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While shielding in collisional plasmas obeys the standard Debye result, shielding in collisionless
plasmas is far more complex than commonly believed. For example, a one-dimensional (highly
magnetized), immobile-ion plasma can, in some circumstances, anti-shield a positive test charge;
i.e. the plasma becomes more positive in the vicinity of the test charge. When shielding does occur,
it results from electrons dynamically trapped in the neighborhood of the test charge. A new theory
of collisionless (Dynamic) shielding in one, two and three dimensions is presented here, and is in
excellent agreement with experiments in pure electron plasmas. Because the distribution functions
found in Dynamic shielding are highly non-Maxwellian in the non-linear regime, collisionless
Dynamic shielding can be substantially less efficacious than collisional Debye shielding. © 1996
American Institute of Physics. [S1070-664X(96)94205-8]

I. INTRODUCTION

One of the most fundamental plasma characteristics is
that plasmas shield applied electrostatic perturbations. A test
charge placed in a plasma will be surrounded by a cloud of
oppositely charged plasma particles, which both shields the
remaining plasma from the test charge and lowers the elec-
trostatic potential induced by the test charge. The special
case of collisional, or Debye shielding, in which the plasma
remains Maxwellianized throughout, is well understood.'
Moreover, it is commonly believed? that collisions are not
actually necessary for shielding; this point of view is so
ubiquitous that the requirement that the plasma be Max-
wellianized is often not made explicit.’~ Collisionless
shielding is paradoxical, however. As electrons accelerate to-
wards a positive test charge, flux conservation demands that
their density decrease. Consequently, a positive test charge
can be surrounded by a net positively charged plasma, and
both the fields from the test charge and the potential in the
vicinity of the test charge can be accentuated. In this case a
plasma can actuaily anti-shield a test charge.

That one-dimensional (1-D), collisionless plasmas6 anti-
shield has been recognized in one group of papers’® on col-
lisionless shielding. We present here what we believe is the
first direct experimental evidence of this phenomenon.” Ac-
cording to this group of papers, two-dimensional (2-D), col-
lisionless plasmas should neither shield nor anti-shield; the
field from a test line charge is predicted to be unmodified by
a collisionless plasma. Three-dimensional (3-D) plasmas are
reputed by this group to shield test charges, albeit somewhat
weakly. Other sources'™!! predict that plasmas of all dimen-
sions will shield, but their results are inadequately justified.'?
All these papers’ 501! ignore the existence of non-
collisional trapping mechanisms: two mechanisms of par-
ticular importance are transit-time or adiabatic'*'* trapping
and instantaneous'’ trapping. We will show that these
mechanisms cannot be ignored, and that collisionless plas-
mas will normally shield a test charge,” in accordance with
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common belief and the second group of papers. This conclu-
sion is verified by the pure-electron plasma experiments de-
scribed at the end of this paper. Finally, a third group of
papers analyze the instantaneous application of a test
potential, >~ and predict that 3-D plasmas will shield. As
discussed later, however, the results of these papers are lim-
ited to small applied potentials and are valid only in the
restricted time range l/w,<t<1/wy,, where w, is the plasma
frequency and wy, is the bounce frequency of electrons
trapped in the applied potential.

Since collisionless shielding depends on particle dynam-
ics rather than on particle collisions, we call the process Dy-
namic shielding. Similar, but more complex phenomena such
as double layers, Bernstein, Greene and Kruskal (BGK)
modes, '® virtual cathodes, and sheaths have been studied ex-
tensively. Indeed, most of the concepts required to analyze
Dynamic shielding have been described before, most notably
by Gurevich,'”> who analyzed non-collisional trapping
mechanisms and self-consistent potential solutions, but did
not consider the problem of shielding. Given all this prior
work, it is surprising that adiabatic-collisioniess shielding it-
self has not been properly analyzed before.

ll. THEORY

While shielding is often conceived to be the masking of
the field of a test charge, a more general description is the
partial neutralization of an imposed test potential well. This
test well may, for instance, be created by biasing a grid in a
neutral plasma or by biasing a confinement electrode in a
non-neutral plasma. However the well is created, the plasma
responds to the net potential: the sum of the test potential and
the plasma potential. Since the plasma potential depends.
through changes in the plasma density, on the net potential,
the response of the plasma must be found by self-
consistently solving for the net potential. We will show that
the solution depends on the well time history, and the plasma
dimensionality and longitudinal extent.

A. One-dimensional adiabatic theory
Energy conservation requires that the velocity of un-

trapped electrons, subjected to a positive test potential well,
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increase  according to the dimensionless relation
v?=v3+2®d, where the normalized velocity v is defined
such that v (kT/m) 12 is the velocity inside the well, v is the
velocity outside the well similarly normalized, m is the mass
of the electron, T is the plasma temperature, kT®/e is the
self-consistent well depth, and—e is the charge on an elec-
tron. The velocity v, is a constant of the motion; since any
function of a constant of the motion is a solution of the
Vlasov equation, the distribution of electrons in the well is
F()=folvo()1=fol (v2—2D)"?], where fo(vg) is the
initial distribution. If the electrons come from an infinite
length, collisionless, Maxwellian plasma source, then fy is a
Maxwellian distribution at temperature 7 and density ng.
The density of untrapped electrons as a function of the well
depth is found by integrating f(v) from the minimum elec-
tron velocity inside the well, (2®) 12 to infinity, and is given
by

np(®) =ngexp(P)erfe( VD)
=ny(1-2V®/m+®+ ...), (1)

where erfc is the complementary error function. This free
density, ng(®) is the density those electrons untrapped by
the potential well. Since ng(®P) is always less than ng, the
free electrons can only anti-shield a positive external pertur-
bation.

The conclusion that the plasma will anti-shield”® ignores
the possibility that electrons could be trapped in the well by
non-collisional mechanisms, thereby increasing the local
plasma density. In particular, the conclusion ignores the
question of how the well was created. If the well is created
instantaneously, slow electrons that happen to be in the weil
at the time of its creation will be trapped. If, as is more
likely, the well is created adiabatically, the transit-time trap-
ping mechanism described below will trap electrons. In fact,
the only way to avoid trapping electrons is for the weil to be
created before electrons are allowed into the vicinity of the
well or to use a non-monotonic initial distribution function.
Only in these limited circumstances do experiments show
that the plasma anti-shields.

Transit-time trapping in an infinite length plasma was
first discussed by Gurevich.'>!* The process is most easily
visualized for square test wells, but occurs for any shape
well. Consider a slow-moving (initial velocity v;) electron.
Although it gains kinetic energy on entering a slowly-
deepening test well, its kinetic energy remains constant in-
side the well, despite the increasing test well depth. If the
well depth increases sufficiently during the transit time. the
electron may not have sufficient energy to climb out of the
well—the electron is trapped. Further changes in the well
depth do not change the kinetic energy; the electron’s total
energy simply varies proportionally as the well depth is in-
creased. Hence the electron’s initial velocity v, is a constant
of the motion, and the distribution of electrons in the well is
given by f(v,). Further, if the well depth increases very
slowly, only particles with velocity v,~0 will be trapped. so
their distribution function reduces to fo(0) (see Fig. 1). In-
tegrating over the trapped electron distribution function gives
the trapped density
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FIG. 1. Self-consistent distribution functions for an applied well voltage of
& ,=2.5. Line a is the Debye distribution for an infinite length plasma, line
b is Dynamic distribution function for an infinite length plasma, lines ¢ and
¢’ are the Dynamic distributions inside and outside the well for the ratio
Liy/Low=1, line d is the Instantaneous distribution for an infinite length
plasma, and line e is the originai Maxwellian distribution before the well is
applied (overlaid by line d for small v). Here C=5 and the shielding effi-
cacies are 0.86, 0.76, 0.79, and 0.56 for lines a, b. c, and d respectively. Note
that line 4 is likely to be unstable.

nT((D)=2n0\/¢’/7T. (2)

The density of trapped electrons increases proportional to
\/5, while, to lowest order, the density of free electrons
decreases proportional to J®. When the densities of these
two classes of electrons are added together to form the total
density, the square root terms cancel, leaving a linear first
order term'>!¢

N D) = ngexp(®)erfe( VO) + 2noVd/m
=no(l+D+ ...). (3)

To first order this density equals that found when collisions
are able to relax the plasma to a Maxwellian, ie.
ny(P)=ngexp(@)=ny(1+P+ ...). However, for large po-
tentials (P> 1), the Maxwellian response ny, is significantly
larger than the Dynamic response 7.

The method used to find the self-consistent potential @
depends on the particular shielding problem. For example,
the solution to the classic problem of the potential from a
positively biased charged plane must be modified to take into
account the collisionless “dynamic” density. The traditional
Debye equation,

(€gkT/e)V D =eny[exp(P)— 1], (4)

valid for a collisionally-relaxed Maxwellian plasma, be-
comes

(eokT1e) V2D = eng[exp(d)erfe( V) +2 Vb/m—1].
(5)

The solutions to these two equations are shown in Fig. 2.
Since both equations linearize to
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FIG. 2. Comparison of Debye and Dynamic shielding of a charged plane.

(IJ="T(D, (6)

far from the charged plane both Debye and Dynamic
shielded potentials decay exponentially with scale length
Ap. Near the plane the potential in the Dynamic case can be
significantly greater than in the Debye case because ny(d)
Zn(P).

The collisionless response of the plasma to a negative
well is substantially simpler than to a positive well because
the negative well—effectively a potential hill—cannot trap
electrons. In an infinite length plasma, the electron density
decreases as®!*

n_(¢)=ngexp(d) (M

when ® <0. Since this matches the Boltzmann relation, the
resulting shielding will be identical to the standard Debye
response.

Since positive ions are not trapped by positive wells,
ions with charge ¢ will respond® to positive wells as
noexp(—qPle). Consequently, Dynamic-electron shielding
will eventually be supplemented by Debye-like ion shielding
when the ions are mobile.

Shielding in pure-electron plasmas is complicated by
three-dimensional effects. Even though individual electrons
are tied to magnetic field lines and behave one dimension-
ally, the response along different field lines differs, thereby
suggesting a 3-D model. We have implemented such a 3-D
model numerically, but have found that, for our particular
experimental parameters, a simplified 1-D model is in good
agreement with the 3-D numerical solutions and is sufficient
to explain our data.'’

Our 1-D model starts by assuming that all electrons, re-
gardless of their radial position. respond to a common self-
consistent well potential

d=d,+AD (D). (8)

This assumption implies that the plasma radius is both small
compared to the wall radius and on the same order as the
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FIG. 3. Shielding efficacy 1-®/d,, vs. applied well voltage V, at
T=5eV. For tutorial reasons, the density constant C is given the relatively
small value C= 1. Curves are shown for infinite length Debye and Dynamic
theory, finite length (L;,/L,,=1) Debye and Dynamic theory, the linear
approximation Eq. (11), and anti-shielding. Note that the efficacy decreases
in finite length plasmas as the supply of free-electrons is exhausted at large
V., and approaches the *Completely Trapped” in the well curve.

Debye length, conditions met by our experiment. Here
Vy=kT®,/e is the externally-applied well potential, and
kTA® /e is the potential difference between the inside and
the outside of the weil that resuits from changes in the
plasma density,

AP (P)=(d(P,r)~ ¢(0,r)),, 9)

where kTé(®,r)/e is the potential of the plasma of density
no(P), kT@(0,r)/e is the potential of a plasma of density
no(r), and ( ), denotes an average over the radius r,
weighted by the plasma density. Since ¢(d,r) is a linear
function of the density,

A<I>p(fb)=C[n(m((D)/n0*l], (10)

where the density proportionality constant C is found by
computing the weighted average. The complete response of
the plasma to an external perturbation is found by seif-
consistently solving Eq. (8). To lowest order in @, the solu-
tion of Eq. (8) is

G=~d,/(1+|C)~D, /(1 +e|Vp|/kT). (11)

The  density inside the well is  nlng=1
+ DL /(1+[C)=~1+D,/(1+e|Vp|/kT). Here we have
used C~eV,/kT x— r,z,/)\zD, where V, is the central poten-
tial of the plasma cylinder and r, is the plasma radius. The
shielding efficacy, | —®/® ,, is plotted in Figs. 3 and 4.
Note that perfect shielding corresponds to a shielding effi-
cacy of one, and anti-shielding corresponds to negative
shielding efficacies.

The collisionally-relaxed Debye response is found by re-
placing n,, with ny. For small applied potentials, the
plasma again responds as n/ny~1+® ,/(1+e|Vp|/kT).
However, since ny(®) = n,,(P), the Debye response will
once again be stronger than the Dynamic response.

This same formalism applies to the anti-shielding case.
Here, the self-consistent potential reduces to
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FIG. 4. Shielding efficacy 1 —®/®, vs. temperature T, for V,=30V and
C=8/T. Curves are identified as in Fig. 3.

(I)=(DW+C[nF((D)/n0—l]. (12)

This equation has a remarkable solution: a low velocity
phase space hole (cavity) which is self-sustaining, even when
unanchored by any external fields. The existence of this so-
lution is most readily seen in the limit ®,=0, V <kT.
There Eq. (12) reduces to ®=2|C|(®/m)"2, which admits
to two solutions: the trivial solution ®=0, and a self-
sustaining cavity solution ®=4C¥ 7> Such cavities have
been observed experimentallyg‘20 and in particle-in-cell (PIC)
simulations.*! ‘

B. One-dimensional instantaneous theory

So long as the test well is created on a time-scale sig-
nificantly greater than the well-transit time for a typical elec-
tron. the electron density will be given by Eq. (3) and shield-
ing will result. However, slow test well creation is not
necessarily required for shielding. Some shielding occurs
even when the test well is created instantaneously. Immedi-
ately after such a test well is created, the electrons will not
have had time to move and the density in the test well will be
unchanged. However, as the untrapped electrons outside the
test well redistribute, phase mixing will cause the density in
the well to increase somewhat.'® Since self-consistent phase
mixing is a complicated, possibly turbulent process, general
Instantaneous shielding can only be studied numerically.
However, some analytic progress can be made in the re-
stricted case of the shieiding of an infinite-length plasma.
After the electrons have phase mixed, the free-electron dis-
tribution function is given by f(v)=fo{[v*—2®(2)]"?}, as
before. If the applied potential is in the form of a square well,
the density of trapped electrons is unchanged by any self-
consistent adjustments, and, in the absence of any instabili-
ties, the trapped distribution function then equals the initial
electron distribution function, fy(v). As this “solution™ has
a possibly unstable cusp (see Fig. 1), it is not complete. and
is only indicative of the true solution. Integrating gives the
density:

Phys. Plasmas, Vol. 3, No. 5, May 1996

n(®@)=no{exp(®)+erf(\®)[ 1 —exp(®)]}
=ng(1+P+ ...). (13)

The degree of shielding is found by substituting this density
into Eq. (6) or (10).

While Instantaneous shielding yields the same linear re-
sponse as either Debye or Dynamic shielding, the nonlinear
response is far weaker, as is reflected in the low shielding
efficacies graphed in Figs. 3 and 4, where these shielding
efficacies are calculated using approximate density given by
Eg. (13). Shielding is normally thought to work best in the
low temperature limit, and, indeed, the (infinite length)
shielding efficacy for both Debye and Dynamic shielding
goes to one in this limit. However, it is easy to show that the
Instantaneous shielding efficacy scales as
[C|(T3/7wV2)" =0 in this limit (assuming that C is held
constant). Thus, Instantaneous shielding disappears in the
very limit where Debye and Dynamic shielding work best.
(Note that these conclusions have only been established for
square-test wells in infinite-length plasmas, and ignore the
effects of any instabilities due to the cusps in the distribution
functions, and these effects may be important in many real-
istic situations.)

The results of this section assume that a steady state has
been set up; i.e. that phase mixing has had time to occur
(t>1/w,) and that the trapped particles have made several
bounces (> l/wy). Numerous authors>">~'7 have analyzed
the linear stage of Instantaneous shielding for small initial
perturbations (e <kT). As the method used by these au-
thors apply only to the linear stage of the process, the results
are only formally correct before trapped particles bounce, i.e.
for times satisfying l/w,<:<1l/wj.

C. Two and three-dimensional adiabatic theory

When electrons are no longer constrained to move in one
dimension, their orbits will bend towards a positive test
charge. If the test charge is two-dimensional, e.g. a line
charge, the free-electron orbit bending near the test charge
exactly compensates for the velocity increase there, and the
net density of free electrons near the test line charge does not
change. Consequently, previous authors”® have claimed that
test line charges are neither shielded nor anti-shielded by
collisioniess plasmas. Were this true, however, the line
charge’s logarithmic potential would eventuaily trap all the
electrons and there would be no free electrons.

The exact 2-D response of the plasma is
nap=ny[ | +P(r)], where d(r) is a radially symmetric,
two-dimensional potential. The first term represents the den-
sity of the untrapped electrons. and is found by using the
constancy of the total energy to solve Vlasov’s equation. The
second term represents the density of the trapped electrons.
and is found using the fact that only electrons with zero
initial velocity are trapped if the potential ®(r) is turned on
adiabatically. The exact self-consistent solution of the poten-
tial equation is ®(r)=® Ky(r/Np), where Ky is a modified
Bessel function.? In the limit of large r. Ko(r/\ p) falls off
exponentially with scale length Ap.
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In three dimensions, the electron orbits are sufficiently
strongly bent towards a point test charge that the net electron
density increases in the vicinity of the charge, despite the
electrons’ increased velocity. Thus, a point charge is colli-
sionlessly shielded by the free electrons alone. The net elec-
tron density is

’

(14)

4
nsp=ngt exp(®)erfc(\V®)+2 JO/7+ $(<1>)3’2
a

where the free-electron contribution is given by the first two
terms,’ and the trapped-electron contribution is given by the
remaining term. While unimportant for very small values of
®, the trapped electrons become the dominant shielding fac-
tor for & >2.

D. Finite length, 1-D adiabatic theory

The above resuits assume that the background plasma is
both Maxwellian and infinite in longitudinal extent. In many
cases, however, including the pure-electron plasma experi-
ments reported here, the plasma is of finite size. The initial
Maxwellian distribution of such plasmas may be substan-
tially modified by the creation of the test well. In these cir-
cumstances the plasma response is most readily calculated
using the bounce adiabatic invariant, J=¢v dz. When the
test potential is square, the invariance of J implies

_ (Lint Lowv0=LinVint Low¥ our s (15)

where v is the velocity of an electron before the test well is
created, v;, (Vo) is the velocity of this same electron inside
(outside) the test well after the test well is created, and L ,,
(Loy) 1s the plasma length inside (outside) the test well. Us-
ing energy conservation to relate the outside velocity to the
inside velocity (ve,=vi,+2®) and Eq. (15), we can con-
struct a function which gives the initial velocity v, as a func-
tion of the final velocity inside or outside the well, e.g.
Vo=vo(vi,,P). Since v is a constant of the motion, the
final distribution functions can be expressed in terms of the
initial  distribution  function  fy(vy), for example,
Fin(vin) = folvo(v iy, P)].

As the test potential well deepens, the bounce invariant
requires that electrons outside the well slowly lose energy.
Some electrons will eventually reach v ,,=0, indicating that
these electrons are trapped. We can still use
fr(vin) =folvo(v in,P)] so long as we define v, by

(Lint Loy)vo=Ligviy (16)

rather than Eq. (15).

Typical distribution functions for a positive test well are
shown in Fig. 1. The densities inside and outside the well are
found by integrating the appropriate distribution functions
over v; the integral for the trapped component can be per-
formed analytically,

”T((I)) =’Z()( 1+ Lin/Lnul)erf(

)
A ) (17)

1 +Lin/L0u[
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FIG. 5. Simplified experimental schematic.

but the integrals for the free electrons must be computed
numerically. Once the total density n(®) is determined, the
self-consistent solution to the finite-length shielding problem
is readily obtained as outlined above.

Negative potential well can be similarly analyzed by
swapping the values of L ;, and L, inverting the sign of the
applied potential, and calculating the total density in the new
L, region. The finite size case is substantially more compli-
cated than the infinite case, and there is no closed form so-
lution for the density like Eq. (7).

ill. EXPERIMENT

The above theory was verified by pure-electron plasma
experiments conducted in a Penning-Malmberg trap. De-
tailed descriptions of Penning-Malmberg traps can be found
in the literature.>?* In our trap the plasma forms a cylinder
aligned along the common axis of a series of eleven colli-
mated, cylindrical, 1.905 cm radius electrodes (see Fig. 5).
The electrodes are biased to create an electrostatic well,
thereby providing axial confinement. A strong axial magnetic
field (1800 G) provides radial confinement, and also ensures
that the electron motion is one dimensional. The plasma is
generated by thermionic emission from a hot tungsten fila-
ment. The plasma is heated by applying a broadband noise
signal of variable amplitude to one of the confining cylin-
ders, and the plasma temperature is measured using the stan-
dard dynamic-evaporation technique.”> The plasma’s radial
profile is determined by radially scanning a pinhole across
the plasma while the plasma is being dumped. The typical
plasma radius is approximately | cm, the typical density
ranges from ny=~1.2X 10" to 4X 107 c¢m™?, and the plasma
temperature ranges from | to 20 eV.

We generate a test well by appropriately biasing the trap
electrodes, and determine the plasma response by finding the
total charge contained within the test welil. This total charge
equals the image charge on the test well electrode. and is
measured by integrating the image current which flows onto
the test well electrode. (To reduce undesirable coupling, we
actually create the test well by leaving the well electrodes at
ground and reverse biasing the remaining trap electrodes.
The electrostatic well potential thus created is identical to
that created by the more straightforward scheme of biasing
the well electrodes themselves. The coupling is further mini-
mized by guard electrodes.)
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the charge found when V,=0. Here Liy/Low=039, T=6.8 eV and the
density scale constant is C=2.29. Lines are from the analytic theory given
in the text for the adiabatic case and from a PIC simulation in the non-
adiabatic case.

Typically the test well is created adiabatically in a pre-
existing plasma. Figure 6 shows the resulting plasma re-
sponse as a function of the well potential. As predicted by
the theory, the charge in the test well increases as the test
well depth is increased, thereby shielding the applied poten-
tial. The charge increase is due to charge trapped in the well.
By allowing the free charge to escape and then measuring the
remaining charge, we can approximately determine the
amount of the trapped charge (see Fig. 6). Because the self-
consistent condition changes to ‘

d=®,+C[n(P)/ny—1], (18)

this trapped charge is not precisely the same as the trapped
charge which exists before the free charge is allowed to es-
cape. Consequently, the trapped charge shown in the figure
does not follow the same scaling (\/C_I;) as the initial trapped
charge.

If the test well is created before the plasma is introduced
into the well region (i.e. non-adiabatically), the sudden
plasma expansion forms a phase-space cavity.>?2! The re-
sultant cavities are large and long-lived. As shown in Fig. 6,
phase space holes with density modulations as large as ap-
proximately 50% are observed. The cavities appear to oscil-
late from one end of the trap to the other, last for several
milliseconds (thousands of plasma periods and axial
bounces), and increase in size for well potentials less than
ten volts. Instabilities set in at about 10 V, and prevent us
from measuring the response for well voltages greater than
20V. The data is in rough agreement with a PIC
simulation.”®

Figure 7 shows the total well charge vs. the plasma tem-
perature for several well potentials. The positive potentials
form potential wells for the electrons and are shielded by
resultant excess of electrons. The negative potentials form
potential hills for the electrons and are shielded by the re-
sultant deficit of electrons. The square points in the figure
show the Dynamic response; the measurements are taken in a
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FIG. 7. Relative total charge vs. temperature. Here Li, /L, =0.36 for wells
and L;,/Lq,=0.80 for hills. The measured plasma density varies with tem-
perature such that the density constant C varies between 13.0/T to 16.3/T
for wells, and 11.9/T to 15.4/T for hills. The lines are calculated from the
theory described in the text using the value of C measured at each point.

time much less than the collision time. The round points
show the Debye response; the well is created over a length of
time of ~1s, far longer than the collision time for the
plasma. As predicted by the theory, the Debye response is
stronger than the Dynamic response for both hills and wells.

Figure 8 shows the trapped charge remaining after the
free particles have escaped as a function of the plasma tem-
perature. Similar to Fig. 6, the change in the self-consistent
equation makes this charge somewhat different than the
trapped charge before the free particles escape. As expected,
more charge is trapped in the Debye case than in the Dy-
namic case.

Finally, Fig. 9 contrasts the distribution function found
inside a ten volt well with the initial, presumably Maxwell-
ian distribution function found before the application of the
well. The distribution functions were found by first using an
electrode to split the plasma into inside and outside (the
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FIG. 8. Relative trapped charge vs. temperature. Parameters are identical to
well parameters in Fig. 7.
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FIG. 9. Experimental distribution functions. Shown are the experimental
data (solid lines) before and after the application of a + 10 V well, the (a)
best fit Maxwellian (7=3.8 eV) to the initial plasma, the (b) calculated
“Dynamic” distribution in the well, and (c) the calculated Maxwellian
(T=5.2eV) to which the experimental data should relax due to collisions.
Here L;,/L,=0.77.

well) regions, and then measuring the number of electrons
that escape as a function of the end confinement-barrier en-
ergy E. We avoid the confounding effects of the plasma
space charge by using a very tenuous plasma (C=0.26).
This is a difficult measurement, and noise limits us to pre-
senting only integrated data, n(E)=2nof mpmpf(v)dv.
Nonetheless, the distribution function inside the well is
clearly non-Maxwellian.

IV. DISCUSSION

We have shown that 1-D collisionless shielding relies on
trapping, and without trapping, a plasma anti-shields a posi-
tive test charge. Since the electrons in highly magnetized
plasmas respond one dimensionally, 1-D shielding is com-
mon. Further, the standard 2-D and 3-D derivations require
modification to model trapping correctly, and the plasma re-
sponse in 2-D is qualitatively different than reported else-
where. The distribution functions found in collisionless (Dy-
namic) shielding are non-Maxwellian, and the Dynamic
response can be far weaker than the equilibrium Debye re-
sponse in the nonlinear regime. We have experimentally
demonstrated both shielding and anti-shielding, and our re-
sults are in excellent agreement with the predictions of 1-D
Dynamic and Debye theory.
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