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Equilibrium of highly asymmetric non-neutral plasmas
J. Fajansa) and E. Yu. Backhaus
Department of Physics, University of California–Berkeley, Berkeley, California 94720

J. E. McCarthy
Department of Mathematics, Washington University, St. Louis, Missouri 63130
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Pure electron plasmas are usually confined within cylindrically symmetric Penning–Malmberg
traps. When azimuthally asymmetric potentials are imposed on the trap walls, the plasmas deform
into asymmetric shapes. Such deformed plasmas have been observed experimentally, and are long
lived. This paper analyzes the equilibria of these plasmas. Wall potentials can be found which place
many asymmetric, flat-top plasmas into exact equilibrium; virtuallyany flat-top plasma can be
placed into approximate equilibrium. ©1999 American Institute of Physics.
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I. INTRODUCTION

Highly deformed, stationary non-neutral plasma colum
in Penning–Malmberg traps1 ~see Fig. 1! are unexpectedly
long lived.2–4 Normally, non-neutral plasmas are stored
Penning–Malmberg traps with cylindrically symmetric wa
boundary potentials, and the equilibrium plasma shape
symmetric cylinder. Application of azimuthally asymmetr
wall potentials deforms the plasma equilibrium into a s
tionary cylinder of noncircular cross section. Since the w
potentials are no longer symmetric, angular momentum c
servation is no longer guaranteed, and the stand
justification5 for the long lifetime of non-neutral plasmas
no longer applicable. Consequently, the long lifetimes
these deformed plasmas was a surprise. Highly deform
plasmas are useful for plasma lifetime studies,3,4,6 exhibit
complex bifurcation phenomena,7 and are interesting in thei
own right.8

Theoretical study of these deformed plasmas begins w
understanding the equilibrium conditions. Chuet al.9,10 stud-
ied the equilibrium shapes of the slightly deformed plasm
that result from small wall potential perturbations. Here
address the complementary problem; given an arbitra
shaped plasma, is it an equilibrium, and what boundary
tentials would produce it? Unlike Chuet al. we consider
highly deformed plasmas. We will show, for example, th
the nearly square plasma shown in Fig. 2 is in equilibriu
and is produced by the plotted wall potentials. In gene
any arbitrarily shaped, simply connected, flat-top~constant
density! plasmas will be in equilibrium, and we can find th
corresponding wall potentials. Exact equilibrium solutio
do not exist for all plasmas, however, but wall potentials c
be found that place virtually any plasma into a state tha
arbitrarily close to an equilibrium state.11

Just because the plasma is in equilibrium does not m
that the equilibrium is stable; many highly deformed plasm
are unstable. The stability of these plasmas is studied
companion paper.12

a!Electronic mail: joel@physics.berkeley.edu
121070-664X/99/6(1)/12/7/$15.00
s

a

-
ll
n-
rd

f
ed

th

s

ly
-

t

l,

n
is

an
s
a

In the guiding center limit in which electron mass
neglected,13 non-neutral plasma particles followE3B drift
orbits, where the electric fieldE is the net electric field from
the plasma and from the confining wall, and the magne
field B is the axial magnetic field used for radial confin
ment. In this limit, a non-neutral plasma is in a stationa
equilibrium when its density contours are aligned with t
system’s electrostatic potential contours.9,13 When so
aligned, the net electric field will be perpendicular to t
density contours, and the plasma particles will drift along
density contours. Motion alongB is assumed to bounce av
erage out.

In this paper we will concentrate on the flat-top plasm
where the equilibrium condition reduces to the simpler co
ditions that the outer boundary of the plasma must be
equipotential,13 and the potential must be continuous eve
where. To find the wall boundary potential that will produ
a desired irregularly shaped plasma, we must find a solu
to Poisson’s equationF tot(r,u) which is an equipotential on
the plasma boundary. The required wall boundary poten
V(u) for this plasma is simply the potentialF tot(r,u) evalu-
ated along the wall atr 5Rw .

II. EXACT SOLUTIONS

Both analytic and numeric methods can be used to
termineF tot . The analytic method uses a Green’s function14

while the numeric method relies on contour dynamics.

A. Green’s function methodology

Green’s functions are commonly used to solve Poisso
equation, but their use here is complicated by the requ
ment that the plasma boundary be an equipotential. The
propriate Green’s function is

G~r ,u;r 0 ,u0!522en0 lnFDo~r ,u;r 0 ,u0!

Di~r ,u;r 0 ,u0! G , ~1!

wheree is the plasma particle charge,n0 is the plasma den-
sity, Do(r ,u;r 0 ,u0) is the distance between the two poin
defined by (r ,u) and (r 0 ,u0), andDi(r ,u;r 0 ,u0) is the dis-
tance between (r ,u) and the image of (r 0 ,u0). @The image
© 1999 American Institute of Physics
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of (r 0 ,u0) is found at (Rw
2 /r 0 ,u0).# Thus G(r ,u;r 0 ,u0)

gives the potential at (r ,u) due to an element of charge
(r 0 ,u0) ~refer to Fig. 3!. Using this Green’s function, we ca
define the Green potential

FG~r ,u!5E
0

2p

du0E
0

R~u!

dr0r 0G~r ,u;r 0 ,u0!, ~2!

whereR(u) defines the plasma boundary. While this pote
tial is defined everywhere, there is no reason to expect
the plasma boundary will be an equipotential.

In addition to FG(r ,u), we can also define a secon
potentialFp(r ,u) satisfying Laplace’s equation;

Fp~r ,u!5 (
p51

`

@cp sin~pu!1dp cos~pu!#r p. ~3!

SinceFp can match any arbitrary potential, we can alwa
require thatFp(R(u),u)52FG@R(u),u# over the plasma

FIG. 1. A schematic drawing of a Penning–Malmberg trap. Longitudi
confinement is provided by appropriately biasing the cylinders. Radial c
finement is provided by the magnetic field. The electrically isolated pa
(Vu) can create an asymmetric boundary. The pure-electron plasma is
erated by thermionic emission from the hot tungsten filament on the
hand side, and loaded into the trap by momentarily grounding in the leftm
cylinder. The plasma is imaged by momentarily grounding the rightm
cylinder, thereby allowing the plasma to stream onto the phosphor scre

FIG. 2. A nearly square, negative unit density, nonneutral plasma he
equilibrium. The plasma covers the grey region in the center and has an
of p/4. The wall radius isRw51 cm. The contours were found with
numeric Poisson solver, and are spaced by 0.2 sV. The plasma bound
indistinguishable from the 0 sV contour, and the most negative drawn
tour within the plasma is at20.6 sV. The inset graphs the imposed potent
on the wall as a function of angle. The angleu50 is at 3 o’clock.
-
at

s

boundary. Then by construction, the total potentialF tot(r,u)
5FG(r,u)1Fp(r,u) will be an equipotential on the plasm
boundary. EvaluatingF tot at the wall yields the wall poten
tial V(u) which places the plasma in equilibrium. For th
evaluation to be permissible, the potentialF tot must be ana-
lytic to the wall; if it is, the solution is exact. If it is not, we
must resort to the approximate methods of solution descri
in Sec. IV.

Finding a closed form expression forF tot is difficult.
The following procedure often yields an analytic result: Fir
place a fictitious metallic enclosure directly around t
plasma edge atr 5R(u). We can expand the solution t
Poisson’s equation¹2F int524pen0 inside this enclosure
as

F int~r ,u!52pen0r 21Fd~r ,u!

Fd~r ,u!52pen0 (
m50

`

~am sin mu1bm cosmu!r m.

~4!

By construction, the plasma boundary will be an equipot
tial. For several regular geometric shapes, the coefficie
(am ,bm) are obvious by inspection, and for other shap
they are readily calculable. If necessary, they can be fo
numerically. Note that althoughF int can be evaluated out
side the plasma, it does not equal the correct potential th

A second expression for the potential can always
found by expressing the Green’s potential@Eq. ~2!# as an-
other series:

FGint
~r ,u!52pen0r 21Fo~r ,u!1F i~r ,u!

Fo~r ,u!52pen0 (
m50

`

~ f m sin mu1gm cosmu!r m

F i~r ,u!52pen0 (
m50

`

~Fm sin mu1Gm cosmu!r m,

~5!
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FIG. 3. Geometry for the Green’s function calculations. The plasma is
lined by the squarish object, and the interior circle used in Eq.~6! is shown
by the dashed line. The equilibrium potentials for this plasma are show
Fig. 2.
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whereFo(r ,u) results from the direct charges coming fro
the Do(r ,u;r 0 ,u0) term in the Green’s function, an
F i(r ,u) results from the image charges coming from t
Di(r ,u;r 0 ,u0) term.

The coefficientsf m andgm can be found by Fourier ana
lyzing FGint

(r ,u) on some circler 5Ri centered on the ori-
gin and completely contained within the plasma:

H f m

gm
J 52

1

p2en0Ri
m E

0

2p

duFGint
~Ri ,u!H sin mu

cosmuJ . ~6!

Using Eq.~2!, this expression can be rewritten as

H f m

gm
J 5

2

p2Ri
m E

0

2p

du0E
Ri1e

R~u0!

dr0r 0

3E
0

2p

du ln@Do~Ri ,u;r 0 ,u0!#H sin mu
cosmuJ , ~7!

where theu0 symmetry of the plasma insideRi allows us to
change the lower limit of thedr0 integral from 0 toRi1e,
wheree is a positive infinitesimal. Now we need to evalua
ln@Do(Ri ,u ;r0,u0)# only when r 0.Ri , and can take advan
tage of the logarithmic expansion:15

ln@Do~Ri ,u;r 0 ,u0!#

5 ln r 02 (
p51

`
1

p S Ri

r 0
D p

3~cospu0 cospu1sin pu0 sin pu!. ~8!

Plugging this expansion into Eq.~7! yields easily evaluated
integrals, and taking the limite→0 leaves

H f m

gm
J 5

2

pm~m22!
E

0

2p

du0R~u0!22mH sin mu0

cosmu0
J mÞ2

2
1

p E
0

2p

du0 ln R~u0!H sin 2u0

cos 2u0
J m52. ~9!

Similarly

H Fm

Gm
J 5

2Rw
22m

pm~m12!
E

0

2p

du0R~u0!m12H sin mu0

cosmu0
J .

~10!

Equation~8! is valid solely for r 0.Ri , so FGint
is re-

quired to equal the complete Green’s potentialFG only in-
sideRi . Moreover there is no reason to expect thatFGint

will
be an equipotential on the plasma surface. However, by c
struction, the plasma boundary is an equipotential of
function:

F tot~r ,u!5FG~r ,u!2Fo~r ,u!2F i~r ,u!1Fd~r ,u!.
~11!

$Thus,Fp @Eq. ~3!# equals2Fo2F i1Fd .% As F tot and its
derivatives are continuous across the boundary,F tot satisfies
all the required boundary conditions. Assuming thatF tot is
well defined everywhere, it must equal the correct poten
outside the plasma by the uniqueness theorem for harm
n-
e

l
ic

functions. By construction,FG is constant at the wall. Con
sequently the required wall voltages are found~to within a
constant! by evaluating

V~u!5F tot~Rw ,u!, ~12!

52Fo~Rw ,u!2F i~Rw ,u!1Fd~Rw ,u!. ~13!

This solution is only valid whenF tot can be evaluated to
the wall; i.e., when the radius of convergence ofF tot is out-
side Rw . When will this be true? If, as is often the cas
F int(r ,u) has only a finite number of terms, it will be ana
lytic out to infinity. The image potentialF i(r ,u) will always
be analytic out to the wall. Only the direct potentialFo(r ,u)
can cause trouble. Unfortunately, we cannot predict wh
Fo(r ,u) will be convergent. Some strongly distorted shap
yield potentials which are analytic, while other relatively c
cular shapes yield potentials which are not. However for a
particular shape we can check the convergence be finding
limit of the sequences 1/Amu f mu, 1/Amugmu, the lesser of which
equals the radius of convergence ofFo(r ,u).

B. Examples

1. Equilibrium of circular plasmas

The wall voltages necessary to produce an off-axis
cular plasma are particularly easy to find. The potential g
erated by such a plasma is simply the standard potential f
a cylindrical plasma, namelyF int(r ,u)52pen0(r p

22r 2) in-
side the plasma, andFext522en0pr p

2 ln(r/rp) outside the
plasma. Herer p is the plasma radius, andr is measured from
the plasma center. The plasma boundary is clearly an e
potential, so the plasma will be in equilibrium. The requir
wall voltagesV(u) are found by evaluatingF int along an
appropriately shifted circle of radiusRw . The resulting
plasma and contours are shown in Fig. 4. We show in
companion paper that off-axis circular plasmas are alw
stable.12

FIG. 4. An offaxis, circular plasma equilibrium. The plasma and gra
parameters are identical to those in Fig. 2.
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2. Equilibrium of elliptical plasmas

The equation

R0~u!5
~12b2

2!1/4

~11b2 cos 2u!1/2Rc , ~14!

defines a family of ellipses of areaAp5pRc
2 and ellipticity

l25(12b2)/(11b2), b2,0. By inspection, the solution o
Poisson’s equation that is constant on the boundary is

F int52pen0r 2~11b2 cos 2u!, ~15!

which is constant along the ellipse boundary. Using Eq.~9!
to find the terms inFo , we find that the only nonzero term i

g25
12A12b2

2

b2
, ~16!

while evaluation of Eq.~10! shows that the expansionF i

requires a full set of even cosine terms:

Gm5
4Rc

m12

m~m12!
~12b2

2!m12/4
~g2

211!m/211

~2g2!m/2~g2
221!m11

3 (
k50

m/2 S m
k D S m2k

m/2 D ~g2
221!k. ~17!

The expressions in both Eqs.~16! and~17! were found with
the aid of the Maple symbolic manipulation program.

CalculatingF tot yields

F tot~r ,u!522pen0Rc
2

3 ln r 2pen0b2r 2S 11
12A12b2

2

b2
2 D cos 2u

~18!

2pen0(
p51

`

G2pr 22p cos 2pu. ~19!

The appropriate wall voltages are readily obtained from t
expression.

For the special case of an elliptical plasma, solving Po
son’s equation in elliptical coordinates yields an equival
expression for the potential:

F tot~r ,u!52pen0Rc
2~m2m0!

2pen0Rc
2 l221

l211
sinh 2~m2m0!cos 2n,

~20!

where the elliptical variablesm,n are related tor ,u as

r sin u

Rc
A l

l221
5sinh m sin n,

~21!
r cosu

Rc
A l

l221
5coshm cosn,

andm0 corresponds to the value ofm on the surface of the
ellipse:
s

-
t

coshm05A l2

l221
. ~22!

The two results, Eqs.~18! and ~20! agree numerically. A
typical solution is shown in Fig 5. We show in the compa
ion paper12 that these ellipses are stable if their ellipticity
sufficiently small.

3. Equilibrium of square plasmas

The approximate equilibrium potential of a perfec
square plasma can be found in closed form, but, as we s
in the companion paper,12 the sharp corners make an
perfect-square plasma unstable. More interesting is the f
ily of squarish plasmas defined by the equation:

R0~u!5RcA 1

11A12e cos 4u
, ~23!

where ueu,1 defines the deviation from roundness, andRc

scales the size of the plasma. Usingb452e/2Rc
2 , the inter-

nal potential for these plasmas is

F int52pen0r 2~11b4r 2 cos 4u!. ~24!

No closed form expressions for the coefficientsf m , gm , Fm ,
andGm appear to exist, but the integrals Eqs.~9! and~10! are
easy to evaluate numerically. Only the cosine terms,m
54,8,16 . . . survive. Table I gives the first few terms for t
valuesRc50.679, e520.923, (b451). As is typical, the
potential at the wall is almost a pure harmonic. Figure
shows the plasma and electrostatic contours. According
the methods outlined in the companion paper,12 this plasma
is linearly stable.

FIG. 5. An elliptical plasma equilibrium withl52. Other parameters are
identical to those in Fig. 2.

TABLE I. Typical almost square plasma expansion coefficients.

m 4 8 12 16
gm 0.283 20.0307 0.0256 20.0238
Gm 21.2831023 2.8731025 21.2031026 26.6531028
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III. CONTOUR DYNAMICS METHODOLOGY

The wall potentials producing a given plasma equil
rium can also be found numerically using the contour d
namics~CD! technique. The technique allows us to find p
tentials by evaluating line integrals along the plasma e
instead of area integrals over the entire plasma. More in
mation about CD can be found in the literature16–18 and in
the companion paper.12 The advantage of using CD is that
allows us to find solutions for irregularly shaped plasmas
arbitrarily shaped boundaries.

Briefly, we express the total potential as the sum of
plasma potentialfp , the image potentialFo , and the exter-
nal potentialfext:

f tot5fp1Fo1fext. ~25!

The potentialsfp andFo
18 can be found using the CD for

given plasma shapeR0(u). The external potential is

fext5A01(
l 51

`
r l

Rw
l ~Al cos lu1Bl sin lu!, ~26!

where the coefficientsAl and Bl are determined by the
boundary condition. The plasma boundary is discretized
N points, and onlyN/2 harmonics are kept for the extern
potential, i.e.,

fext~r ,u!5A01 (
l 51

N/221
r l

Rw
l ~Al cos lu1Bl sin lu!

1AN/2

r N/2

Rw
N/2 cosNu/2. ~27!

Requiring that the shape is an equilibrium, we write the eq
potential condition at every point on the boundary as

fext~R0~u i !,u i !5const2fp~u i !2Fo~u i !,

i 51, . . . ,N. ~28!

FIG. 6. An irregular plasma equilibrium. The contours are spaced by 0.5
Small numeric errors prevent some of the contours from touching the w
Other parameters are identical to those in Fig. 2.
-
-
-
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This results in a linear inhomogeneous system ofN equa-
tions forN unknown coefficientsA0 , AN/2 , Al , andBl with
l 51, N/221 which is solved numerically. The desired wa
potential can now be easily calculated using Eq.~27! with
r 5Rw .

A. Examples

1. Equilibrium of irregular plasmas

Figure 6 presents an example of a highly deform
plasma. The equilibrium potentials were found using the C
technique. Despite the fact that the plasma boundary is
tially concave, the methods developed in the compan
paper12 show that the plasma is stable. As with any high
deformed plasma, the wall potentialV(u) must be large to
produce the required high harmonic interior potentials.

.
ll.

FIG. 7. Equilibria of plasmas inside a square, conducting boundary, w
unit length sides. The plasma areas are 0.1p, 0.3p, 0.5p, 0.7p, and 0.85p.

FIG. 8. A cardioid plasma equilibrium. Contours are drawn at215,210,
28,26,24,22,21,20.8,20.6 ~the most negative contour inside th
plasma!, 20.4,20.2, 0 ~the plasma boundary!, 0.2, 0.4, 0.8, 1, 2, 4, 6, 8, 10
15, and 20 sV. The negative regions along the perimeter are lightly sha
The critical point where the exact cardioid potential is singular is indica
by the dot. Other parameters are identical to those in Fig. 2.
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2. Equilibrium of plasmas in irregular boundaries

The CD technique is not limited to circular boundarie
Figure 7 shows the equilibrium shape of a series of plasm
with increasing area, confined within a square wall. Su
walls are often used in Ion Resonance Mass Spectrome
~Ref. 19, p. 236!. Not surprisingly, the smaller plasmas a
almost circular, while the larger plasmas assume the shap
the wall.

IV. APPROXIMATE SOLUTIONS

Exact equilibrium solutions cannot be obtained for
plasmas. McCarthyet al.11 proved that even some mildl
contorted plasmas, such as the cardioid shown in Fig
cannot be placed into an exact equilibrium. The potentials
such plasmas have singularities which preclude harmonic
extendingF tot indefinitely. If the wall does not enclose an
of these singularities, then an appropriate boundary pote
can be placed on it so thatF tot has the plasma boundary a
an equipotential. If the wall does enclose a singularity, th
it is impossible to make the plasma boundary an equipo
tial. It is unknown whether there exists a noncircular plas
that can always be placed exactly into equilibrium, rega
less of how far away the wall is.

Despite this lack of exact solutions, McCarthyet al.
proved that approximate equilibrium solutions exist for a
simply connected plasma. These solutions are approxim
in the sense that wall potentials can be found which mak
new plasma boundary, arbitrarily close to the original bou
ary, an equipotential. McCarthyet al. developed a highly
mathematical algorithm for finding these wall potentia
here we show that these potentials can be found simply
fitting the coefficients of the harmonic function Eq.~3! such
that the harmonic function makes the plasma boundary
equipotential. To perform the fits, we used the numeri
recipes’20 general linear least-squares routine svdfit,
implemented in MathCad,21 with a weighting favoring the
outer plasma boundary points. The first example, shown

FIG. 9. An irregular plasma equilibrium. The plasma has an area of 0
Contours are drawn at2109,2106,2103,20.4 ~the most negative contou
inside the plasma!, 20.2, 0 ~the plasma boundary!, 1, 103, 106, and 109 sV.
The negative regions along the perimeter are lightly shaded. Other pa
eters are identical to those in Fig. 2.
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Fig. 8, is of cardioid whose boundary is described by
equationx1 iy50.118@exp(2iu)14 exp(iu)21#. ~The lead-
ing constant was chosen to make the area equalp/4.) We
used terms in Eq.~3! up to r 15, and find that the rms error o
the potential on the plasma boundary is 2.831024. The sec-
ond example is the irregular star shown in Fig. 9. Terms
to r 60 produce a good fit~rms error 1.731023), but the re-
sultant wall potential is unphysically large due to the use
very high order terms. Our fitting algorithm does not d
criminate against higher order terms; it is possible tha
different fitting routine could produce a similarly convolute
plasma without unphysical wall potentials.

V. CONCLUSIONS

We have shown that the application of the appropri
wall potentials can place any simply connected irregula
shaped plasma in or near equilibrium. Some plasmas ca
placed into exact equilibria, other plasmas can only
placed into approximate equilibria. Highly contorted plasm
may require unphysically large wall potentials.

The examples have been flat-topped plasmas, but
techniques can be extended to the broad class of plasm
which the internal density contours are aligned with the
ternal potential contours. We have also assumed that
driving wall potentials extend the length of the plasma. E
periments, however, have used wall potentials that ext
over only part of the plasma.4 These results can be extende
to such plasmas so long as the plasma particle mo
bounce averages over the plasma length.
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