 (blue *), and 0.4 (orange square). The lines are from
the rate equation model (48).

collision rates γcol. We plot the corresponding solutions to
the rate Eqs. (47) as smooth lines. We see that the rate equa-
tions approximate the cases of pure collisions (ζ = 0) and no
collisions (γcol = 0) very well, but slightly underestimate the
cooling rate for γcol ∼ 0.1 and ζ > 3.

C. Collisions plus axial motion

We now consider the more realistic scenario of collisions
scattering electrons in three dimensions. We define a scaled

axial velocity b j,z for each electron, following the definition
of the transverse velocities b j. When a collision occurs in the
stochastic step, we fix the magnitude of the scaled velocity b=
(|bν |2+b2

ν ,z)
1/2 and randomly rotate its direction with cos(θ)

chosen from a flat distribution between −1 and 1 and φ chosen
from a flat distribution from 0 to 2π . The parameters after the
collision are b j = bsin(θ)exp(iφ) and b j,z = bcos(θ). This
model gave qualitatively similar results to the 2-dimensional
model. The main difference is the rate of energy decrease is
somewhat slowed because of the energy now being tracked in
the axial motion.

The rate equations are modeled analogous to (47) with an
extra temperature for the axial motion, Tz. The model we con-
sider only has one quadratic degree of freedom for the axial
motion so the electron temperature is Te = (2Tb +Tz)/3. This
means the change in temperature for the axial motion is twice
that for the cyclotron motion. The equations generalize to

dTcav

dt
=−ΓTcav +NΓ1(Tc −Tcav), (48a)

dTc

dt
=−NΓ1(Tc −Tcav)+(NΓbc +2Γcol)(Tb −Tc), (48b)

dTb

dt
=−(Γbc +2Γcol/N)(Tb −Tc)−Γcol(Tb −Tz), (48c)

dTz

dt
= 2Γcol(Tb −Tz). (48d)

To account for a different number of degrees of freedom in
the axial motion, one can change the factor multiplying (Tb −
Tz). The results of the model and rate equations are shown
in Fig. 12 for Γ ≫ NΓ1. As with the collisions that did not
account for the axial motion, the rate equations do an excellent
job of reproducing the model but somewhat underestimate the
rate for ζ > 3 for a scaled collision rate γcol ∼ 0.1.

VII. CONCLUSIONS

We presented a simple oscillator-based model describing
cooling of a magnetized plasma that is nearly resonant with
a microwave cavity mode. Our model reproduces the Purcell
effect for a single electron, showing an enhanced decay rate
inside a cavity. The behavior of the full plasma is governed by
ratios of frequency spreads, the enhanced single-electron rate,
and the cavity linewidth. Optimal cooling can be achieved by
setting these roughly equal.

We identified several dimensionless parameters that helped
categorize the different regimes of cooling (small detuning,
large detuning, weak cooling). Cooling increases with fre-
quency spread in the small detuning regime (since having too
many electrons exactly resonant with the cavity mode is disad-
vantageous due to a collective mode blocking the decay) and
decreases with frequency in the large detuning regime (as too
many electrons leave the cavity linewidth). We showed how
simple rate equations can describe the small detuning regime.
We also identified a continuum limit, allowing for plasma sim-
ulations with many fewer macroparticles.

We showed how axial motion can either enhance cooling
(by creating a spread in cavity mode coupling strengths) or
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hinder cooling (by washing out the spread in cyclotron fre-
quencies). Axial motion also provides sidebands, which al-
low the plasma to cool away from resonance. Collisions with
background neutrals provide an additional source of dephas-
ing, thus enhancing the cooling (at least in the small detuning
regime).

Our model thus lays out a foundation for the theoretical un-
derstanding of magnetized plasma cooling inside a microwave
cavity.
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Appendix A: Numerical solution

Eqs. (8) can be solved using the Crank-Nicolson method or
one that uses a higher order Padé approximation (order 2, for
example) in the numerator and denominator. We start with (8)
in the form

d~b

dt
=−iM(t)~b, (A1)

where −iM is the matrix right hand side of (8).

If M is time-independent, then ~b(t) = exp(−iMt)~b(0). If
M is time-dependent, we can use a sequence of small time

steps~b(t +δ t) = exp(−iM(t +δ t/2)δ t)~b(t) to construct the
solution. The Crank-Nicolson method is the lowest order Padé
approximation of order 1 in the numerator and denominator,

e−iQ =
1− iQ/2

1+ iQ/2
+O(Q3), (A2)

with the error term being iQ3/12. This approximation
works best when M is time-dependent. When M is time-
independent, we use the Padé approximation of order 2 in the
numerator and denominator,

e−iQ =
1− iQ/2−Q2/12

1+ iQ/2−Q2/12
+O(Q5)

=

[
1− iaQ/2

1+ iaQ/2

][
1− ia∗Q/2

1+ ia∗Q/2

]
, (A3)

with the error term being iQ5/720 and with a= (1+ i/
√

3)/2.
The second line shows the best way to evaluate this approxi-
mation as two Crank-Nicolson steps.

The Crank-Nicolson step is implemented as follows:

1− iMδ t/2

1+ iMδ t/2
~b =

2

1+ iMδ t/2
~b−~b ≡~x−~b. (A4)

The vector ~x is obtained by solving a linear equation A~x =~b
where the only nonzero elements of A = (1+ iMδ t/2)/2 are
on the diagonal and on the edges A0ν and Aν0. This sparse
matrix equation can be solved as
(

A00 −∑
ν

A0ν A−1
νν Aν0

)
x0 = b0 −∑

ν

A0ν A−1
νν bν , (A5a)

Aνν xν = bν −Aν0x0, (A5b)

with the number of operations being of order N. If the equa-
tions are time-independent, various combinations can be cal-
culated and stored, greatly increasing the speed of the calcu-
lation (for example, the combination A0ν A−1

νν and the term in
parentheses).

When numerically implementing the equations that have
adiabatically eliminated the cavity mode (such as (25)), the
matrix solution of the Crank-Nicolson approximation is still
sparse. In this case, we use the Sherman-Morrison formula
(Ref. 27).

Appendix B: Continuum Limit of Oscillator Equations

Here we derive the continuum limit of the oscillator equa-
tions

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +

N

∑
j=1

b jη
∗
j , (B1a)

iḃ j =
(

∆ j − i
γ

2

)
b j +b0η j. (B1b)

We order the oscillators so that ∆ j+1 > ∆ j for all j = 1, . . . ,N.
Let ψ be a continuous detuning variable. We take a lattice of
N points in ψ such that ψ j =∆ j and define functions b(ψ) and
η(ψ) such that b(ψ j, t) = b j(t) and η(ψ j, t) = η j(t). This lets
us rewrite (B1) in terms of ψ as

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +∑

j

b(ψ j, t)η
∗(ψ j, t), (B2a)

i
∂

∂ t
b(ψ j, t) =

(
ψ j − i

γ

2

)
b(ψ j, t)+b0η(ψ j, t). (B2b)

The continuum limit N → ∞ of (B2b) is obtained when the
lattice of points ψ j becomes dense enough to be replaced with
the continuous variable ψ .

The continuum limit of the sum

N

∑
j=1

b(ψ j, t)η
∗(ψ j, t) (B3)

is more subtle. We can multiply and divide by ∆ψ j = ψ j+1 −
ψ j inside the sum,

N

∑
j=1

b(ψ j, t)η
∗(ψ j, t)∆ψ j/∆ψ j. (B4)
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We would like to pull 1/∆ψ j outside the sum so that the limit
of what remains would be a Riemann integral.

Each ψ j is sampled from the same probability distribution
P(ψ) (

∫
P(ψ)dψ = 1). We can look for an average value of

∆ψ j to pull out of the sum. Consider a small interval δψ j

containing ψ j. The average number of points that fall in this
interval is approximately n = NP(ψ j)δψ j. The average spac-
ing of points is ∆ψ j = δψ j/n= 1/(NP(ψ j)). So 1/∆ψ j is (on
average) NP(ψ j). This lets us rewrite the sum as

N
N

∑
j=1

b(ψ j, t)η
∗(ψ j, t)P(ψ j)∆ψ j, (B5)

which in the large N limit becomes the integral

N

∫
dψb(ψ, t)η∗(ψ, t)P(ψ). (B6)

Thus the continuum limit of the equations (B1) is

iḃ0 =−
(

∆+ i
Γ

2

)
b0 +N

∫
dψb(ψ, t)η∗(ψ, t)P(ψ),

(B7a)

i
∂

∂ t
b(ψ, t) =

(
ψ − i

γ

2

)
b(ψ, t)+η(ψ, t)b0. (B7b)

We can find the dispersion relation for this system by taking
b0,b ∼ exp(−iαt):

α +∆+ i
Γ

2
= N

∫
dψ P(ψ)

|η(ψ, t)|2
α −ψ + i

γ
2

. (B8)

If we take η = constant and use a uniform P(ψ) =

(δΩ
√

(12))−1 between ∆±
√

3δΩ, we get the dispersion re-
lation

α +∆+ i
Γ

2
=

N|η |2
δΩ

√
12

ln

(
α −∆+δΩ

√
3− iγ/2

α −∆−δΩ
√

3− iγ/2

)
. (B9)

Appendix C: Summary of Symbols and Definitions

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
1
2
7
5
6



18

Quantity Symbol Definition

Mode frequency ω —

Mode function h(x) Acav =
mc
e ∑α aαhα (x)e

−iωα t + c.c

Mode volume V
∫

d3
xh

∗
α ′ ·hα =Vα δα ′α

j’th electron cyclotron frequency Ω j Ω j = eBext(x j)/m

Average cyclotron frequency Ω̄ Ω̄ = ∑ j Ω j/N

Cyclotron frequency spread δΩ δΩ =
√

∑ j(Ω j − Ω̄)2/N

Electron bounce (axial) frequency ωb, j —

Average bounce (axial) frequency ω̄b ω̄b = ∑ j ωb, j/N

Axial frequency spread δωb δωb =
√

∑ j(ωb, j − ω̄b)2/N

Axial frequency full spread δ̂ωb δ̂ωb =
√

12δωb (uniform distribution)

Cyclotron detunings ∆ j ∆ j = Ω j − Ω̄

Cavity detuning ∆ ∆ = Ω̄−ω

Cavity mode decay rate Γ (due to resistive effect of the walls)

Cyclotron mode decay rate γ (due to coupling to traveling modes)

Spherical basis vectors ê+,0,− ê± = (±x̂− iŷ)/
√

2, ê0 = ẑ

Components of spherical basis vectors v±,vz v± = ê∗± ·v = (±vx + ivy)/
√

2, vz = ê∗0 ·v
Cavity mode amplitudes a, ā,b0, b̃0 ā = b̃0 = aei∆t = b0e(i∆−γ/2)t

Cyclotron velocities v j±, v̄ j±,b j, b̃ j v̄± = v±e∓iΩ̄t , b̃ j = ev̄ j−/(ωc
√

2mV ε0) = b je
(i∆−γ/2)t

Cavity coupling parameter η j, η η j = eh−(x j)/
√

2mV ε0 (use η when all η j same)

Single electron frequency shift δω δω = (4|η |2∆/Γ2)/[1+(2∆/Γ)2]

Single electron decay rate Γ1 Γ1 = (4|η |2/Γ)/[1+(2∆/Γ)2]

Collective mode decay rate in uniform
magnetic field

ΓN ΓN = Γ
2

(
1−
√

1−4NΓ1/Γ

)
, 4NΓ1 < Γ;

ΓN = Γ/2, ,4NΓ1 > Γ

Dimensionless quantities τ ,δ Ω̃, ∆̃, Γ̃,etc. τ = ηt, δ Ω̃ = δΩ/η , ∆̃ = ∆/η , Γ̃ = Γ/η , etc

Normalized average frequency spacing χ, ζ χ = (δ Ω̃)Γ̃/N = 4δΩ/(NΓ1) = 2ζ/
√

3

Critical frequency spacing χcrit χcrit = Γ̃2/N = 4Γ/(NΓ1)

Normalized axial frequency spacing χaxial χaxial = δωb/(NΓ1)

Collision rate Γcol —

Normalized collision rate γcol γcol = Γcol/(NΓ1)

Table I. Summary of symbols and definitions used for key quantities.
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