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In this Note, we use a J=1 → J=0 transition to illustrate the origin of the dark states and

also to show how one does a "rigorous" calculation of atomic transition amplitudes. A

good reference for formulae used in this kind of calculations is: I. I. Sobleman, Atomic

Spectra and Radiative Transitions, Springer-Verlag, New York, 1992.

The energy levels are shown in the figure. The

light-atom interaction Hamiltonian for an electric

dipole transition is (!=1):

( )zzyyxx EdEdEdEdH ++−=⋅−=
""

ˆ  , (1)

where d
"

is the transition dipole moment, and E
"

 is the light electric field.

It turns out to be convenient to switch from the Cartesian basis to a spherical basis. To do

this, for each vector v
"

, we construct the following combination of the Cartesian

components:
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Correspondingly, we have:
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Next, we explicitly apply Eqns. (2, 3) to the electric dipole moment and the electric field

in Eqn. (1). This yields for the Hamiltonian:
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Note that we have just derived a rule for taking scalar products of vectors represented in a

spherical basis:
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Returning to our problem, let us assume for concreteness that we have linearly polarized

light with polarization along x:
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From Eqns. (4,6) we have:
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The transition amplitude is given by:

1,101,10ˆ
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Here, we used the well-known selection rules for the dipole transitions, and only wrote

the non-zero matrix elements. Also (very important!), we assumed that the initial J=1

state is described as a coherent superposition of the sublevels:

1,11,1 11 ==+−=== − MJCMJCiψ . (9)

The two matrix elements in Eqn. (8) are related between each other according to the

Wigner-Eckart Theorem which relates matrix elements between given Zeeman sublevels

to a reduced matrix element. The general statement of the theorem is:
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Here γ and γ' represent all "other" quantum numbers, )''||||( JTJ γγ κ  is the reduced

matrix element (independent of M, M');  and q are the tesor indices of the operator T (

being the rank), and the matrix in parentheses stands for a Wigner 3J-symbol which is

related in a straightforward way to a Clebsch-Gordan coefficient:
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3J-symbols, as well as Clebsch-Gordan coefficients are tabulated, and also built in

programs like MathematicaTM. A note of caution: there exist in the literature at least two

different definitions of the reduced matrix elements, different by a factor like 12 +j .

To avoid errors, I recommend consistently using the definitions used in Sobel'man's

book.

For the dipole operator, we have =1, and the 3J-symbols relevant for Eqn. (8) are:
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Thus, we see that the transition amplitude A in the case of x-polarized light is

proportional to the quantity 11 CC +− . A state for which this quantity is zero is a dark

state which does not interact with the light in any way. Repeating these calculations for

different polarization, one can verify that for a 1→0 transition, we have:

0,1 == MJ  - z-absorbing, dark for x- and y- polarized light



Dark States

http://phylabs.berkeley.edu/Physics250/

4

2

1,11,1 −==+== MJMJ
 - y-absorbing, dark for z- and x- polarized light

2

1,11,1 −==−== MJMJ
 - x-absorbing, dark for z- and y- polarized light

In these expressions, the factor in the denominator is included for normalization.

Dark states play an important role in nonlinear optical rotation, electromagnetically

induced transparency, subrecoil laser cooling, and many other applications of modern

atomic physics.


