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The interaction of multiple waveguide modes with a relativistic electron beam in an 
overmoded, single-frequency, cyclotron autoresonance maser amplifier is analyzed using a 
nonlinear self-consistent model and kinetic theory. It is shown analytically, and confirmed by 
simulation, that all of the coupled waveguide modes grow at the spatial growth rate of the 
dominant unstable mode, but suffer different launching losses which depend upon detuning. 
The phases of coupled modes are locked in the exponential gain regime, and remain 
approximately locked for some finite interaction length beyond saturation. The saturated 
power in each mode is found to be insensitive to the input modal radio-frequency (rf) power 
distribution, but sensitive to detuning. Simulations indicate that the saturated fractional rf 
power in a given mode reaches a maximum at its resonant magnetic field, and then decreases 
rapidly off resonance. Good agreement is found between the simulations and the kinetic theory 
in the linear regime. 

I. INTRODUCTION 

The linear and nonlinear interaction of multiple electro- 
magnetic eigenmodes with relativistic charged particle 
beams has been the subject of active research in the genera- 
tion of coherent radiation using free electrons. Multimode 
phenomena occur in oscillator as well as in amplifier config- 
urations. In oscillator systems, such as free-electron laser 
(FEL) oscillators’-” and gyrotrons,4 mode competition de- 
termines the temporal behavior of the eigenmodes of the cav- 
ity and the radiation spectrum. In an overmoded, single- 
frequency amplifier, the temporal dependence of the 
eigenmodes is nearly sinusoidal, but the eigenmodes evolve 
spatially as the interaction length increases. A nonlinear, 
multimode theory is indispensable in order to predict the 
radiation power in each mode and the transverse field pro- 
file. 

Multimode interactions have been investigated using 
linear theory’ and computer simulation@ for FEL ampli- 
fiers, but detailed comparison between theory and simula- 
tions are not (yet) available. Recently, Schi117v8 and Sesha- 
dri’ have developed a linear kinetic theory of multimode 
cyclotron resonance masers. Also, competition among abso- 
lutely unstable modes has been investigated using simulation 
techniques.’ There have been few theoretical studies of the 
nonlinear interaction of multiple convective waveguide 
modes and the electron beam in overmoded cyclotron auto- 
resonance maser (CARM ) amplifiers. The goal of this paper 
is to develop a formalism that can treat the linear and nonlin- 
ear evolution of an overmoded, single-frequency CARM 
system with an arbitrary number of transverse-electric (TE) 
and transverse-magnetic (TM) waveguide modes coupling 
to the electron beam. The preliminary results of this paper 
have been reported earlier. lo 

The CARM interaction”*‘* occurs when a relativistic 
electron beam undergoing cyclotron motion in a uniform 

magnetic field B,e, interacts with a copropagating electro- 
magnetic wave (w,k). The cyclotron resonance condition is 
w = k,v, + Q/y. Here, u, and y are, respectively, the axial 
velocity and relativistic mass factor of the beam electrons; I is 
the harmonic number; f12, = eB,/m,c is the nonrelativistic 
cyclotron frequency; m, and - e are the electron mass and 
charge, respectively; and c is the speed of light in vucuo. 

The physics of CARM’si3-‘* has been studied theoreti- 
cally and experimentally. Experimental results on CARM 
oscillators16*17 and amplifiers18,‘9 have been reported re- 
cently. Theoretical work has included one-dimensional lin- 
ear and nonlinear theory, *O,*’ three-dimensional linear and 
nonlinear theory of the CARM interaction with a single TE 
or TM waveguide mode, i2,** nonlinear efficiency studies, ’ ’ 
the investigation of efficiency enhancement by magnetic 
field tapering,21Y23 the stability calculation of absolute insta- 
bilities,24 the stabilization of the CARM maser instability by 
an intense electron beam,25 and the studies of radiation guid- 
ing.26 

In this paper, we present a general treatment of multi- 
mode interactions in an overmoded single-frequency 
CARM amplifier. The present analysis consists of two ap- 
proaches: linear kinetic theory and computer simulations 
based on a fully nonlinear, three-dimensional, self-consistent 
model. The Maxwell-Vlasov equations are linearized to de- 
rive amplitude equations for the coupled waveguide modes 
in the small-signal regime. The amplitude equations are 
solved with the Laplace transform techniques, resulting in a 
dispersion relation with cyclotron harmonics and an arbi- 
trary number of TE and TM modes. The Laplace transform 
analysis allows for analytical calculation of launching losses 
and the three-dimensional field profile (amplitude and 
phase). A complete set of ordinary differential equations 
describing the nonlinear, self-consistent evolution of the 
waveguide modes and of the relativistic electron beam are 
derived, and integrated numerically for a wide range of sys- 
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tem parameters. Detailed comparisons between theory and 
simulations are made. The general features of the linear and 
nonlinear multimode interaction are illustrated. 

It is shown analytically, and confirmed by simulation, 
that all of the coupled waveguide modes grow with the domi- 
nant unstable mode at the same spatial growth rate, but suf- 
fer different launching losses which depend upon detuning 
characteristics. The phases of coupled modes are locked in 
the exponential gain regime, and remain approximately 
locked for some finite interaction length beyond saturation. 
The saturated rf power in each mode is found to be insensi- 
tive to input power distribution, but sensitive to detuning. 
Simulations indicate that the saturated fractional power for 
a given mode reaches a maximum at its resonant magnetic 
field, and then decreases rapidly off resonance. In the transi- 
tion from one resonance to another, however, adjacent com- 
peting modes can have comparable rf power levels at satura- 
tion. 

The organization of this paper is as follows. After for- 
mutating the problem in Sec. II, the Maxwell-Vlasov equa- 
tions are used to derive the linearized amplitude equations 
and dispersion relation for the multimode CARM interac- 
tion in Sec. III. In Sec. IV, nonlinear CARM equations are 
derived from the standpoint of particle-wave interactions. 
In Sec. V, the single-mode CARM interaction is reviewed 
briefly in the linear and nonlinear regimes. In Sec. VI, the 
linear and nonlinear evolution of CARM amplifiers with 
two or more waveguide modes is analyzed, and the general 
features of multimode phenomena are illustrated. 

II. GENERAL FORMULATlON OF THE PROBLEM 
We consider a relativistic electron beam undergoing cy- 

clotron motion in an applied uniform magnetic field B,e, 
and propagating axially through a cylindrical, perfectly con- 
ducting waveguide of radius rw (Fig. 1) . The dynamics of 
each individual electron is described by the Lorentz force 
equation 

4 
dt= E+VXtBoe, +B) 

C 

and the evolution of the electron beam is described by the 
Vlasov equation 

Here, f( x,p,t) is the electron phase-space density function. 
In the present CARh4 amplifier theory, the temporal de- 
pendence of the electromagnetic perturbations E (x,f) and 
B( x,t) in Eqs. ( 1) and (2) are assumed to be sinusoidal and 
consist of TE and TM waveguide modes. Because the trans- 
verse field components of a TE or TM waveguide mode can 
be expressed in terms of the axial magnetic or electric field of 
that mode [see Eqs. (S)-( 11) 1, it is sufficient to work with 
the axial component of the wave equation. It is readily 
shown from Maxwell’s equations that the axial field compo- 
nents of the TE and TM perturbations satisfy the wave equa- 
tions12 

-g+v:+s > B~E(r,6,~,~) 

= - Ee,(VXJ), 
C 

( $+v;+$ > PfW,a) 
=4fl~+$$ 

InEqs.(3)and(4),V,=e,d/dx+eYa/&w=2rrfisthe 
(angular) frequency of the perturbations, E(x,r) and 
B (x,t), and the current and charge density perturbations are 
defined by 

J(W) = - e s 
vf, (x,p,t)dp, (51 

pW) = - e fi (x~P,O~P, 
I 

where 

(6) 

fi (X,PJ) =f(X,P,t) -fo (~g’B,Prds 1 (7) 

is the distribution function perturbation, andf, ( rg ,pr ,p, ) is 
the equilibrium distribution function. Note that the electron 
guiding-center radius and azimuthal angle, rg and S,, and 
perpendicular and axial momentum components, 
pi = (p$ + p: ) “’ and pz, are exact constants of motion for 
an individual electron in the applied magnetic field B,e, 
(Fig. 2). 

E+IX(B,e, -t-B) 
> 

z=O. (2) 
C 

WAVEGUIDE 

FIG. 1. Schematic of a CARM system in the interaction region. 

(4) 

FIG. 2. Guiding-center coordinate system. 
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Expanding B T”( r&z) and Ez”( r,8,z) in terms of the 
vacuum TE,,,, and TM,, eigenfunctions Y,,, (r,@ and 
Y,,,, (r,B), respectively, the electromagnetic perturbations 
can be expressed in the general form 

E, W) = $2 (J?,,,, (z)e, xv,*,,,,, V,@ 
mn 

c d&m (~1 
+- v,@,, (r,@ 

w dz > 

Xexp( - itit) + c.c., (8) 

ck ‘,, 
E,(x,t) ==+c- B,, (z)%nn (r&9 Inn w 

Xexp( - iwt) + c.c., (9) 

B,(w) = $2 ($ dEyz(z) v,y,, tr,,y) 

+ %, (de, xv,@,,, (r,Q) > 

Xexp( - id) + c.c., (10) 

B,(W  =$x ick 2 mn Em, (z)Y,n,, (r,@ 
Inn w 

Xexp( - iwt) + C.C. (11) 

In Eqs. (8)-( 1 l), the subscript t denotes the transverse 
components of the electromagnetic perturbations, and 
E,,, (z) and B,, (z) are the z-dependent amplitude of the 
TE,, and TM,,,,, modes, which evolve due to the CARM 
interaction. The TE,, and TM,, eigenfunctions 

K,,, (d) = G,J,,, R,,,~)exp(im@, (12a) 
@,,,,(r,Q) = ~,,,,J,(~,,r)exp(h9) (12b) 

satisfy the equations 

(V:+k2,,)y,,(r,e) =o, (13a) 

w:+k:,)@,,c~,e) =o, (1%) 
and the boundary conditions 

ac,, 
T (r = r,,e) = 0, (14a) 

+‘,, (r = r,,e) = 0. (14b) 
Here, J, (x) is the Bessel function of first kind of order m, 
Y Inn = k,,,,r, is the nth zero of Jk (x) = dJ,,, (x)/dx, and 
C,ll” = k,,, r, is the nth zero of J, (x). With the choice of the 
normalization factors 

CL = k f,,n/~($, - m2)JL (Y,,,, ), (15a) 
E’ mn = i f,,,,h-%,J~(~,,,, 1, (15b) 

the orthogonality conditions can be expressed as 

s Y:, Ym,,,. do = S,,, S,,. , (16a) 
4 

s 
@:,@,.,, da = a,,,,,,. 6,,,, (16b) 

rriw 

s 
Y:,,, ii$,, do = 0. (16~) my,. 

Here, S,, is the Kronecker delta. Substituting Eq. ( 11) into 
Eq. (3), multiplying the equation with Yz,, and then inte- 
grating the equation over the cross section of the waveguide 
yields 

f+,, +$ E,,,,(z) 

= 8riew exp(iwt) 
c2k ‘,, s 

(e, XV,V,, hf, dp do, (17) 

for the TE,, mode. Similarly, it is readily shown from Eqs. 
(4) and (9) that 

2-k +* C2 > 
B,,(z) 

= 8niew’ exp( iwt) 
C21;In j-@%(~+$~)fi &da, 

(18) 

for the TM,, mode. The (average) rf power flow through 
the waveguide cross section as a function of interaction 
length, z, is given by 

P(z) =-$lff’mdtj- (ExB)*da. (19) 

Substituting Eqs. (8)-( 11) into Eq. ( 19) and making use of 
the orthogonality conditions in Eq. ( 16), we have 

P(z) = c [Pm, (z) + E, (z) 1, (20) 
Inn 

where 

(21) 

and 
ic21; 2 

Fm, (z) = m” dB%, dB 
B 

167r~ 
--BB* 2 

mn dz dz 
(22) 

are the rf powers in the TE,, and TM,, modes, respective- 
ly. In Sets. III and IV, use is made of Eqs. (l), (2), (17), 
and (18) to establish a linear and nonlinear theory of the 
multimode CARM interaction. 

III. LINEAR THEORY 

In this section, the Maxwell-Vlasov equations are lin- 
earized to derive self-consistent amplitude equations [ Eqs. 
(40) and (41) ] in the small-signal regime. The amplitude 
equations are solved with the Laplace transform technique, 
resulting in a dispersion relation [ Eqs. (44) and (45) ] for 
the CARM instability which includes an arbitrary number 
of TE and TM waveguide modes. Our Laplace transform 
analysis allows for analytical calculation of launching losses 
and the three-dimensional radiation field profile. 

A. The linearized Vlasov equation 
For present purposes, we assume the electron beam to 

be cold and azimuthally symmetric with respect to the wave- 
guide axis, and express the equilibrium distribution function 
as 
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fo(rg~Pl~Pz) =$ RPl -P,o)&P, -P,?o)G(r,), 
(23) 

where nb is the number of electrons per unit axial length, and 

s 
G(r,)r, dr, de, = 1. (24) 

The electron phase-space density perturbation fi (x,p,t) 
evolves according to the linearized Vlasov equation 

(vXB,,e, j.2 

=e(,+:xB)*z. (25) 

Here, since the system is single frequency and the spatial 
evolution of the perturbations is of interest, the usual total 
time derivative is replaced by total derivative with respect to 
the axial distance z. It is convenient to introduce guiding- 
center variables as illustrated in Fig. 2, where r, = pI /m, fz, 
is the Larmor radius, px =pL cos 4, p,, = pr sin 4, 
e, = e, cos(fj - 6) + e, sin($ - 8), and e, = -e, 
Xsin(@ - e) + e, cos(f$ - e). Using 

ah ~0s 9, afo sin 4, afo - = e, 
ap 

af,+-- 
ah m& arg 

-ee,------+ee,df,, 
moC %. aPz 

(26) 
Eq. (25) becomes 

v, $f, hbp, 4hP,,t) 

=e(E, -&B,) $+ewz +8,BL+) g 
1 2 

+(e/m,R,)[(Elcos45,-EE,sin45,) 

-/3,(B, sin4, +B, cos#,) +BrBz sin4,] $, 

$7) 
wherep, = v, /c and fiZ = 0,/c. Substituting Eqs. ( 8)-( 11) 
into Eq. (27) and making use of recurrence relations and 
Grafs theorem for Bessel functions,27 it can be shown (see 
Appendix A) that the linearized Vlasov equation can be ex- 
pressed as 

2 = 6 C g ~k,,Cm,O,,, + kn,t%m%mq)fo 2 mnq= -0c 
xexp[iA,,($,fj,J)] + cc., (28) 

where Ams ( q3,qSc,t~ = mq5 + q$, - wt - mn-/2, and the op- 
erators Omnq and Omng are defined by 

0 mnq 
bpp 2-d 

zyrgyrLp arg 9  Ly zs ap,  f ap,  

=Xmnq(rLtrg) 

iv, d=%,, a ---- 
w dz ap, 1 

Ymnq ( rL ‘rg 1 iv dE,, 

mdh 
Em, f-f-- 

w dz 

““;;$:’ (%) Emn] 2, (29) 

amq 

(30) 

In Eqs. (29) and ( 30)) the geometric factors X, Y, Z, y, and 
y are defined by 

X,,,,(rL,rg) = J:,+,(k,,r,)J,(k,,r,), (31) 

Y,,,(r,,r,) = J,+,(k,,r,)J~(k,,r,), (32) 

Z,,,(r,,r,) = J,,,+,-, (k,,r,)J,-, (k,,r,) 

-J,+,+l(k,,r‘)J,+,(k,,r,), 
(33) 

~,,,(rL,rg) = Cm +q)[J,+,(~,,P;)/K,,r,] 
xJ,&,,r,), (34) 

?m,,q(rL,rg) =qJ~+s(I;,,rr)[Jp(l;mnrg)/K,,r,]. 
(35) 

Integrating Eq. (28) along the line of characteristics defined 
by 

4, (z’) = 4, -t (fM% 1 (z’ - z), (36a) 

&z’) =4+ (Wv,)(z’--1, (36bf 
t(2) = t + (l/v,)(z’ -z), (36~) 

yields 

f, Vg,4,,z9pL,#,~Zt~) 

= f C exp[k, (kcLt)] 65 
mw I 

Xew-li[(m+q)(QJy) -w][(z’-z)/v,]) 

x [km, G,nOmnq (~‘1 + km, %, %nq (z’) I.& + cc. 
(37) 

In deriving Eq. (37), we have assumed the initial condition 
fi II = e = 0, corresponding to an initially unbunched elec- 
tron beam. In Eq. (37), use has been made of the abbrevia- 
tions _Omnq (~7 = Omnq (z’,rg,rL,a m,,p, ,p,,a /pL ,a/ap, I 
and Omnq (z’) = O,,, (z’,rg ,rt ,a /ar,,p, ,p,,d /pL ,a lap, ), 
and the variables (r&z) in f, have been replaced by the 
guiding-center variables ( r,,rj, ,z) via a scalar transforma- 
tion. 

6. Linearized amplitude equations for coupled TE and 
TM modes 

To evaluate the overlap integrals in Eqs. ( 17) and ( 18), 
we express P(e,XVY/Zn)exp(iwt) and @:, exp(iot) in 
terms of guiding-center variables, i.e., 
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IWe, XWt, >exp(W 

=8,k,C,, ~Xm,,(rL,rgkxp[ - iL,(49AA]t 
9 

(38) 

9%” exp(iwt) 

= en” T (2:;) xn,, (rL J-g 1 
Xexp[ - ~~,,(9,qL~)]. (39) 

Substituting Eqs. (37)-(39) into Eqs. (17) and (18) and 
making use of the expressions da = r dr de = rg dr, dq3, 
and dp = pL dp, dp, dq5 result in the linearized amplitude 
equations 

( 
$ - k :,, + $ 

> 
E,,,, (z) 

=qy~)QJd% 

XL,I- ,,, (rL. ,rg ) I 
Pi dp, dp, P, 

X SFexp[i(I:-u)y] 

x [k,“~cm”‘om”‘Lm(Z’) 

+ km”, Em,* am+ m (z’) If0 
and 

$ - K ;, + g 
> 

B,, (z) 

. 16de2w2 =I c2imnc (g+z=~TJ?dr,~ 

X ~mn,-,(rL,rg) Ipl dp, dp,(p, +i$) 

(4.0) 

Equations (40) and (41) describe the linear evolution of 
coupled TE and TM waveguide modes in a CARM amplifier 
for an (arbitrary) azimuthally symmetric electron beam. 
Note in Eqs. (40) and (41) that TE and/or TM modes with 
different azimuthal numbers do not couple, which is a direct 
consequence of the assumption made of the azimuthal sym- 
metry of the electron beam with d/de, = 0. [For an asym- 
metric electron beam (d /Jo, # 0), of course, the coupling of 
modes with different azimuthal numbers cannot be ex- 
cluded. ] 

C. Dispersion relation and launching losses 

To derive a dispersion relation for the CARM instability 
with TE and TM modes and to calculate launching losses, 
we solve Eqs. (40) and (41) with the Laplace transform 
defined by 

- Em,(s) = 
I 

E,,, (.&q-G - sz)dz, (42) 
0 

s 

m 

B,, (s) = B,, (z)exp( - sz)dz. (43) 
0 

A detailed derivation of the resulting dispersion relation is 
presented in Appendix B for the case of a thin (k,, rg < 1 and 
I%,, rg 4 1) electron beam described by the equilibrium dis- 
tribution function in Eq. (23). For the initial conditions 

Em Ir=o = Km (01, 4, lrco = B,, (01, 
dEm, - dBm 

dz 2=0 dz 
= 0, 

ZZO 

the dispersion relation can be expressed in the matrix form 

D’,“, ~w)Em, (s) + c i ET,E,& ed (a2 + c2s2) 
n’(n’#n) I= - m (w - M,/y+ isLIz)* Em,* (s) 

+ 5 ,=z cl~dn.l 
(c2L “,,, y0a-l: ) (P,w + its) _ B,,. (~1 m (0 - M,/y + isv, )2 

=a?l,(0) +Q ( EE,,, 
iv,k* .w 

(w - K&/~+ isv,)* 
E,,,,, (0) + <;,,,, 

icl; i,,w 

m (w - Z&/y + isv, )* 
B,,,,,(O) , 

> 
(44) 

Dam&,,, + 2 2 cfn,, 
(k ‘,,, y/l& 1 C&o + its) (a* + c*sZ) - 

E,,,,. 0) 
d(d#cn) I= - - (w - K&/y+ isv,)* 

-I- ; ,=i$ ~~~“~, 
I(cl;;,.y/z~,)*(p,w + its)* _ 

B,,,,. 0) 
ea (w - I&/y+ isv,)2 

=sBmn (0) + ; ,=z 
( 

cFn., 
(c*k L,,, y/Q) (&w + ics)s 

E,,,,. (0) 
ca (w - If&/y + isv,)* > 

+ czl~* 
i( cl; ;,, ydl%k,, 1 U3,w + its) 

(w - m,/y + isv,)* 
B,,,(O) , 

> 
(45) 
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where 

D~~;,E,s,w) =s*-k:, ,g, 2 $;nnnr 
I= -co 

X 
k 2, (CO* + c2sz) 

(w - M,/y+ isv,)* 
(46) 

is the dielectric function for the (single) TE,, mode, and 

DLy(s,o) = s2 - I;‘,, + w*/c* 

+ ,=z cz% 
i(ck~,y/z~,)*(p,w + its)* 

m (w - M,/y + isv,)* 
(47) 

for the (single) TM,, mode. In Eqs. (44)-(47), 

ICE mm’1 = a ( G,/k,, I( Cm,, /km,, IX,,,, _ ,,, (rL ,rg 1 

XXmnFl-mm(rL,rg)r (48) 

8mymp, = a(C,,,,/k,, 1 (~,,,/k,,, )X,,,,,_ ,,, (rLrrg 1 

xzmner- m (r,,r,), (49) 

PM mnn’l = a ( 2;,, /i;,, ) ( Em,, /km”, )X,,, _ m ( r; ,rg 1 

x~m,~,-,Vt,rgh (50) 

cfnt, = d~,,,J&,,,, 1 (C,,,,,,/k,,,, )x,,,,,- ,,, (rL,rg) 

XXmnp,-m(rL9rg) (51) 

are dimensionless coupling constants. Here, 

1y = 4re2nbB: 47Tp: Ib 

3/mot= =xTy ( > 
(52) 

I,, = 2rren,&.f;;“G( rg ) rg dr, is the beam current, r, is the 
maximum guiding-center radius of the beam electrons, and 
1, = moc3/er 17 kA is the AIfvCn current. In Eqs. (44)- 
(47), we have kept only the terms of order 
c2k ‘,,/( o - K&/y + isv, )‘, and neglected terms of order 
ck,, /( w - Ifi, / y + isv, ) , etc. [ More exact relations corre- 
sponding to Eqs. (44)-( 47) which include the contributions 
of order ck,,/(w - l&/y + isv, ) can be obtained from 
Eqs. (B5)-(B12) in Appendix B.] 

To leading order in c*k k,/(o - Q/y - kv, )*, our re- 
sults in Eqs. (44) and (45) have the same form as Eq. (66) 
in Ref. 7. The coupling constants are evaluated for a thin 
solid electron beam, while an annular beam is considered in 
Ref. 7. The exact coupling constants are defined in Eqs. 
(B5)-(B12) in Appendix B, and can be evaluated for an 
arbitrary azimuthally symmetric electron beam, including 
an annular beam profile. 

The dispersion relation for the multimode CARM inter- 
action is given by the zero determinant of the coefficient 
matrix on the left-hand side of Eqs. (44) and (45). More- 
over, the amplitudes g,,,, (s) and &,, (s) are easily found by 
solving the linear algebraic equations (44) and (45), and 
E,,,” (z) and B,,,, (z) can be_obtained by-performing the in- 
verse Laplace transform of Em, (s) and B,, (s) , 

%I (z) = & s 
l7fi.X 

-k,, (s)exp(sz)ds, 
CT-602 

s 

o+im _ 
B,, (s)exp(sz)ds. 

CT- ioc 

(53) 

(54) 

IV. NONLINEAR THEORY 
We now present a fully nonlinear, three-dimensional, 

self-consistent theory of an overmoded CARM amplifier for 
an (arbitrary) azimuthally symmetric electron beam. The 
present nonlinear model is capable of dealing with a single 
TE or TM mode, multiple TE and/or TM modes, cyclotron 
harmonics, magnetic field tapering, momentum and energy 
spread, etc. 

A. Particle dynamics 
Following Fliflet’s treatment’* of the single-mode 

CARM interaction, we assume that the electron guiding- 
center radius and angle are approximate constants of mo- 
tion, i.e., 

2~0 and -= . deg -0 
dt 

(55) 

In addition, we introduce the notation (the Larmor radius) 

rL =pIhofZ,, (56) 

where Pr = [ (f - 1 )mGc* - p: ] I’*. Under these assump- 
tions, the motion of an electron can be described by three 
variables: the energy, ‘ym,c*, the axial momentum, pz, and 
the azimuthal angle, Ip = tan - ’ (p,/p, ). From the Lorentz 
force equation ( 1 ), the dynamics of each individual electron 
is then 

-- (P,E, +p,Ez), (57) 

(58) 

dqh f% e -z--v 
dt Y PI 

E&k!k-plB, I 
> 

(59) 
ymoc ymoc 

It is useful to introduce the dimensionless wave ampli- 
tudes, A,,(z) and A,, (z), and phase shifts, S,, (z) and 
a,,,, (z), for the TE,, and TM,,,, modes, so that 

X edi[ k,,z + S,, (2) ] 1, (61)) 

B,,(z) = (&) (e)‘(+a(z, 
XexpCf[ kmnz + 6,, (z) 1 I. (61) 

Symbol S is used hereinafter to represent the phase shift [in- 
stead of the Kronecker delta used in Eq. ( 16) 1. The axial 
wave numbers of the vacuum TE,, and TM,, waveguide 
modes, k,,, and I&,,,,, , are defined by 

u2=c2(k&,n +k$,,) (62a) 
and 
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02=C2(k;m” +k’,,,, 
respectively. 

(62b) 

Substituting Eqs. (8)-( 11) into Eqs. (57)-(59) and 
making use of Graf s theorem for Bessel functions (similar 
to Appendix A), it can be shown after some straightforward 
algebra that the normalized equations of motion for an elec- 
tron are 

dr x= Xmnr- ,,, (rg9rL )A,, ~0s tLl 
n 

-- z: ~,Rd-m~~g9f-L~[(UL -P&l g A 
c 

d&n, 
dZ > 

d&m -- 2,” cos iLr - 7 sin iknl , 1 (63) 

x K da 
p,,; += 

di > Am ~0s 4mz, 

dA ,. + -Iflsin*,,, -‘+xX 
dZ 1 PZ mnl 

m”,q?z&- 1) 

Xxn” cos $m”,, (64) 

4 fi, + 1 
-2% =B, ;,a, mnl 

-2 Wmnl-“2 

XL, sin tL1 +A 
dA 
2 cos lfbmnI 1 

d2 
+ - 

Aal 

q k”l-r” >I z”” I”“1 
dz 

Xsin qm,, + y---1I1 
d.Z 

In Eqs. (63 )-(65), the (ponderomotive) phase variables, 
4 mnl and &,,,,,, are related to the phase 4 by the 

$,n, = kmnz + 4nn (2) 

+Z4-ot- (I-m)f3, + (&2m)77/2, (66) 
ik”, = L”Z + a”” (z) 

+Iq5-wt- (I-m)8, + (1-2m)n/2. (67) 
The normalized variables and parameters are defined by 

j,=p’, jjl =PL, &E, 
mot mot C 

w Do, = cmn = ck,, h ~Cnz” ck 
-9 w cm” =-= -A!!-, 

0 w 0 0 
(68) 

P 
w - 0 

4mn =-9 l&tz” =-&----, 
ckmn 

&A. 
an” w 

The geometric factors X,,,“,- m and X,,,,,- m are defined in 
Bqs. (31) and (34), and 

W,,,-,(rL,rg) = I [J,(k,,rL)/k,,rL] 

xJl-,(k,,rg), (69) 

~mn,-,(rL,rg> =J;(I;,,,r,>J,-,(I;,,r,). (70) 

B. Wave equations 
For an azimuthally symmetric electron beam, the non- 

linear charge and current density perturbations can be ex- 
pressed as28 

p(W) = - en,G(r,)u, s m moy(to,t) 
--m Pz (to,t) 

xS[t- dto,z)]dto, (71) 

J(x,t) = - en,G(r,)u, 
s 

m P(to,t) ~ 
-ca P,(to,t) 

xS[t - m,,z)]dto, (72) 
where p(t,,t) and y(to,t)moc2 are the instantaneous mo- 
mentum and energy of an electron (at time t) which crossed 
the plane z = 0 at time to, and r( to ,z) is the time when this 
electron reaches the axial distance z. Substituting Eqs. (7 1) 
and (72) into Eqs. ( 17) and ( 18) and averaging over one 
period 2rr/w, the wave equations for the TE and TM modes 
can be expressed in the normalized form 

( 

~+B~~)R,.,(i)exp[i(~+S,.(i))] 

2kn x 

n  

=- 

P&n” ( 

mnl-“2 (rg,rL I’+ exp( - 4Ll) 

PZ ) 
X edi [ W+,, + 6,” (2) ] 1, (73) 

( ~+~,;:~~n(i)exp[i(~+b,n(8))] 
W,, p =y P ah” ( 

,. 
mnl-“I ( rg,rL 1’; exp( - iGmn, ) 

PL ) 
X exp{i[ -VB+,, + 6,” (2) ] 1, (74) 

where (F) = N - ‘Zyi , I;; denotes the ensemble average 
over the particle distribution, N is the number of particles 
used in the simulations, and 

g “I” = 45&?wl (yp-J(+), (75a) 

k7z” = 4&+n, (+pJ 

x(~kQ-&)(-$) (75b) 

are the normalized coupling constants for the TE,, and 
TM,, modes, respectively. 

Substituting Eq. (60) into Eq. (21)) and Eq. (61) into 
Eq. (22) yields the rf power associated with TE,, and 
TM,, modes 

P,,.(i)=& !?y 
( )( 

P,,', + *) 

x(gj(~)kn9 (76) 
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m2c5 
Pm,(i) =& 0 ( >( e2 

B,,t, + fg) 

(77) 

where mic5/e2z8.7 GW. 
We have developed a three-dimensional simulation 

code, CSPOT, which solves the complete CARM amplifier 
equations (63 )-( 65 ), (73 ) and (74). For a simulation with 
N particles and M modes, the code integrates numerically a 
total of 3N + 2M first-order ordinary differential equations 
(typically, N> 1024). This code has been benchmarked 
against the linear theory presented in Sec. III, and can model 
a single TE or TM mode, multiple TE and/or TM modes, 
cyclotron harmonics, magnetic field tapering, momentum 
and energy spread, waveguide losses, and various beam load- 
ing options. After reviewing the single-mode CARM inter- 
action (Sec. V), we use our linear and nonlinear theory to 
analyze CARM amplifiers with two or more waveguide 
modes, and illustrate the general features of multimode phe- 
nomena (Sec. VI). 

V. NUMERICAL ANALYSIS FOR A SINGLE MODE 
In this section, we review the stability properties of sin- 

gle-mode CARM interaction. Here, emphasis is placed on 
the analytical calculation of launching losses using the La- 
place transform formalism, and on detailed comparisons 
between linear theory and results from computer simula- 
tions. 

I 

A. Single TE mode 
As stated in the Introduction the CARM interaction 

occurs when the cyclotron resonance condition 
hi) - K&/y- kg, = 0 (781 

is approximately satisfied (Fig. 3). Here, ik, = s, and Z is the 
harmonic number. To leading order in 
c2k &/(w - Q//y - kEut )2, it follows from Eqs. (44) and 
(46) that the dispersion relation with the single TE,, mode 
can be expressed as 

DTrn(ik,,w) =$--kS - k2,, + EL:,,, 

X 
k;,(u2-c’kf) o 

(w - Q/y - k,u,)’ = ’ 
(79) 

which is in agreement with earlier results.‘2,22.29 The maxi- 
mum spatial growth rate for the single TE,,, mode occurs 
when w* - c’(kL, +kt)rO and w-Q/y-kk,v,rO, 
corresponding to the intersection of the uncoupled TE,, 
and beam cyclotron modes. Therefore, expanding 
k, = k,,, + Sk, with k,, = (w2/c2 - k;,)“2=(a 
- KI,/y)/v,, and using Eq. (79), the maximum growth 

rate for the TE,, mode is shown to be approximately 

I- mn, = (3”2/24’3)(~~:n,k:,,/k,,,,Pf)“3. (80) 
Furthermore, from Eq. (44), the amplitude Em,, (ik, ) for 
the single TE,, mode can be expressed as 

Em, ! ik, 1 k, (0 - If&/y - kg, )’ + e::t,rvzk ;,,w 
iEm, (0) = (02/c2 - k ;, -k,2)(0-i~,/y-k,u,)2+E~~,lkZmn(W2-c2kZ) * 

(81) 

I 
Therefore, the three-dimensional radiation field profile (am- 
plitude and phase) for each individual TE mode can be cal- 
culated analytically by the inverse Laplace transform of Eq. 
(81) with s = ik,. In particular, the rf power in the TE,,, 
mode is given by 

pm, (z) 1 o--im E ($) 2 -= - pm, (0) I s 2rri 
L exp(sz)ds . 

o--i- E,,(O) 
(82) 

Typical gain bandwidth and dependence of rf power on the 
interaction length z are plotted, respectively, in Figs. 4 and 5. 

Figure 4 shows the gain bandwidth for the TEi , mode at 
the fundamental cyclotron frequency (I = 1) . Here, the sol- 
id curve is obtained from Eq. (79). The dots are from the 
computer simulations using CSPOT. The choice of system 
parameters corresponds to beam current 1, = 500 A, initial 
pitch angle BP0 = pLO /pa = 0.5, beam energy Eb = 1 .O MeV 
(yr2.96), normalized axial momentum spread 
n aPZ = ((i, - @Z))2)“2 = 0, maximum guiding-center ra- 
dius r, = 0, waveguide radius r, = 1.4 cm, and axial mag- 
netic field B, = 4.01 kG. Good agreement is found between 
linear theory and results from the simulations, except for 
some discrepancies near the cutoff frequency. Note in Fig. 4 

that the spatial growth rate vanishes at 
W/%I I = w/ck, i z 3.8 due to the cancellation between force 
bunching and inertial bunching. Indeed, the effective bunch- 
ing parameter (or effective detuning parameter)2s 

I c 
0 ckz 

FIG. 3. Schematic of the uncoupled waveguide dispersion relation and the 
beam cyclotron mode. The CARM interaction occurs near the upshifted 
intersection of the waveguide and beam modes. 
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4 0.00 

> 
a 
E 
l-4 
- 0.04 
I 

0.00 I 
0.0 

I ’ I ’ I ’ I ’ 

I,,’ 500A - 

FIG. 4. Gain bandwidth for the TE,, mode at the fundamental cyclotron 
frequency (I = 1) . The solid curve is obtained from Eq. (79)) while the dots 
are from the simulations using CSPOT. Note that the growth rate vanishes at 
~/%I I 13.8, where the force bunching cancels the inertial bunching, i.e., 
0;: = 0 [Eq. (83)]. 

x [ 1 - QJYdl -PAM~,, I] (83) 
vanishes at o/o,, , z 3.8. Here, D r’: is positive (negative) 
when w/w,, , > 3.8(w/w,,, <3.8). 

Figure 5 shows the rfpower in the TE, i mode as a func- 
tion of the interaction length z, for the same parameters used 
in Fig. 4, except that w/w,, , = 2.87 cf= 18 GHz) is chosen 
so that the TE,, mode is in resonance with the electron 
beam. In Fig. 5, the solid curve is obtained from the comput- 
er simulations, and the dashed curve is calculated analytical- 
ly from Eqs. ( 8 1) and ( 82). Again, there is good agreement 
between the linear theory and results from the simulations, 
even in the launching loss region (z < 20 cm). 

We have used our nonlinear, single-mode CARM theo- 
ry to interpret the recent experimental results from a 35 GHz 

‘09E ’ ’ 3 , ’ ’ .- s 1 I * b 8 $ _’ 
TE,, MODE : 

108 
,’ 

/s---l A----x 

I$$ LS,IN “i 
0.0 50.0 100.0 150.0 

Z(cm) 

FIG. 5. TheTE,, rfpower is plotted as a function of the interaction length z. 
Here, the system parameters are the same as in Fig. 4, but with 
w/ck,, = 2.87 cf= 18 GHz). The solid curve is from the simulations, 
while thedashed curve is from Eqs. (81) and (82). 

l2OW 160. 
2 km) 

FIG. 6. Comparison of the measured and computed rfpower as a function 
of interaction length for a 35 GHz CARM amplifier experiment operating 
in the TE,, mode. 

CARM amplifier. ‘**i9 In the experiments, an rf power of 12 
MW, with an overall gain of 30 dB, has been measured, using 
a 128 A, 1.5 MeV relativistic electron beam. This amplifier 
operates in the TE,, mode in a cylindrical waveguide. Figure 
6 shows the comparison of the measured and computed rf 
power as a function of interaction length. The system param- 
eters used in the simulation (and in the experiment) corre- 
spond to beam energy Eb = 1.5 MeV( y = 3.96), beam cur- 
rent Ib = 128 A, parallel energy spread Ar,, /y,, = 0.044 
[y,, = (1 -Pzo) -“*I, average guiding-center radius 
(rg ) = 0.15 cm, initial pitch angle 6, = plO/pfl = 0.27, 
axial magnetic field B, = 5.4 kG, waveguide radius 
rw = 0.793 cm, and an input power of 17 kW. In Fig. 6, the 
solid curve is from the CSPOT code, while the dotted curve is 
from the experiment. Good quantitative agreement is found 
between the theory and the experiment. 

8. Single TM mode 
Similar analyses can be carried out for a single TM 

mode. To leading order in c2k i,,/(w - Q/y - k,v, j2, it 
follows from Eqs. (45) and (47) that the dispersion relation 
for the single TM,, mode is 

DLy(ik,,w) =L2/c2 - k; -I;;, 

+ CL 
Z(C~;~,,J/Z~~)~(~,W - ck,j2 

(w - Z&/y - k,v, I2 
= 0, 

(84) 

which is in agreement with earlier results.12 The maximum 
growth rate for the TM,, occurs when 
LB2 - c’(I;‘,, +kt)=Oandw-K&/y--kk,v,=O,anditis 
given by 

T mn, = ( 3”2/24’31 “3) (+$I; 2 I; mn zmn ) “3 

x (CI;,, y/n, ) 2’3 ( 1 - l/p,&, ) 2’3. (85) 
Note in Eq. (85) that I=,,, vanishes when fl$‘+,,,,, = 1, as 
pointed out by several authors.‘2*30*31 From Eq. (45), the 
amplitude B,,,, (ik, ) for the TM,, mode can be expressed as 
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ii,,, ( ik, 1 k,(w-M,/y-k,v,)2fE~;ll,l(cj;~,y~/lS1,)(P,w-ck,) 

iB,, (0) = (w2/c2 - ii 2, -k:)(W-lIft,/y-k,v,)2+ET,~ll,ll(cl;K,y/M,}2(P,o-ck,)2’ 
(86) 

which can be used to calculate the radiation field profile and 
power. Typical gain bandwidth and dependence of rf power 
on the interaction length, z, are plotted, respectively, in Figs. 
7 and 8. 

Figure 7 shows the gain bandwidth for the TM,, mode 
at the fundamental cyclotron frequency (I = 1) with system 
parameters: Ib = 500 A, 0, = 0.6, y = 2.96, cPZ = 0, 
r, = 0, r, = 1.4 cm, and B, = 8.45 kG. Here, the solid 
curve is obtained from Eq. ( 84), and the dotted curve is from 
the computer simulations. Note in Fig. 7 that the gain band- 
width consists of two frequency domains separated by the 
condition &$+,,, = 1 at ~/i%,~, = w/&,, zz 1.7. Figure 8 
depicts the rf power in the TM,, as a function of z, for the 
same parameters used in Fig. 7, except that w/Z,,, = 1.38 
cf= 18 GHz) is chosen so that the TM,, mode is in reso- 
nance with the electron beam. In Fig. 8, the solid curve is 
obtained from the computer simulations, and the dashed 
curve is calculated using Eq. ( 86). 

VI. NUMERICAL ANALYSIS FOR MULTIPLE MODES 
In this section, we use linear and nonlinear theory in 

Sets. III and IV to analyze the multimode CARM interac- 

tion with two or more waveguide modes, and to illustrate the 
general features of multimode phenomena in an overmoded 
CARM amplifier. We show analytically that all of the cou- 
pled waveguide modes grow with the dominant unstable 
mode at the same growth rate, and that the phases of coupled 
modes are locked in the exponential gain regime, and remain 
approximately locked for some finite interaction length be- 
yond saturation. The simulations indicate that the saturated 
power in each mode is insensitive to input rfpower distribu- 
tion among the coupled modes, but is sensitive to detuning. 

A. Two-mode coupling 

We first examine the CARM interaction with the TE,, 
and TE,,, waveguide modes coupling to a cold, thin 
(k,, rg 4 1 and kmn, rg 4 1 ), azimuthally symmetric electron 
beam at a given harmonic cyclotron frequency Q/y. In this 
case, the general matrix equation in Eqs. (44) and (45) re- 
duces to a 2 x 2 matrix equation of the form 

~(~~~,~)) = s(;l$)) , 
where the 2 x 2 matrices h4 and S are defined by 

0% (w) E k2 TE 
mnn’l mn’ (w2+c2?)A-* 

M= 
E Tmf;,“/k $,, (0’ + c2?)A -’ > D~,(s,w) ’ 

s + ieLEnlvZk ‘,,,@A- * 
S= 

ieFnn,lv,k &,oA - ’ 

ieEn,,,pz k Z,,wA - 2 s + iez,,n,,v,k :,,,@A - 2 > ’ 

0’06 )I 

I .o 1.5 2.0 2.5 3.0 

FIG. 7. Gain bandwidth for the TM,, mode at the fundamental cyclotron 
frequency (I = 1). The solid curve is obtained from Eq. (84), while the 
dotted curve is from the simulations. Note that the gain bandwidth consists 
of two frequency domains separated when the condition &9,, , = 1 is sat- 
isfied at w/o,, I s 1.7, and that the simplified dispersion relation in Fq. (84) 
is not valid far off resonance (w/ZZ, , > 2.0). 

108k ’ ’ a ’ t ‘, ’ b ( ’ ’ ’ 3 

- SIMULATION - SIMULATION 
----- LINEAR THEORY ----- LINEAR THEORY 
f = I8GHt Bo=8.45kG 
y = 2.96 ~9~0; 0.6 
I,, = 5oOA rw = 1.4cm 

(87) 

(881 

(891 

0.0 50.0 100.0 150.0 
Z (cm) 

FIG. 8. TheTM,, rfpower is plotted as a function of the interaction length 
z. The system parameters are the same as in Fig. 7 with w/c&, = 1.38 
Lf= 18 GHz). The solid curve is from the simulations, while the dashed 
curve is from Eq. ( 86). 
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and A = A(s,w) = w - Q/y + isv,. Here, 0:: (s,w) is 
defined in Eq. (46), and eFmE,,,) in Eq. (48). Solving Eq. (87) 
for g,,,, (s) and g,,, (s) yields 

(90) 

where 

M-&l- 
( 

m22 - ml2 
detM -m21 

(91) 
ml, 

is the inverse ofM, and mti are the elements of M. Therefore, 
the three-dimensional radiation field profile and power are 
readily calculated by the inverse Laplace transform of 
g,,,, (s) in Eq. (90). Note that the singularities in the inte- 
grand of the inverse Laplace transform of Em, (s) are deter- 
mined from the dispersion relation 

det M = 0, (92) 
for the coupled TE,, and TE,,, modes. Making use of the 
relation E~&,~E~“,,,, = l ~~,,~eT,E,,,,,,, and substituting s = ik,, 
the coupled-mode dispersion relation in Eq. (92) can be ex- 
pressed as’n 

k:+k;,,-$ 
)( 

k:+kkn,-+ 
C2 > 

> 

2 

= [ eT,E,,,k:,(k: + kin. -w2/c2~ 

+ eztn,,k;,n, (k: + k2,, - w2/c2)] Cm2 - c2k:), 
(93) 

which is a sixth-order polynomial of k, with real coefficients 
and therefore has six roots. When the two waveguide modes 
are well separated, and 

fz T,E,,,k:,,(k; + k;“, -w2/c2) 

%e~,,,,,k;,,Ak: + k;, -w2/cY, (94) 

corresponding to the beam cyclotron mode, 
o = k,v, + K&/y, resonant with the TE,, waveguide 
mode, w=c(kl +kk,) “2, Eq. (93) becomes the usual 
single-mode dispersion relation, Eq. (79). 

Typical results from the computer simulations and (lin- 
ear) kinetic theory are summarized in Figs. 9-12. Figure 9 
shows the dependence of rf power in the TE,, and TE,, 
modes on the interaction length z, for (a) single-mode 
CARM interactions and (b) the CARM interaction with 
both modes coupling to the beam. The system parameters in 
Fig. 9 are frequency f = 18 GHz, beam current Ib = 500 A, 
beam energy Eb = 1.0 MeV ( y = 2.96), initial pitch angle 
ffl = /?,,,/& = 0.6, normalized axial momentum spread 
ffPZ = 0, maximum guiding-center radius r,,, = 0, waveguide 
radius r, = 2.7 cm, and axial magnetic field B, = 3.92 kG, 
corresponding to the TE,, mode in resonance, and the TE,, 
mode off resonance, with the electron beam at the funda- 
mental cyclotron frequency (I = 1). 

In Fig. 9, the solid curves are the results obtained from 
the computer simulations using CSPOT with 1024 particles. 
The dashed curves in Fig. 9(a) are obtained analytically 

IO’ t I , 1 
0.0 100.0 200.0 300.0 

IO9 

108 --- LINEAR THEOR 

I07 

I06 

I05 

I04 

I03 

I02 

IO’ 
0.0 100.0 200.0 300.0 

2 (cm) 

FIG. 9. The rfpower in theTE,, andTE,, is plottedasa function ofinterac- 
tion length for (a) single-mode CARM interactions and (b) the CARM 
interaction with the two waveguide modes coupling to the electron beam. 
Note that in Fig. S(b), the TE,, mode grows with the dominant unstable 
TE,, mode at the same growth rate due to mode coupling, despite the differ- 
ences in launching losses. 

from the single-mode linear theory [ Eq. (8 1) 1, while the 
dashed curves in Fig. 9(b) are from the multimode linear 
theory [ Eq. (90) 1. The inclusion of the coupling of the TE, r 
and TE,, modes results in the instability of the TE,, mode, 
as seen in Fig. 9(b), while the single-mode theory would 
predict stability for the TE,, mode, as seen in Fig. 9(a). In 

‘:::/ “-i.Y\_\_\ ~ \,\, / 
-50.01 1 I I 

0.0 100.0 2oao 300.0 
Z (cm) 

FIG. 10. The relative rf phase Aa = (k,,, - k,,, )z + 6,, (.a) - 6,, (z) is 
plotted as a function of the interaction length z. Here, the two curves, (a) 
and (b), correspond to the single-mode simulations in Fig. 9(a), and to the 
multimode simulation in Fig. 9(b), respectively. 
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0.0 50.0 100.0 150.0 200.0 
Z (cm) 

FIG. 11. The TE,, rfpower is plotted asa function ofthe interaction length 
z for a CARM with the TE,, and TE,, modes. The two solid curves depict 
the linear and nonlinear evolution of rf power in the TE,, mode obtained 
from the simulations with two input rf power distributions: (a) 
P~(TErr)=P~(TEi,)= 100 W, and (b) P,(TE,,)= 100 W and 
PO (TE,, ) = 1 W, while the dashed curves are the corresponding analytical 
results from Eq. (90). 
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FIG. 12. (a) Gain bandwidth for the CARM interaction with theTE,, and 
TE,, modes coupling to the electron beam for the same system parameters 
usedinFigs. 9(b) and lO(b),except that ovaries from 3w,,, to9@,,, . Here, 
the solid curve is obtained from the approximate dispersion relation (93), 
while the dots are results from the simulations. (b) The saturated efficiency 
is plotted as a function of frequency for the same system, as obtained from 
the simulations. 

fact, in Fig. 9(b), the TE,, mode grows with the dominant 
unstable TE,, mode, and the two coupled modes have the 
same spatial growth rate, - Im Ak, > 0, corresponding to 
the most unstable solution of the coupled-mode dispersion 
relation in Eq. (93). Because the TE, , mode is in resonance 
with the electron beam and the TE,, mode is detuned from 
resonance, the TE,, mode suffers greater launching losses 
than the TE, , mode. Excellent agreement is found between 
the simulation and linear theory in the linear regime. In par- 
ticular, numerous amplitude oscillations of the TE,, mode 
are well described by our linear theory throughout the 
launching loss region, from z = 0 to zz 100 cm, as is evident 
in Fig. 9(b). 

The evolution of relative rf phase, A@(z) = @,2 
- “PI, = (k,, - kz,, )z + S,,(z) -S,, (z), is plotted as a 

function ofz in Fig. 10, for the simulations used in Fig. 9. In 
Fig. 10, the dashed curve, designated by label (a), is ob- 
tained by subtracting the rf phases which result from the 
single-mode simulations of the TE, , mode and of the TE,, 
mode used in Fig. 9 (a); the solid curve, designated by label 
(b), is calculated by subtracting the rf phases in the multi- 
mode simulation of Fig. 9(b). As a result of the mode cou- 
pling, the relative rfphase A@(z), as shown in Fig. 10(b), is 
approximately constant (with variation less than 0.2n) in 
the exponential gain regime from zs 100 cm to z= 175 cm, 
which we refer to as phase iocking. The phenomenon of 
phase locking of transverse modes in the exponential gain 
regime is predicted by linear theory, because the multimode 
dispersion relation in Eq. (93) yields a unique k,, with a 
negative imaginary part, which determines the growth rate 
and phase shifts for all the coupled modes. What is more 
remarkable is that phase locking (with phase variation less 
than 0.6~) persists even in the nonlinear region, (at least for 
some finite interaction length beyond saturation), as seen in 
Fig. 10(b). 

Figures 9 (b) and 10 (b) reveal two general features of 
the multimode CARM interaction: ( 1) all of the coupled 
waveguide modes have the same small-signal growth rate, 
and suffer different launching losses, which depend strongly 
upon the detuning; (2) the phases of coupled modes are 
locked in the exponential gain regime, and remain approxi- 
mately locked for some interaction length beyond satura- 
tion. 

Another interesting feature of the multimode CARM 
interaction is that the saturated rf power of each mode is 
insensitive to input rfpower distribution among the coupled 
modes at z = 0. Figure 11 shows the results of simulations 
for the coupled TE,, and TE,, modes with two different 
distributions of input rf power. In Fig. 11, the two solid 
curves depict the linear and nonlinear evolution of the rf 
power in the TE,, mode that was generated by the simula- 
tions with input power distributions: (a) 
Pc(TE,,) =P,,(TE,,) = lOOW,and(b)P,,(TE,,) = 100 
W and PO (TE,, ) = 1 W; the two dashed curves are the cor- 
responding anaIytica1 results from Eq. (90). Here, only the 
TE,, mode is plotted, because the TE, , mode remains virtu- 
ally unchanged for the two distributions. 

The gain bandwidth and efficiency are plotted in Fig. 12, 
for the coupled TE,, and TE,, modes, with the same system 
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parameters used in Figs. 9 (b) and lO( b), except that w var- 
ies from 3w,,, to 9wc,, . The efficiency is defined by 
v = (yO - (y))/(yO - 1). In Fig. 12(a), the solid curve 
shows the growth rate from the simulations; the dashed 
curve is the corresponding analytical result predicted from 
Eq. (93 ). Quantitative agreement is found for w/w,, , > 5.5, 
while only qualitative agreement can be found for 
w/w,, , < 5.5. As is the case of the single-mode CARM inter- 
action discussed in Sec. V A, the gain bandwidth for the two 
coupled modes consists of two frequency domains. Al- 
though the growth rates in both domains are comparable, as 
seen in Fig. 12(a), it is shown in Fig. 12(b) that efficiency 
reaches a sharp maximum of approximately 26% at 
w/o =, , s 5.8 (f~ 18.5 GHz), corresponding to the TE,, 
mode being nearly resonant with the electron beam. Note in 
Fig. 12(b) that there is a small peak at o/w,,, r6.0 in the 
high frequency domain, which is also true in the correspond- 
ing single-mode CARM interaction. 

Another example is shown in Figs. 13 and 14, where we 
plot the dependence of rf power and relative rf phase on the 
interaction length z for a CARM with the TE,, and TM,, 
modes. In Figs. 13 and 14, the system parameters aref= 18 
GHz, I,, = 500 A, y = 2.96, 0, = flLO/prO = 0.6, ePZ = 0, 
rm = 0, r,, = 1.7 cm, and B, = 4.84 kG, corresponding to 
the TE,, mode in resonance, and the TM,, mode off reso- 
nance, with the electron beam at the fundamental cyclotron 
frequency. The general features of the coupling of the TE,, 
and TE,, modes [Figs. 9(b) and 10(b)] hold true also for 
the coupling of the TE, , and TM,, modes, as shown in Figs. 
13 and 14. 

B. Many-mode coupling 

The multimode CARM interaction with more than two 
waveguide modes can be analyzed with the same method as 
two-mode coupling. Here, we only present the detuning 
characteristics ofa CARM amplifier with four coupled TE,, 
modes (n = 1,2,3,4). Figure 15 depicts the dependence of 

I I. x 

IO* - - SIMULATION 
,,,’ 

---- LINEAR THEORY 

0.0 20.0 40.0 60.0 80.0 
2 (cm) 

FIG. 13. The rf power is plotted as a function of the interaction length z for a 
CARM with the TE,, and TM,, modes. Here, the choice of system param- 
eters corresponds to the TE,, mode in resonance, and the TM,, mode off 
resonance, with the electron beam. The solid curve is obtained from the 
simulation, while the dashed curve is from the multimode linear theory. 

- 1.0 

-2.0 1 

0.0 20.0 40.0 60.0 80.0 
Z (cm) 

FIG. 14. The relative rf phase A& = (I;,,, - k,, , )z + 8, I (z) - a,, (z) is 
plotted as a function of the interaction length z, as obtained from the simula- 
tion for the same parameters as in Fig. 13. 

the (fractional) saturated TE,, power on the axial magnetic 
field B,, as obtained from the simulation with an input pow- 
er of 100 W per mode. By increasing the axial magnetic field 
B, in Fig. 15, the beam mode is successively tuned through 
the resonances with the TE,, , TE,, , TE,, , and TE,, modes 
at B, = 3.74,4.29, 5.33, and 6.98 kG, respectively. The frac- 
tional rf power for a given mode at saturation reaches a max- 
imum at its resonant magnetic field, and then decreases rap- 
idly off resonance. In the transition from one resonance to 
another, however, two adjacent competing modes can have 
comparable rf power levels at saturation. 

Figure 16 shows the dependence of the TE,, rf power on 
the interaction length, for the choice of system parameters 
used in Fig. 16. Here, the value of magnetic field B, = 5.33 
kG corresponds to the TE,, mode in resonance with the 
electron beam. Again, the growth rates are the same for all of 
the coupled modes, as in the two-mode coupling shown in 
Figs. 9(b) and 13. 

3.0 4.0 5.0 6.0 
Bo(kG) 

7.0 8.0 

FIG. 15. The fractional rf power at saturation in four coupled TE,, modes 
is plotted as a function of the axial magnetic field &,. Here, the values of the 
resonant magnetic field for the TE,, , TE,, , TE,,, and TE,, modes corre- 
spond to BO = 3.74,4.29, 5.33, and 6.98 kG, respectively. 
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IO0 * I I I t * . * . + 8 * * - 

0.0 50.0 100.0 150.0 
Z (cm) 

FIG. 16. The rfpower in four coupled TE,, modes is plotted as a function of 
the interaction length .z, as obtained from the simulation for the system used 
in Fig. 15. Here, the value of the magnetic field B,, = 5.33 kG corresponds 
to theTE,, mode in resonance with the electron beam. 

VII. CONCLUSIONS 
In conclusion, we have presented a general treatment of 

multiple waveguide mode interactions in an overmoded cy- 
clotron autoresonance maser amplifier using kinetic theory 
and a fully nonlinear, three-dimensional, self-consistent 
model. Good agreement has been found between the simula- 
tions and theory in the linear regime. The general features of 
multimode phenomena have been illustrated in the linear 
and nonlinear regimes. 

It was shown analytically, and confirmed in the simula- 
tions, that all of the coupled waveguide modes grow with the 
dominant unstable mode at the same spatial growth rate, but 
suffer different launching losses which depend upon detun- 
ing. The phases of coupled modes are locked in the exponen- 
tial gain regime, and remain approximately locked for some 
finite interaction length beyond saturation. 

The saturated rf power in each mode was found to be 
insensitive to input rfpower distribution among the coupled 
modes, but it is sensitive to detuning. Simulations indicated 
that the fractional rf power for a given mode at saturation 
reaches a maximum at its resonant magnetic field, then de- 
creases rapidly off resonance. 

As a general conclusion, based on the results of this pa- 
per, an accurate calculation of the growth rate, saturation 
levels, and radiation field profile in overmoded CARM am- 
plifiers requires the use of a multimode theory in the linear 
and nonlinear regimes. We believe that the present analysis 
can be generalized to treat multimode phenomena in a Iarge 
class of free-electron amplifiers including, free-electron la- 
sers, gyrotron traveling-wave tubes, and Cerenkov masers. 
It can be easily extended to include nonaxisymmetric beams 
and, with more effort, used to study high-gain overmoded 
oscillators. 
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APPENDIX A: MODE DECOMPOSITION FOR THE 
LINEARIZED VLASOV EQUATION 

To derive Eq. (28) from Eq. (27), we follow Refs. 12 
and 22 and make use of recurrence relations and Grafs 
theorem for Bessel functions” to express the radiation field 
components in Eq. (27). It is straightforward to show from 
Eqs. (8)~( 11) that 

EL = E, cos(q5 - 8) + E, sin(r$ - 8) 

= f m;9 ew[ iA,, W~,J) I[ k&dL9Emn (~1 
+ k,, z+mnxmnq -c 0 

d4,,, (~1 
dz 

+ C.C., (All 
w 

Ei cos 4, - E* sin q5, 

=E,c0s(~#-6--q5~) +E,sin(+0--#c) 

= +- C exp[~~,,(&k,O] 
mm9 

x - k,, Cm, YmngEmn (z) 

+ii,,57,,~m,q($) d3;(z)] + c.c., (A2) 

E, = $ C exp[jA,,(561~cIt)]~,,Z7mn~~nq 
mnq 

x [eeJ,/(m + qb]B,,(z) + C.C., (A3) 
Be = -B, sin(4 - 6) + B, cos(q5 - 8) 

=~~9exp(jA~q(~,m,.r,l[ -knCmnLq 

d&w, (~1 
dz 

- kInZlmn~mngBmn (2) 1 + C.C., 

(A4) 
B, sin 4c + B, cos 4, 

= -B,sin(#--d-4,) +B,cos(~-t9-~c) 

= 3 C exp[&,,, (4,ht) ] 
mn9 

d&m (~1 
dz 

(AS) 

Bzsincbc =t~9ex~[jl\,10,#=,r)]k,.C,,Z,,q 

x (ek,,/2w)E,, (z) + c.c., (A61 
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where Amcl (qQi,,t> = rn@ + q@,- wt - m?r/2, and the 
geometric factors X, Y, Z, 2, and Yare defined in Eqs. (3 l)- 
(35). Substituting Bqs. (Al )-( A6) into Eq. (27) and per- 
forming some algebra then yields Eq. (28). 

APPENDIX B: DERIVATION OF LINEARIZED 
AMPLITUDE EQUATIONS 

The linearized amplitude equations (44) and (45) can 
be derived as follows. Multiplying Eqs. (40) and (41) with 
exp( - sz) and integrating over z, respectively, some 
straightforward algebra then yields 

DT,E,(S,W)&&) - c n,(n,~n) [=E m [XPnPnd 0) 
+ X~ygrnn* (s) ] 

= SE,,,, (0) + C 2 [PT,E,,,&, (0) 
n* I= --co 

+P f,;n;ln,lBmnt (0) 1, (Bl) 

D;:b&,,n (s) - 2 n,(n,Zn) ,=z m [x,“,“lL (3) 

+ x;ynqq& 0) ] 

[P~~n~IEmn~ (0) 

m 

+ /-J;;~,,B~~, (0) 1. (B2) 

In Eqs. (Bl) and (B2), 

D;;(w) =9-k;, +$- i x;;,~(s,w) 
I= --m 

U33) 

and 

D;tYo) =s’-k;,, +$- 2  x;y,,,(s,w) 
I= -m 

(B4) 

are the TE,, and TM,, dielectric functions, respectively; 
the susceptibility functions are defined by 

Moreover, the ,u’s are defined by 

P z,,[ (s,w) = i16de2k ‘,,, 

x s 

X 
BlPZ 

w - Q/y + isv, 

X Pl 
w - MC/y + isv, 

x (B9) dfo+ 
ap, (B10) 
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P zy,,,, (.s,w ) = il 6?e2& f,,,, 

x 
s 

r, dr, hnrL - 
-x?d - m I 

x I ~1 dp, dpz 
(P, -I- ida) 

0 - If&/y + isv, 

(Bll) 

x 
s 

rg dr, kdL - 
-Km,- m 1 s PA 4, dpz 

x UZ + ido) 
w - If&/y + isv, 

x 
mn’l- m 

x @+yL 5  

( ) 

Y 
-p, ;‘;” $  1 . 

I z 0 c 
(A2) 

By performing the integrals in Eqs. (B5)-(B12) for the dis- 
tribution function defined in Eq. (23 ), the linearized ampli- 
tude equations correct to leading order in 
c2k~,/(ti-Q/Y-k,v,)2canbeexpressedbyEqs.(44) 
and (45). 
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