VOLUME 70, NUMBER 25

PHYSICAL REVIEW LETTERS

21 JuUNE 1993

Experimental Breaking of an Adiabatic Invariant
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When a cylindrical pure electron plasma is dispalced from the center of the trap, it performs a
bulk circular orbital motion known as the ! = 1 diocotron mode. The slow application of a perturbing
potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments
and a simple theoretical model indicate that the area enclosed by the loop is an adiabatic invariant.
Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied.
When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly
exceeds the predictions of the standard theory for smooth perturbations.

PACS numbers: 52.25.Wz, 03.20.+i, 47.15.Ki, 52.20.Fs

Adiabatic invariants are widely used in the analysis of
many classical systems, perhaps most notably in plasma
physics [1,2]. The existence of these invariants has gen-
erally been established by theoretical analysis comple-
mented by numerical simulations. Few detailed experi-
mental studies of adiabatic invariants have been reported.
Here we report an experimental study of diocotron mode
dynamics in a pure electron plasma which shows that the
area enclosed by the diocotron orbit is an adiabatic in-
variant and the amount by which the invariant is broken
by perturbations is strongly dependent on the functional
form by which the perturbations are ramped up. Adia-
batic invariants are commonly defined for single particle
motions. Since the diocotron mode results from collec-
tive, multiparticle interactions, our invariant exists for
the plasma as a whole. Nonetheless, as far as the adi-
abatic invariant is concerned, the motion of the plasma
column as a whole generally follows that of a single line
charge.

Our pure electron plasma is confined in a standard non-
neutral plasma trap; the plasma column is held within a
conducting cylinder by a coaxial magnetic field (provid-
ing radial confinement) and by negative potentials ap-
plied at the cylinder ends (providing axial confinement)
[3]. Motion of the plasma column is dominated by bounce
averaged E x B drifts. When displaced from the center
of the trap, the plasma column induces an image charge
on the confining cylinder wall. The resulting radial elec-
tric field produces an azimuthally directed E x B drift,
forcing the plasma column to trace a circular orbit (see
Fig. 1). This motion is the well-studied £ = 1 diocotron
mode [4-6). Voltages applied to a previously grounded
azimuthal patch (see Fig. 1) generate electrostatic per-

" turbations which distort the shape of the orbit. We define
Ag to be the area enclosed by the orbit of the center of
charge of the plasma, and we find that Ag is an adi-
abatic invariant. As with any adiabatic invariant, Ag
remains constant if the perturbations are applied suffi-
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ciently slowly, even when the perturbations significantly
deform the orbit. In contrast, rapidly applied perturba-
tions change both Ag and the shape of the orbit. (In
this paper, the terms “slow” and “rapid” refer to the
time scale over which the perturbation is applied com-
pared with the diocotron period.) A Hamiltonian model
illustrates why Ag is an adiabatic invariant, and accu-
rately predicts the experimental change in the adiabatic
invariant for fast perturations. In the limit that the elec-
tron plasma can be approximated by a line charge, As
reduces to the flux surface adiabatic invariant, ® [1].
The observed adiabatic invariant breaking is strongly
dependent on how a given perturbation is applied. The
important factors include: (1) the time scale over which
the perturbation is applied, (2) the functional form by
which the perturbation is ramped up to its final value,
and (3) the phase of the orbit at the time the per-
turbation is applied. The standard textbook descrip-
tion [7-9] of adiabatic breaking is inappropriate for non-
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FIG. 1. An electron plasma column undergoing circular
diocotron motion within the conducting cylinder. Axial con-
finement is provided by applying negative potentials to the
ends of the cylinder (not shown).
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FIG. 2. A circular orbit and an orbit which has been dis-
torted by the slow application of a V, = 45 V perturbation.
The dots () represent the center of charge points from which
the distorted orbit is determined.

analytically [10] ramped perturbations, and we believe
that this is the first experimental observation of this phe-
nomenon.

We perform the experiment with a repeated cycle of in-
Jjection, manipulation, and analysis. During the injection
phase, electrons from a hot tungsten filament are trapped
within a grounded, conducting cylinder. During the ma-
nipulation phase, the electron column is first displaced
from the cylinder center by growing an £ = 1 diocotron
mode orbit to a known amplitude [5]. Next, the pertur-
bation is applied by ramping the patch voltage from 0 to
V;, over a time scale T, by a chosen ramping function
(such as a linear ramp or hyperbolic tangent ramp). At
this point the previously circular orbit distorts into a non-
circular closed loop. Finally, during the analysis phase,
the shape of the orbit is ascertained. One of the negative
confining voltages is momentarily grounded, allowing the
electrons to rapidly dump out along the magnetic field
lines and onto a phosphor screen. The resulting image
is captured on a charge-coupled device camera and the
center of charge is computed. This cycle is repeated 30
times; each time the plasma is dumped at a slightly dif-
ferent orbital position, thereby obtaining a set of points
which defines the orbit. Typically, the electron column
has radius r, = 0.5 cm, density n, = 5 x 107 cm~3, tem-
perature = 3 eV, and length ~ 3 cm. A typical diocotron
orbit has an orbital area of Ay =~ 1 cm?, and a period of
T4 = 10 ps. The wall patch subtends an angle of 49.5°,
and has a length of 2.5 cm. The experimental procedures
described here are common to pure electron plasma ex-
periments; more explicit descriptions can be found in the
literature [3,5,6].

Figure 2 shows both an unperturbed, circular dio-
cotron orbit and a second orbit that has been distorted
by a slow perturbation (T, /Ty = 300). When the pertur-
bation is applied slowly, the area enclosed by the orbit,
Ap, is unchanged despite the fact that the orbit is dis-
torted significantly. Figure 3 shows that Ag is invariant
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FIG. 3. Ae vs Vp, when V, is applied slowly (T-/Ta = 300).

for a wide range of slowly applied positive perturbations.
Negative perturbations, however, reduce Ag significantly.
Such negative perturbations push the plasma so close to
the cylindrical wall that some electrons are lost, thereby
destroying the invariant.

The adiabatic invariant is broken by rapidly applying
the perturbing voltage. We find that the change in the
adiabatic invariant, AAg, depends on three factors: the
time scale taken to ramp the perturbation from ground to
Vp, the functional form by which the perturbation is ap-
plied, and the angular position 8 of the plasma about the
center of the trap when the perturbation is first applied.
Figure 4 shows the phase dependence of AAs using the
linear ramping function for two different values of 7' /Ty
Note that the slower perturbation (by a factor of ~ 3)
produces an adiabatic breaking which is only slightly (by
a factor of ~ 3) less than the adiabatic breaking from the
faster perturbation. This is in sharp contrast to the stan-
dard textbook analysis [7-9] which predicts an exponen-
tial decrease in amplitude. Note also that for each value
of T, /Ty, there exist values of § which produce a maxi-
mum increase and a maximum decrease in Ag. Similar
phase dependencies of adiabatic invariant breaking have
been reported in theoretical, experimental, and numeri-
cal studies [11-13]. The existence of both signs of AAs
in Fig. 4 can be understood by considering the limit in
which the perturbation is applied instantaneously. With-
out any perturbation, the allowed orbits are a set of con-
centric circles. Perturbations deform the orbits into a set
of nested, noncircular, closed loops, each with a unique
orbital area. If the perturbation is turned on instantly,
the plasma then follows the noncircular orbit which inter-
sects the circular orbit at the plasma’s present position.
This new orbit can enclose a greater or lesser area, de-
pending upon the position of the plasma at the time the
perturbation was applied.

Figure 5 shows the amount by which the invariant is
broken as a function of the ramping time scale. For each
value of T, /Ty, a scan over 6 (similar to Fig. 4) gives
both the largest positive and the largest negative devia-
tions, AAg. These maxima are plotted in Fig. 5 both for
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FIG.4. AAg/Ae vs0, for V, = 30V, Ap = 1.05 cm?, using
the linear ramping function and for two values of T;- /T4. The
zero of the @ axis is arbitrary.

a linear ramping function and for a hyperbolic tangent
ramping function. The hyperbolic tangent ramping func-
tion produces an adiabatic breaking which falls off very
rapidly to the noise level of these experiments. The falloff
is found to be of the form AAg x e~¥T~/T2) where a best
fit in the exponential region indicates b = 3.1 £0.2. This
is the general form of adiabatic breaking as predicted by
the standard theory.

The adiabatic breaking produced from the linear ramp-
ing function, however, is distinctly different. It consists
of sinusoidlike oscillations bounded by a slowly decay-
ing envelope (see Fig. 5). The period of the oscilla-
tion is Ty with the minima occurring at nearly integer
values of T,./Ty. The amplitude of the sinusoid enve-
lope approaches zero according to the power law AAgp
(T./T3)N. The best fit for N gives N = —0.95 + 0.03.
This power law is in sharp contrast with the exponential
breaking law which was produced by the hyperbolic tan-
gent ramp. A simple theoretical model [14], in which the
cylindrical plasma is treated as a line charge, is in agree-
ment with the experimental results. Figure 5 shows this
excellent agreement for both the linear and hyperbolic
tangent ramping functions.

Most theoretical treatments [7-9,11] of adiabatic
breaking consider only perturbations which are ramped
up analytically, usually with the hyperbolic tangent.
Many experimental devices naturally implement analytic
ramping functions, and in such cases the adiabatic break-
ing is found to be exponential [15,16]. Indeed, our adi-
abatic invariant Ag is broken in this manner when the
hyperbolic tangent is chosen as the ramping function. In
general, however, the perturbation may be ramped from
zero to its final value in a nonanalytic manner, as was
done in this experiment using the linear ramp. While
we are unaware of any previous experiments that report
" the results of a nonanalytic ramping, the theory of such
ramps is discussed by Kulsrud [17] for harmonic oscilla~
tors. Kulsrud predicts that the adiabatic breaking should
scale as (T}, /Ty)~ M+*1) for a ramping function which has
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FIG. 5. Maximum and minimum AAs/As vs Ty/Ty, for
V, =30 V, Ap = 1.05 cm?, and two different ramping func-
tions.

M continuous derivatives. This is in excellent agreement
with the experimental results of Fig. 5 (for a linear ramp,
M = 0). Kulsrud does not, however, predict the sinu-
soidal nature of Fig. 5. Recent simulations report a sim-
ilar sinusoidal behavior when nonanalytic perturbations
are used [13,14]. These simulations have also verified
Kulsrud’s scaling law for M = 0 and 1, as well as for the
hyperbolic tangent ramp.

It is straightforward to show that a perfectly circular
plasma, independent of its size, follows the orbit of a
single line charge [14]. However, our typical experimen-
tal plasma shape is actually somewhat elliptical and the
applied perturbations cause the plasma shape to change
throughout the course of its orbit. To study the effect of
the plasma distortion on the center of charge orbit, we
have developed a Hamiltonian which models the plasma
as an ellipse with a changing aspect ratio and orienta-
tion. This elliptical plasma model shows that even a
sizable change in the plasma shape and orientation has
little effect on the plasma orbit, indicating that the en-
ergy change associated with such a variation can be offset
by a very small change in the orbit (14]. Furthermore,
we have shown analytically that a small plasma (like that
used in the experiment), in general, is only slightly dis-
torted by the applied perturbations. Hence, the plasma
orbit can be accurately modeled by that of a single line
charge. When the magnetic field, B, is constant, the
Hamiltonian describing the E x B drift dynamics is sim-
ply the electrostatic energy per unit length:

H(r,0) = Apa(r, 0, et) + N2 In(1 — r2/R2), (1)

where ) is the charge per unit length. Here, the first
term is the energy of the line charge at the position (r,8)
in the applied perturbing potential ,. The dependence
of ¢, upon et denotes the fact that ¢, is a slowly varying
perturbation to the otherwise time-independent Hamil-
tonian. The second term is the interaction energy of
the line charge with its image, where R,, is the cylindri-
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cal wall radius. The momentum variable conjugate to @
is Py, where Py = (BA/2c)r?. Hamiltonians with suffi-
ciently slow perturbations have an adiabatic constant of
the motion, namely, the integral of pdg over the phase
space orbit [18]. This integral evaluates to

}{ Pydd = (%“\) /0 " "2—240. @)

The remaining integral is the area of the orbit in po-
lar coordinates, which is our definition of Ag. Thus,
for sufficiently slow perturbations, the area enclosed by
the diocotron orbit is seen to be trivially proportional
to the adiabatic invariant. The precise criteria for what
constitutes a sufficiently slow perturbation is considered
in depth by Kruskal [19]. This invariant, Ag, is clearly
analogous to the flux surface adiabatic invariant, ®, of
plasma physics.

Although the above Hamiltonian [Eq. (1)] is exact only
in the limit of a line charge or when the plasma column
maintains a perfectly circular shape throughout its or-
bit, nevertheless, experiments with large radius, elliptical
plasmas indicate that A remains an adiabatic invariant.

In conclusion, we have discovered a new adiabatic in-
variant of the £ = 1 diocotron mode. We have measured
the breaking of this invariant caused by rapid perturba-
tions. Analytic perturbations break the adiabatic invari-
ant in a manner which is predicted and observed in the
literature. When we apply perturbations in nonanalytic
fashion, we find that the change in the invariant is much
larger than predicted by the standard textbook analy-
sis. Experimentally, such nonanalytic perturbations are
quite common. Examples for each of the three standard
invariants include an electron beam propagating along
the structured magnetic field of a magnetron injection
gun (u) [20], axial compression of a pure electron plasma
(Jy) [21,22], and the effects of magnetic storms on the
electrons in the Van Allen belt (®) [23]. In tokamaks,
ions orbiting around fluctuations in the electrostatic po-
tential have an adiabatic invariant which is analogous to
o [24].

The equations of motion which describe our system are
isomorphic to the equations which govern the evolution
of a two-dimensional inviscid, incompressible fluid [25].
Consequently, the results of this paper can also be gen-
eralized to vortex dynamics.
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