JOURNAL OF COMPUTATIONAL PHYSICS145,462—-468 (1998)
ARTICLE NO. CP986024

NOTE

Application of Contour Dynamics to Systems
with Cylindrical Boundaries

1. INTRODUCTION

Contour dynamics (CD) is a widely used method in fluid mechanics for studies of tv
dimensional vortical flows of incompressible, inviscid fluids. It was originally develops
by Deem and Zabusky [1, 2] for unbounded flows. A review of the method and num
cal implementations can be found in Ref. [3]. CD is based on the simplification pres
for flows with piecewise-constant distributions of vorticity in which the entire fluid mc
tion can be determined by the locations of vortex boundaries. Under these conditions
problem is effectively reduced from two dimensions to one. Moreover, CD represents
vorticity distribution in a smoother (and thus more realistic) manner than other techniq
A refinement of the method, named “contour surgery” [4], was also developed to res
problems associated with the development of fine spatial scales, thereby making long
calculations possible.

Contour dynamics cannot be used in its standard form for bounded systems, wher
normal component of velocity (or the value of stream function) has to satisfy a bounc
condition. Some work on application of CD to different geometries was done in the past
half-plane was considered in Ref. [5]; CD on the surface of a sphere can be found in Ref
Nevertheless, no ready algorithm can be found in the literature for bounded planar surf:
In this paper, a straightforward CD method is presented that can be used for systems
cylindrical boundaries and can be generalized to other geometries. The free-space part
stream function;) is calculated using standard CD, while the boundary-induced ima
contribution (/) is computed as a solution of the Laplace’s equation which satisfies
conditionyi |c, = —¥¢lc,, whereCy, is the system boundary.

As an illustration, the method is applied to the problem of finding the static equilib
of a nonneutral plasma column subjected to an externally applied boundary potential.
system is comprised of a long electron plasma column which is confined radially b
uniform axial magnetic field and is bounded in space by a cylindrical wall. Fluid-lik
two-dimensional (2D) motion occurs in the plane perpendicular to the magnetic field.
dynamics is governed by the continuity equation for the electron fluid demgitglong
with the velocity determined bfg x B drift and Poisson’s equation for the electrostati
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potential. As is well known [6], these 2D drift—Poisson equations are isomorphic to Euls
equations for a constant density fluid with the charge density playing the role of the vortic

2. CONTOUR DYNAMICS METHOD WITH CYLINDRICAL BOUNDARIES

We start with a short statement of CD for unbounded flows [1, 2]. The velocity of the
flow at any point can be expressed in terms of the stream functiaag) = Vi (x, y) x &;.
The stream functiony satisfies Poisson’s equatiovi?ys = —w, wherew is the vorticity.

It is assumed that the vorticity is represented by a sellopiecewise-constant values
wx, k=1...Ng, in regionsRy bounded by contour€y. Using the 2D Green function to
solve Poisson’s equation, the free-space stream function can be written as

Vi = o /dx’dymx', y)Inlr =1/, 1)

Using Stokes’s theorem, the area integral in Eq. (1) can be converted into a line inte
over the boundary

Ne

w) ! ! / /

vy =3 2 (= f i -0 ay - -y ax), @
=1 47'[ Cx

where Ay is the area of the regioRk. The velocity field can also be written in terms of

contour integrals, namely

Ne
w, ! !
vf(x,y):—zjz—k Injr —r’| dx’. (3)
k=1 7 JC

Note that if the vorticity outside the vortex pat@ is not equal to zero, thepy in Egs. (2)
and (3) should be replaced by the jump of vorticity across the bour@arighe inside
vorticity wx minus the outside vorticity). Thus, the problem of time evolution of regiot
with constant vorticity is now reduced to the evolution of boundarigSyof

We now turn our attention to bounded systems. In the presence of boundaridise
stream function is no longer equal simply#g, but can be expressed as

Y= wf + V¥i + Yex (4)

wherey; is the stream function due to the boundary-induced image of the vortex distribu
andyrex corresponds to the external stream function which satisfies the prescribed bour
condition onCj.

The image stream function can be found in a number of different ways. In certain
ometries (e.g., a half-spacg) can be written, using the corresponding Green function,
an area integral and reduced to the line integral analytically using Stokes’s theorem.
method does not work in all geometries, and the Green function cannot be found ar
tically for complicated boundaries. We take a different approach. The image contribu
is constructed as a solution to the Laplace equaiy; = 0, subject to the appropriate
boundary conditiow;|c, = —'t |c,. This guarantees that the total stream function satisfi
the boundary condition. The valugs |c, are calculated by computing Eqg. (2) along the
boundaryC,.
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Consider a system with a cylindrical wall of radiRsThe general image stream function
can be written for < Ras

o) I )
G o) =Y (LR) Die ', ®)

|=—00

with D_; = D to provide a real functiony;. In practice, the sum in Eq. (5) is truncated a
some maximum value df,ax = N;. The set of coefficient®, is found from the boundary
conditiony; (R, 8) = —¢¢ (R, 6). Using Eq. (2) fory ¢, the following expression for the
coefficientD, (I # 0) is obtained,

Nc o
D, = Zﬂ/ dee”ef In|R — r'|[(xX' — Rcos®) dy — (Y — Rsing)dx], (6)
k=1 812 Jo Ci

with R = (Rcosh, Rsind). Note that the inner integral is one-dimensional and thus c:
be numerically evaluated quickly. The outer integral is a fourier transform and can likew
be evaluated quickly. Thus, this method of evaluating the image stream function is
efficient.

A nonzero, external boundary condition can be taken into account in a similar manner.
external fieldyex is written as a solution of Laplace’s equation that satisfies the prescrit
boundary condition &t

Velocities, needed for the calculation of the time evolution of the contours, can be e
uated using Eg. (3) for the free space partand by simple differentiation of resulting
expressions foty; (e.g., Eq. (5)) andex.

3. APPLICATIONS TO ASYMMETRIC PLASMA EQUILIBRIA

As an illustration of the method, we consider a pure-electron plasma column confine
a cylindrical Penning—Malmberg trap [7]. As discussed in the Introduction, the equati
of motion for the magnetically confined electron column are identical to those gove
ing a 2D inviscid incompressible fluid [6] with the density playing the role of vorticit
(w — 47 en/B) and electrostatic potential replacing the stream functior{ —c¢/B).

We will use CD (more precisely, contour statics) to find the asymmetric equilibria
the column in the presence of external potenti@)) applied to the confining wall. In
the absence of applied asymmetrié&) =0, the column assumes a perfectly cylindri-
cal equilibrium shape. When azimuthally asymmetric potentials are applied to the v
the plasma deforms into an asymmetric equilibrium. These equilibria have been obse
experimentally [8]. In a previous theoretical work [9], the static shapes were stud
analytically for small applied potentials and numerically for arbitrary potentials. The
the equilibria were obtained dynamically (by following the evolution of the initially circt
lar plasma as the wall potential is slowly changed) using a time consuming and inacct
vortex-in-cell simulation. These equilibrium shapes can be found much more easily u:
the technique presented in this paper.

For a given external potential applied to the wall there might be a few, one, or no equilik
Note that these equilibria are not necessarily stable. To find the static shape, we first not
the guiding centers of the plasma electrons drift along equipotential contours. There
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the plasma shape is stationary if its boundary coincides with an equipotential contour
Mathematically, the condition for the plasma to be in equilibrium can be written as

¢(rp, 0) = const @)

wherer , = r,(0) specifies the plasma boundary. Representing the contour in the coordi
system centered inside plasmaaty. as

Xp(0) = Xc + £(9) COSp,  Yp(0) = Ye +&(¢) Sing, ®)

and using Egs. (2) and (5), this equilibrium condition can be written explicitly as

!

-Esin(¢’ — @) | do’

n / 12 / / 35
en/ |HQ(<p,w)[S —EECOS((p—cp)—a
0 %

00 I
+ Z (L‘;) (D) + V) e’ = const (9)

|=—00

where

E=E(@), §=8) 12=x2+V?

9> =&°+£% - 2’6 cody’ — ¢),

ra=rg+&+2reé cody — 6o), (10)
tand = (y. + & sing)/(X; + & cosy),

tanf. = ye/Xec.
V/ is a Fourier transform of the wall potent)(#), andD; can be calculated using Eq. (6):

JE’

3y Rsin(p’ — ) |d¢'.

en or io 2 ’ ’ 2 / /
D':_Z_/ o' [ d¢'Inq(e, ¢')|% —&'Reosiy’ — ¢) -
T Jo 0
(11)

Equation (9) is a closed-form integro-differential equation for the plasma equilibrium sh
with Dy given by Eq. (11).

The plasma boundary is discretized itNgpoints, and Eq. (9) is solved numerically. For
simplicity the wall potential is assumed to be an even functioy {ibut also see [10]),
and the equilibrium centered on tReaxis atx. is sought. Positions of the boundary point:
are then represented in the coordinate system associated with plasma as given by E
with ¢; = 271 /N. The curve between two adjacent points is interpolated by cubic splir
r =r; + st + n(s)n;, wheret; andn; are the tangent and normal to the curve, respective
ands is the fractional distance between the nodes. Integrals from Egs. (9) and (11)
calculated analytically to first order i (for a discussion of this technique see Ref. [4])
The equilibrium condition, Eq. (7), written at tihé boundary points results iN nonlinear
algebraic equations foN 4+ 1 unknowns:x, & (i =1, N). The system is supplemented
with the equation for the area of plasma. To find an equilibrium corresponding to a gi
wall potential the initial guess is used as a starting point and the equations are solved
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FIG. 1. (a) Elliptical equilibrium. (b) Absolute error between the numeric and analytic solutions.

Broyden’s method [11]. The error criterion is defined in the following way. The avera
plasma surface potential is computed at every iteration as

z

Sl

1
= N Z p(‘/’l) @i) (12)

i=1

The run is terminated if
sup [¢(rp(e). @) — ¢l <e, (13)
i€[1,N]

wheree is the desired accuracy. The solution found by numerical integration correspo
to the equilibrium plasma shape of a specified area and a given potential applied tc
confining wall.

To test the performance of the procedure, numerical integration was performed f
number of equilibria with known analytical shapes [12]. Potentials corresponding to
center circles and ellipses were used. As an illustration of the agreement between anal
and numerical results, consider the following example. The wall potential is taken such
the known analytical equilibrium is an ellipse wih= 0.6R, b = 0.3R, wherea andb are
the major and minor axes of the ellipse, respectively. As this ellipse is quite distorted fi
acircle, itis a good test of the robustness of the method. The calculation is performed L
N = 256 points to represent the contour, and the sum in Eqg. (5) is truncatipe-al 28. The
initial guess was taken to be a circle, and the desired accuracy-d0~’ was achieved
in 14 iterations. The result of the numerical integration and the absolute error betw
the analytical and numerical solutiods=r"'™ — ra@"a can be seen in Figs. 1a and b,
respectively.

In the next example, which cannot be solved analytically, a constant normalized pote
V* = V/4renyR? is applied to two 90 sectors with the rest of the cylindrical wall being
grounded. The area of the plasmais taken t&per R? = 0.25. Equilibria for three different
potentialsv* = 0, V* = —0.08, andv* = —0.16 are presented in Fig. 2. The well-known,
but peculiar, attraction of the negatively charged plasmato negative voltages [8] can be
as well as a severe deformation of the plasma shape from cylindrical for large asymme
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FIG. 2. Equilibria determined numerically for* =0 (- - -), V* = —-0.08 (-----), V* = —0.16 (—) applied to
opposing 90arcs (drawn in as the heavy lines).

4. CONCLUSIONS

The CD method, which was originally developed for unbounded flows, has been extel
to take into account a cylindrical boundary conditions and external fields. The method
tested for a static problem of plasma equilibria in a presence of an external asym
ric potential. The technique can be also generalized to account for boundaries other
cylindrical.
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