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Equilibrium of highly asymmetric non-neutral plasmas
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Pure electron plasmas are usually confined within cylindrically symmetric Penning—Malmberg
traps. When azimuthally asymmetric potentials are imposed on the trap walls, the plasmas deform
into asymmetric shapes. Such deformed plasmas have been observed experimentally, and are long
lived. This paper analyzes the equilibria of these plasmas. Wall potentials can be found which place
many asymmetric, flat-top plasmas into exact equilibrium; virtualhy flat-top plasma can be

placed into approximate equilibrium. @999 American Institute of Physics.
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I. INTRODUCTION In the guiding center limit in which electron mass is
neglected? non-neutral plasma particles follo&x B drift
Highly deformed, stationary non-neutral plasma columnsorbits, where the electric fiell is the net electric field from
in Penning—Malmberg trapgsee Fig. 1 are unexpectedly the plasma and from the confining wall, and the magnetic
long lived?™* Normally, non-neutral plasmas are stored infield B is the axial magnetic field used for radial confine-
Penning—Malmberg traps with cylindrically symmetric wall ment. In this limit, a non-neutral plasma is in a stationary
boundary potentials, and the equilibrium plasma shape is aquilibrium when its density contours are aligned with the
symmetric cylinder. Application of azimuthally asymmetric system’s electrostatic potential conto@rs. When so
wall potentials deforms the plasma equilibrium into a sta-aligned, the net electric field will be perpendicular to the
tionary cylinder of noncircular cross section. Since the walldensity contours, and the plasma particles will drift along the
potentials are no longer symmetric, angular momentum condensity contours. Motion alonB is assumed to bounce av-
servation is no longer guaranteed, and the standardrage out.
justificatior? for the long lifetime of non-neutral plasmas is In this paper we will concentrate on the flat-top plasmas,
no longer applicable. Consequently, the long lifetimes ofwhere the equilibrium condition reduces to the simpler con-
these deformed plasmas was a surprise. Highly deformeditions that the outer boundary of the plasma must be an
plasmas are useful for plasma lifetime studié§, exhibit  equipotential® and the potential must be continuous every-
complex bifurcation phenomerdand are interesting in their where. To find the wall boundary potential that will produce
own right® a desired irregularly shaped plasma, we must find a solution
Theoretical study of these deformed plasmas begins witho Poisson’s equatio®(r,f) which is an equipotential on
understanding the equilibrium conditions. Cétal®*°stud-  the plasma boundary. The required wall boundary potential
ied the equilibrium shapes of the slightly deformed plasmad/(6) for this plasma is simply the potentidl(r,6) evalu-
that result from small wall potential perturbations. Here weated along the wall at=R,, .
address the complementary problem; given an arbitrarily
shaped plasma, is it an equilibrium, and what boundary poH. EXACT SOLUTIONS

tentials would produce it? Unlike Chat al. we consider Both analytic and numeric methods can be used to de-
highly deformed plasmas. We will show, for example, thatiermined, . The analytic method uses a Green'’s funcfibn,

the nearly square plasma shown in Fig. 2 is in equilibriumypije the numeric method relies on contour dynamics.
and is produced by the plotted wall potentials. In general,

any arbitrarily shaped, simply connected, flat-t@onstant A. Green’s function methodology

density plasmas will be in equilibrium, and we can find the  Green's functions are commonly used to solve Poisson’s
corresponding wall potentials. Exact equilibrium solutionsequation, but their use here is complicated by the require-

do not exist for all plasmas, however, but wall potentials canment that the plasma boundary be an equipotential. The ap-
be found that place virtually any plasma into a state that isyropriate Green’s function is

arbitrarily close to an equilibrium staté.

Just because the plasma is in equilibrium does not mean
that the equilibrium is stable; many highly deformed plasmas
are unstable. The stability of these plasmas is studied in

Do(r,6;rq,60)
Di(r,a;ro,eo)
fiheree is the plasma particle chargey is the plasma den-

G(r,0;rg,0p)=—2eng In , (1)

companion papet’ sity, Do(r,6:ro,6,) is the distance between the two points
defined by ¢,0) and (,60), andD;(r,8;rq,6,) is the dis-
dElectronic mail: joel@physics.berkeley.edu tance betweenr(#) and the image ofr(, 6y). [The image

1070-664X/99/6(1)/12/7/$15.00 12 © 1999 American Institute of Physics



Phys. Plasmas, Vol. 6, No. 1, January 1999 Fajans, Backhaus, and McCarthy 13

B
e \/9 Phosphor

Screen

-V

FIG. 1. A schematic drawing of a Penning—Malmberg trap. Longitudinal
confinement is provided by appropriately biasing the cylinders. Radial con-
finement is provided by the magnetic field. The electrically isolated patch
(V) can create an asymmetric boundary. The pure-electron plasma is gen-
erated by thermionic emission from the hot tungsten filament on the left-
hand side, and loaded into the trap by momentarily grounding in the leftmost
cylinder. The plasma is imaged by momentarily grounding the rightmost
cylinder, thereby allowing the plasma to stream onto the phosphor screen.

of (ry,6,) is found at 2y ,0,).] Thus G(r,6:ry,6, FIG. 3. Geometry for the Green'’s function calculations. The plasma is out-

. ( othO) tential at GRVé 0 tO) ] | g " r? 0) t lined by the squarish object, and the interior circle used in(Bgis shown
gives the poten 'a_‘ atr( ) ue _0 an eiemen O Charge a by the dashed line. The equilibrium potentials for this plasma are shown in
(ro.6p) (refer to Fig. 3. Using this Green’s function, we can Fig. 2.

define the Green potential

Dg(r,0)= fzwd 00J'R(0)droroG(r,e;ro,eo), (2)  boundary. Then by construction, the total potentigl,(r,6)
0 0 =g(r,0)+Dy(r,6) will be an equipotential on the plasma

whereR(6) defines the plasma boundary. While this poten-2oundary. Evaluating, at the wall yields the wall poten-

tial is defined everywhere, there is no reason to expect thate! V() which places the plasma in equilibrium. For this
the plasma boundary will be an equipotential. evaluation to be permissible, the potendal, must be ana-

In addition to ®4(r,d), we can also define a second Iytic to the wall; if it is, the solution is exact. If it is not, we
potential® (r, 0) satisfying Laplace’s equation; must resort to the approximate methods of solution described

. in Sec. IV.
B . Finding a closed form expression fdp,, is difficult.
Dp(r,0)= pzl [cp sin(p6) +d, cogpo)]rP. @ The following procedure often yields an analytic result: First,

) ) ) place a fictitious metallic enclosure directly around the
Smc_e(l)p can match any arbitrary potential, we can alwaysp|asma edge at=R(#). We can expand the solution to
require thatd(R(6),60)=—Pc[R(6),60] over the plasma  pyisson’s equatio2® = —4men, inside this enclosure

as

Diy(r,0)=—menyr?+dy(r,0)

Dy(r,0)=—men, >, (amsinmé+b,, cosmo)r™.
m=0
4

By construction, the plasma boundary will be an equipoten-
tial. For several regular geometric shapes, the coefficients
(an,by) are obvious by inspection, and for other shapes
they are readily calculable. If necessary, they can be found
numerically. Note that althougtb,,, can be evaluated out-
side the plasma, it does not equal the correct potential there.

A second expression for the potential can always be
found by expressing the Green’s potenfigk. (2)] as an-
other series:

Dg, (r,0)=—mengr?+dy(r,0)+di(r,0)

N o N A
—

Wall Potential
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FIG: _2._A nearly square, negative unit den'S|ty,_ nonneutral plasma held in (I)o(l‘,ﬁ): —meny Z (fm sinmé+ Om COS mg)rm
equilibrium. The plasma covers the grey region in the center and has an area m=0

of w/4. The wall radius isR,=1cm. The contours were found with a
numeric Poisson solver, and are spaced by 0.2 sV. The plasma boundary is
indistinguishable from the 0 sV contour, and the most negative drawn con- ~ ®;(r,0) = — wen, E (Fm Sinmo+ Gy, cosmo)r™,
tour within the plasma is at 0.6 sV. The inset graphs the imposed potential m=0

on the wall as a function of angle. The angle 0 is at 3 o’'clock. (5)

o0
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where®(r, §) results from the direct charges coming from
the Dy(r,0;rq,6p) term in the Green's function, and
®;(r,0) results from the image charges coming from the
Di(r,0;rq,6p) term.

The coefficientd ,, andg,, can be found by Fourier ana-
lyzing CIDGim(r,a) on some circler =R; centered on the ori-

gin and completely contained within the plasma:

fm| 1 de ® sinmé
Om)  m2enR" Jo 06, (Ri.0)| cosmg|- ©

Using Eq.(2), this expression can be rewritten as

] e o
Om) #2RM Jo ° Ri+e fofo
sinmé@

2w
><J0 d0In[Do(Ri,0;r0,00)][cosm0}, ()

FamnN

0 T 2n
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FIG. 4. An offaxis, circular plasma equilibrium. The plasma and graph
where thed, symmetry of the plasma insid® allows us to ~ Parameters are identical to those in Fig. 2.
change the lower limit of thelr, integral from O toR; + ¢,
wheree is a positive infinitesimal. Now we need to evaluate
IN[Dy(R:,0:r0,60)] only whenr,>R;, and can take advan- functions. By constructionp is constant at the wall. Con-

tage of the logarithmic expansidﬁ: sequently the required wall voltages are fouial within a
constank by evaluating
IN[Do(R;,0;rq,60)]
V( 0) = q)tot( RW ’ 6)1 (12)
* AP
R 1(5) (R )~ By(Ry, )+ DRy, 0). (13
p=1 P \To

This solution is only valid whed,, can be evaluated to

X (cospéy cospl+sinpby sinpéb). (8) the wall; i.e., when the radius of convergencedgj; is out-
side R,,. When will this be true? If, as is often the case,
®;«(r,0) has only a finite number of terms, it will be ana-
lytic out to infinity. The image potentiab;(r, 6) will always

f 2 om sinme be analytic out to the wall. Only the direct potent@)(r, 6)
{ m]=— J daoR(eo)Zm{ 0] m+#2 can cause trouble. Unfortunately, we cannot predict when
) mm(m=2) Jo cosmdo ®,(r,6) will be convergent. Some strongly distorted shapes

Plugging this expansion into E7) yields easily evaluated
integrals, and taking the limig— 0 leaves

yield potentials which are analytic, while other relatively cir-

2m i
_ E déo In R( 90)[ sin 220;0} =2 9) cular shapes yield potentials which are not. However for any
T Jo €oS o particular shape we can check the convergence be finding the
Similarly limit of the sequences Yf .|, 1N|gm|, the lesser of which
equals the radius of convergence®f(r, ).
F 2R, 2™ (om sinmé,
e dgoR(ao)m+2 0 .
Gnm) am(m+2) Jo cosmég B. Examples
(10 '
Equation(8) is valid solely forry>R;, so <I>Gim is re- 1. Equilibrium of circular plasmas
quired to equal the complete Green's potendigd only in- The wall voltages necessary to produce an off-axis cir-
sideR; . Moreover there is no reason to expect t{ will  cyjar plasma are particularly easy to find. The potential gen-

be an equipotential on the plasma surface. However, by corerated by such a plasma is simply the standard potential from
struction, the plasma boundary is an equipotential of they cylindrical plasma, namelgbim(r,a):—weno(rs—rz) in-
function: side the plasma, an®~ —2enynr2 In(r/r,) outside the

. 0 Tp
B (1,0)=D(r,0)—Dy(r,0)—Di(r,0)+Dy(r,0). plasma. Here,, is the plasma radius, amds measured from
11

the plasma center. The plasma boundary is clearly an equi-
potential, so the plasma will be in equilibrium. The required

{Thus,®, [Eq. (3)] equals—®,— @+ Dy.} As D and its  wall voltagesV(6) are found by evaluatingp;,, along an

derivatives are continuous across the bounddry, satisfies  appropriately shifted circle of radiu®,. The resulting

all the required boundary conditions. Assuming tlgi; is  plasma and contours are shown in Fig. 4. We show in the

well defined everywhere, it must equal the correct potentiatompanion paper that off-axis circular plasmas are always
outside the plasma by the uniqueness theorem for harmonatable!?
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2. Equilibrium of elliptical plasmas Zg

The equation

(1-b3)¥*
(1+b, cos )¢

Ro(0)=

(14

defines a family of ellipses of aref,= rrRﬁ and ellipticity
A2=(1-b,)/(1+b,), b,<0. By inspection, the solution of
Poisson’s equation that is constant on the boundary is

&= —menyr’(1+b, cos ¥), (15

which is constant along the ellipse boundary. Using 4.
to find the terms inb,, we find that the only nonzero term is

1—1-bs

92=b—2, (16

Wall Potential

while evaluation of Eq.(10) shows that the expansio®;

. . . FIG. 5. An elliptical plasma equilibrium witih=2. Other parameters are
requires a full set of even cosine terms:

identical to those in Fig. 2.

+2 2 /2+ 1
G — 4R2’1 (1_b2)m+2/4 (g2+1)m
"mm+2) T P (—gy)™Hgr-1)™! [N\Z
mi2 o ek cosh Moo= )\2—_1 (22)
x 2, ( (g5- 1) 17 -
o L k) m2 o2 : The two results, Eqs(18) and (20) agree numerically. A

) ) . typical solution is shown in Fig 5. We show in the compan-
The expressions in both Eq4.6) and(17) were found with  jon papet? that these ellipses are stable if their ellipticity is
the aid of the Maple symbolic manipulation program. sufficiently small.
Calculating®,,; yields

(T, 0)=—2 TrenORg 3. Equilibrium of square plasmas

1—1—b3

The approximate equilibrium potential of a perfect-
1+ o )00329
2

square plasma can be found in closed form, but, as we show
in the companion papéf, the sharp corners make any
perfect-square plasma unstable. More interesting is the fam-

X In r— rengb,r?

(18 ily of squarish plasmas defined by the equation:
—meny Y, G,pf 2P cos B6. (19 R.(0)=R \/ 1 23
=1 RN [ T ccosd’ 23

The appropriate wall voltages are readily obtained from thi%here|el<1 defines the deviation from roundness, atd

expression. scales the size of the plasma. Using= — €/2R?, the inter-

For the special case of an elliptical plasma, solving PoiST 4l potential for these plasmas is

son’s equation in elliptical coordinates yields an equivalent

expression for the potential: ®jp=— mengr?(1+byr? cos 4). (24)
Do, 0)=2mengR3( 1 — o) No closed form expressions for the coefficiehts gm, Fn,
andG,, appear to exist, but the integrals E¢®.and(10) are
) AZ—1 easy to evaluate numerically. Only the cosine termms,
— menoRe 157 Sinh A= po)COS 2, =4,8,16... survive. Table | gives the first few terms for the

valuesR.=0.679, e=—0.923, b,=1). As is typical, the
(20 potential at the wall is almost a pure harmonic. Figure 2

where the elliptical variableg,v are related to, 6 as shows the plasma and electrostatic contours. According to

the methods outlined in the companion palfethis plasma

r sin 6 A —sinhu sin v is linearly stable.
R. VAZ—1 g

(21 TABLE I. Typical almost square plasma expansion coefficients.

rcosé¢ [ X\ X
=coshu cosv,
Rc A-1 H m 4 8 12 16

Om 0.283 —0.0307 0.0256 —0.0238
and u, corresponds to the value of on the surface of the g =~ _—128<10® 28710° -120x10° -6.65<10°°

ellipse:
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FIG. 7. Equilibria of plasmas inside a square, conducting boundary, with
unit length sides. The plasma areas arerQ)@.3m, 0.5, 0.77, and 0.85r.

Wall Potential

FIG. 6. Anirregular plasma equilibrium. The contours are spaced by 0.5 sV.
Small numeric errors prevent some of the contours from touching the wallThis results in a linear inhomogeneous systemNoéqua-

Other parameters are identical to those in Fig. 2. tions for N unknown coefficientﬁ\o, Anos A andB, with
I=1,N/2—1 which is solved numerically. The desired wall
potential can now be easily calculated using E2i7) with

IIl. CONTOUR DYNAMICS METHODOLOGY r=Ry.

The wall potentials producing a given plasma equilib-
rium can also be found numerically using the contour dy-A. Examples
namics(CD) technique. The technique allows us to find po-
ftentlals by evall_Jatlng line integrals qlong the plasma _edgi Equilibrium of irregular plasmas
instead of area integrals over the entire plasma. More infor- . .
mation about CD can be found in the literattfré® and in Figure 6 presents an example of a highly deformed
the companion papéf.The advantage of using CD is that it plasma. The equilibrium potentials were found using the CD
allows us to find solutions for irregularly shaped plasmas irfechnique. Despite the fact that the plasma boundary is par-
arbitrarily shaped boundaries. tially concave, the methods developed in the companion
Briefly, we express the total potential as the sum of thepapet? show that the plasma is stable. As with any highly

plasma potentiad, , the image potentiab,, and the exter- deformed plasma, the wall potenti( #) must be large to
nal potentialgey: produce the required high harmonic interior potentials.

Drot= ¢p+ Dot dext- (25

The potentialsp,, and® ' can be found using the CD for a
given plasma shapR,(6). The external potential is

Ge=Rot+ > =r (A cosl 0+B; sinl9), (26)

=1 Ry

where the coefficients\, and B, are determined by the
boundary condition. The plasma boundary is discretized into
N points, and onlyN/2 harmonics are kept for the external
potential, i.e.,

N2-1 |
Pedr O)=Ao+ 2, =r (A, coslo+B, sinl0)
=1 Ry

r N/2
+ An2=nz COSN6/2. (27

W

Wall Potential

Requiring that the shape is an equilibrium, we write the equirig. 8. A cardioid plasma equilibrium. Contours are drawn-at5,— 10,

potential condition at every point on the boundary as —8,-6,-4,—2,—1,—0.8-0.6 (the most negative contour inside the
plasma, —0.4,—0.2, 0(the plasma boundary0.2, 0.4, 0.8, 1, 2, 4, 6, 8, 10,
DexRo(0)),0;) =const= ¢, (6;) —Po(6;), 15, and 20 sV. The negative regions along the perimeter are lightly shaded.

) The critical point where the exact cardioid potential is singular is indicated
i=1,...N. (28 by the dot. Other parameters are identical to those in Fig. 2.
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Fig. 8, is of cardioid whose boundary is described by the
equationx+iy=0.118exp(d6)+4 exp{d)—1]. (The lead-
ing constant was chosen to make the area equél) We
used terms in Eq:3) up tor?5, and find that the rms error of
the potential on the plasma boundary is}28)“. The sec-
ond example is the irregular star shown in Fig. 9. Terms up
to r% produce a good fitrms error 1.% 10" 3), but the re-
sultant wall potential is unphysically large due to the use of
very high order terms. Our fitting algorithm does not dis-
criminate against higher order terms; it is possible that a
different fitting routine could produce a similarly convoluted
plasma without unphysical wall potentials.

1e+13 | ' 1
0 WW
Ae+13 | V. CONCLUSIONS

0 n 2n

i\

Wall Potential

_ s We have shown that the application of the appropriate
B e e e 5o 07Wal potentials can place any Simply connected iteguiary
inside the plasma—0.2, 0 (the plasma boundaryl, 1%, 1¢%, and 1§ sv. ~ Shaped plasma in or near equilibrium. Some plasmas can be
The negative regions along the perimeter are lightly shaded. Other paranplaced into exact equilibria, other plasmas can only be
eters are identical to those in Fig. 2. placed into approximate equilibria. Highly contorted plasmas
may require unphysically large wall potentials.

The examples have been flat-topped plasmas, but the
technigues can be extended to the broad class of plasmas in

The CD technique is not limited to circular boundaries.hjch the internal density contours are aligned with the in-
Figure 7 shows the equilibrium shape of a series of plasmasernal potential contours. We have also assumed that the
with increasing area, confined within a square wall. Suchyyiving wall potentials extend the length of the plasma. Ex-
walls are often used in lon Resonance Mass Spectromete@rimems, however, have used wall potentials that extend
(Ref. 19, p. 236 Not surprisingly, the smaller plasmas are gyer only part of the plasnfaThese results can be extended
almost circular, while the larger plasmas assume the shape ¢f s, ch plasmas so long as the plasma particle motion

2. Equilibrium of plasmas in irregular boundaries

the wall. bounce averages over the plasma length.
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