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The dynamics of hollow, cylindrically shaped pure electron plasmas are studied. Since these
plasmas behave like two-dimensional (2-D) fluids with low viscosity, their evolution

parallels the evolution of 2-D fluid vorticity annuli inside frictionless circular containers.
Growth of the Kelvin—Helmholtz instability in circular geometry is observed. The formation
and subsequent interaction of vortices are studied as a function of ring thickness. Small
initial perturbations can dramatically increase the symmetry and repeatability of the dynamics.

I. INTRODUCTION

Fluid shear layers are susceptible to the Kelvin—
Helmbholtz instability. This instability quickly leads to vor-
tex formation and can eventually lead to two-dimensional
(2-D) turbulence."? The instability is observable in many
systems including oceans® and planetary atmospheres.*’
Hollow non-neutral plasmas and charged particle beams
are susceptible to an analogous instability called the dio-
cotron instability.® Because non-neutral plasmas have very
low viscosity and are easy to control, we study here the
Kelvin—-Helmholtz/diocotron instability in a pure electron
plasma.

The equations governing inviscid, incompressible, 2-D
fluids are isomorphic to the equations governing ideal,
magnetized, pure electron plasmas, consequently, the fluid
and plasma systems evolve identically.%” The dynamical
variables are interpreted differently; the fluid vorticity, o,
maps to the scaled density, 4wen/c B, where n is the plasma
density, BZ is the magnetic field, e is the electron’s charge,
and c is the speed of light. The streamfunction, 1, maps to
the scaled electric potential, ¢(x,y)/eB, where (xX+y¥)
defines the radial vector perpendicular to the magnetic
field. The fluid streamfunction equation V= — » maps to
the Poisson equation, V 2¢ = —4en, and the fluid velocity
equation

s ‘M‘) (1

V(x,y)=(5);x—5x—

maps to the plasma EXB drift equation,

1 /9 b
v(x,y)=£(5x—a—xy). 2)

Viscous fluid flow is subject to no-slip wall boundary con-
ditions. Plasma flow, however, is allowed to be nonzero
even at the wall boundary. Due to the exceptionally low
viscosity of the plasma, the dynamics is nearly inviscid and
we can follow the dynamical evolution to much later times
than is possible in conventional fluid experiments.®

This experiment exploits the mapping between fluid
vorticity and plasma density. Although fluid vorticity is
the fundamental quantity in fluid dynamics,”'® experimen-
tal studies are hampered by the fact that fluid velocity, not
vorticity, is the quantity most readily controlled and mea-
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sured. In plasma experiments, density is the quantity most
easily manipulated and measured. Our hollow electron
plasma rings correspond to a vorticity annulus in an oth-
erwise irrotational, incompressible, inviscid, circularly
bounded fluid. The instability that exists for this state has
been observed in many experimental devices.!'”!> Our abil-
ity to both extensively control the plasma’s initial shape
and clearly image its evolution make possible the more
detailed study presented here.

Figure 1 shows the experimental geometry. The
plasma is trapped inside a series of gate cylinders that are
individually biased to provide axial confinement. Radial
confinement is assured by an axial magnetic field. Nor-
mally, the plasma is held in a central, grounded gate while
a large negative voltage is applied to two endgates. During
plasma injection, the left endgate is raised to ground, al-
lowing plasma to stream into the confinement region from
a thermionically emitting, tungsten-wire filament. The
plasma is hollowed by raising one endgate part of the way
toward ground. Since the center of the plasma has the most
negative potential, the center escapes through the lowered
potential barrier. The ring thickness is controlled by setting
the gate potential;'® thinner rings are produced by bringing
the gate closer to ground. Images are obtained by ground-
ing the right endgate, thereby allowing the plasma to
stream out along the magnetic field lines. The plasma then
strikes a phosphor screen, producing a visible image. The
time required for imaging is much shorter than all dynam-
ical time scales.

Plasmas in this experiment have a density of approxi-
mately 1.0Xx10® cm~>, and a temperature of approxi-
mately 2 eV. The plasma is short; the length is somewhat
less than 3.5 cm and exhibits a slight dependence on den-
sity. The diameter of the confining gates is 1.905 ¢m, and
the outer radius of the plasmas used throughout this ex-
periment is approximately 1.1 cm. The ring’s radial profile
is rounded and the inside and the outside edge profiles are
not necessarily identical. The maximum vorticity is a slight
function of ring thickness for the thicker rings but declines
substantially for the thinnest rings.

The fluid analogy rests on two basic physical assump-
tions. The first is that the end-to-end bounce time of elec-
trons in the plasma is much shorter than all other evolu-
tion time scales. Since gyromotion plays no role in the
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FIG. 1. Trap geometry.

dynamics of a strongly magnetized plasma, this assump-
tion is generally true. The rapid electron bounce motion
causes the plasma to act as if it is “averaged” along the
axial dimension, rendering it effectively two-dimensional.
The second assumption is that only EXB drift dynamics
govern the two-dimensional motion of the plasma. This
“zero viscosity” assumption is certainly true at early times,
but is eventually broken by slower types of plasma trans-
port. Since both the electron—electron collision time (1-10
msec) and the electron—neutral gas molecule collision time
(> 100 msec) are considerably longer than the instability
time, these effects are unimportant. Energy-dependent drift
arising in the plasma edge region may be the dommant
type of transport which breaks the fluid analogy.'®

Initial perturbations were not used in these experi-
ments except as described in Sec. IV. This allows the in-
stability to grow from the wide spectrum of naturally oc-
curring noise. Thus, the observed mode corresponds to the
fastest growing unstable mode for a particular initial ge-
ometry.

Il. EARLY DYNAMICS

The initial plasma evolution is dominated by velocity
shear, which quickly leads to the Kelvin—-Helmholtz insta-
bility. The three image pairs in Fig. 2 show annular plas-
mas before and after the onset of instability. Although
many modes are often unstable, a fastest growing mode
with an integer / wavelengths around the annulus soon
grows to dominate the dynamics. This mode number / is a
function of the ring geometry; thinner rings have higher /
values. Figure 3 contains images of plasmas with a variety
of mode numbers. Figure 4 shows both the observed and
theoretically expected"””‘20 mode numbers as a function of
ring geometry. We believe that the discrepancy between
the observed and predicted mode number for very thin
rings is due to finite length effects. This and other problems
with the fluid analogy are discussed later.

The Kelvin—-Helmholtz instability deforms the shear
layer boundary, as is shown in Fig. 5 for one wavelength of
an evolving /=4 mode plasma. We also show the defor-
mation predicted by Michalke’s linearized model of 1nsta-
bility growth for a hyperbolic tangent velocity profile.?!
For both theory and experiment, the shear boundary is
assumed to be that point where the vorticity has fallen by
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FIG. 2. Images of annular plasmas for three different thicknesses (0.67,
0.17, and 0.14 cm). The left column is at #=0. The right is after the onset
of the Kelvin—Helmholtz instability. The outer circle indicates the con-
ducting wall. The density scaling has been individually adjusted for max-
imum contrast.

half, and the amplitude and phase of the theoretical curve
is adjusted for best fit.

The deformations on the outer boundary lag the defor-
mations on the inner boundary (see Fig. 5). Inviscid fluid
theory predicts that the fastest growing mode for a thin
ring with a hard-edged vorticity profile far from the wall
has a phase lag of 115.2°. A linear shear layer with a hy-
perbolic tangent profile has a phase lag of approximately
107°.2! Except for those with /=3, all of our plasmas have
a phase lag between 105° and 111°. For very thick rings, the
circular nature of the geometry may have a significant ef-
fect.

By comparing successive plasma images we can mea-
sure the instability growth rate. The amplitude of the in-
stability is defined to be the amount of deformation in the
annular shape, and is measured by Fourier analyzing the
edges of the plasma. Since the imaging process is destruc-
tive, we must recreate the plasma for each image. Because
deliberate initial seeding predetermines the mode number,
we allow the instability to grow from the noise. Clearly the
successive plasmas need to be nearly identical for our tech-
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FIG. 3. Images of unstable plasmas with a variety of mode numbers. The
density scaling has been individually adjusted for maximum contrast.

nique to work. Figure 6 shows the instability growth for a
/=4 plasma. To reduce shot-to-shot noise, the results from
many images are averaged at each time.

As shown in Fig. 6, the instability growth is rapid and
approximately exponential. The real part of the frequency
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FIG. 4. Fastest growing mode versus ring thickness. The outer radius is
held constant at 1.25 cm. Experimental observations (points) and pre-
dictions from the inviscid shear layer model (solid staircase) are shown.
Half-integer wave numbers indicate that the system is able to grow in
either of two modes.

is 6.3 10° rad/sec (one full revolution in 4.0 usec), and
the ratio between the imaginary and real parts of frequency
is w;w,=1:6. This growth rate is roughly half the rate
predicted by numerical simulations of smooth profile rings.
Other experiments have also observed poor agreement with
predicted growth rates.”!®

Equation (2) predicts that plasma velocities and
shears are inversely proportional to magnetic field
strength. Most of our measurements are taken at our high-
est possible magnetic field (B=2 kG), but we also studied
the behavior of the higher shears obtainable at lower field
strength. Although the data are less accurate because the
frequencies are higher, both the real and imaginary parts of
frequency appear to scale properly with shear. The fastest
growing mode number is clearly independent of the shear
magnitude. This agreement between hollow plasma behav-
ior and an inviscid fluid model was also found by
Rosenthal er al'* They found that mode number and
growth rate scale properly with the plasma density, the
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FIG. 5. The observed (dashed) and predicted (solid) shape of an evolv-
ing /=4 plasma. The lines indicate the contour where the vorticity has
fallen to half of its maximum value. The angle is measured azimuthally
around the ring.
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FIG. 6. Amplitude of /=4 instability versus time. Before #=3.5 usec the
dominant mode is not distinguishable. After t=5.5 usec the mode is
clearly nonlinear. The amplitude is measured in arbitrary units.

magnetic field, and the shear from a central vortex. In their
experiment, a voltage applied to a central conductor inside
the hollow plasma mimics the effect of a compact central
vortex inside the plasma.

The frequencies and growth rates for the fastest grow-
ing mode of a planar Kelvin—-Helmholtz instability are in-
dependent of changes in the shear layer thickness which
maintain constant vorticity. Such changes merely change
the instability wave number. Consequently, we would ex-
pect that as the thickness of an annular shear layer be-
comes-small compared with its radius, the growth rate
should approach a limiting value equal to the growth rate
of a straightened shear layer in linear geometry. This pre-
diction is not born out by experimental observation. Figure
7 shows the measured growth rate as a function of mode
number. Systems with a clearly dominant, fastest growing
mode were selected by varying the annular thickness as in
Fig. 4. The growth rate monotonically decreases with
mode number, showing a large drop after /=4. Above
¢~ 14 the instability vanishes entirely. While the maximum
vorticity is a slight function of ring thickness, growth rates
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FIG. 7. Instability growth rate versus mode number. Beyond mode num-
ber 14 the system is stable.
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FIG. 8. Image of a plasma exhibiting local dynamics. The unit of density
is 10" cm 2.

scale only linearly with vorticity, and this change cannot
account for the dramatic departure from theory.

The difference in the details of the radial vorticity pro-
file between the theoretical models and the experimental
system does not account for the discrepancy. We have nu-
merically determined?® the growth rates for a variety of
rings with different radial profiles, ranging from the square,
hard-edged profiles used in analytic theories to more
rounded profiles which require numerical treatment. The
details of the radial profile did not affect the mode number
of the fastest growing mode. Although there was some
effect on the growth rate, the effect was insufficient to ac-
count for the discrepancy in Fig. 7.

Several different effects due to finite length may ac-
count for the anomalous results at high mode number. The
instability amplitude cannot be independent of z in a finite
system, as it can be in an infinite length, k,=0 system.
Nonideal behavior may also occur because of the energy-
dependent drifts acquired by electrons at the plasma
ends—energetic electrons access plasma edge regions
where they are subject to radial electric fields not present
inside the plasma.16'23 Finally, the electric field from the
confining gate cylinders results in shear over and above
that produced by the plasma itself. Since this “vacuum
shear” is not produced by the plasma, the fluid analogy is
broken and instability growth rates may depart from the
theoretical prediction. Driscoll et al.'’® have observed an
/=1 instability which is probably caused by this finite
length effect.?*

While the azimuthal mode number is the best single
measure for system classification, it is not always adequate.
In the above discussion, we had assumed that only the
single most unstable mode is important, and we ignored
any other unstable modes. Experimentally, the single mode
description often fails. Because of the high growth rate, the
dynamics are largely local; different sections of the ring
initially develop independently. For example, in Fig. 8, the
right side has a smaller wavelength and is more developed;
fluid theory for the corresponding planar shear layer pre-
dicts that the fastest growing wavelength fits 45 times
around the ring circumference and diocotron theory pre-
dicts that the /=4 and 5 modes are equally unstable. Al-
though such local behavior is common, we can usually
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FIG. 9. Four images at different times (0, 100, 140, and 380 usec) in the
development of a mode number 12 plasma. The unit of density is 10°

cm

obtain a single dominant mode by correctly tuning the ring
thickness.

lll. LATE DYNAMICS

Thick, thin, and intermediate rings evolve differently at
late times. Vortex formation occurs as a result of the
Kelvin—-Helmholtz instability,”>® and the fate of these
vortices distinguishes these three types of evolution. In
thick ring systems, with mode numbers 3 or 4, the vortices
merge even as they are being formed because the vortices
are large and are formed close together.”>*° In a thin ring
system (¢> 10), on the other hand, many small and well-
separated vortices are formed. As shown in Fig. 9, these
vortices subsequently disperse and smear out, leaving a
broader annulus which does not evolve further. Thin ring
behavior is not surprising in light of the increasing impor-
tance of finite length effects for thin rings. The apparent
nonconservation of brightness in this figure actually results
from the strongly nonlinear dependence of image bright-
ness on plasma density.

Intermediate thickness ring evolution is the most in-
volved and long lasting. Figure 10 shows six images at
different times in the evolution of an /=5 plasma. In these
systems, which occur for 5 < £<9, the instability leads to
the formation of independent, interacting vortices.’
These vortices then interact and merge on a time scale 10
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FIG. 10. Six images at different times (0, 16, 22, 32, 160, and 1500 usec)
in the development of a mode number 5 plasma. The density scaling is the
same as that in Fig. 8.

to 100 times longer than the Kelvin—-Helmholtz growth
time scale. Figures 10(a) and 10(b) show the initial and
exponentially growing states of the system. Figure 10(c)
shows the system when the vortex formation is complete.
By Fig. 10(d), the vortices are interacting both with each
other and with the parts of the ring that were not incor-
porated into a vortex. These ring remnants are stretched
and convected until they form a diffuse background vor-
ticity. At this time two of the initial vortices are about to
merge. In Fig. 10(e) only four vortices remain, two of
which are interacting strongly and will shortly merge. The
interaction proceeds until only one central vortex remains,
as shown in Fig. 10(f). Any further change in the plasma
profile involves slow cross-field transport within the
plasma and is not of interest here. That one central vortex
is the final state in a system with only one sign of vorticity
has been anticipated by numerical simulations.>*! Due to
the very long time over which these systems evolve, the
unavoidable small initial variations have a large effect on
the late dynamics. Any study of this vortex interaction and
merger process is necessarily statistical. Figure 11 shows
the average number of vortices remaining as a function of
time for the initial conditions used in Fig. 10. Although the
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FIG. 11. The number of vortices remaining versus time for the plasma
used in Fig. 10. The line is drawn through a smoothed set of data points.

details of the curve depend on the mode number and exact
ring geometry, a similar graph can be obtained for any
intermediate thickness ring.

IV. PERTURBED DYNAMICS

Deliberately imposed initial perturbations can influ-
ence the subsequent dynamics. Perturbations are applied
using an electrically isolated wall patch capable of produc-
ing and detecting electric fields. In practice, only systems
with mode number /<5 are significantly influenced.

Such seeding frequently increases the repeatability of
the dynamics without greatly influencing their general
form. Often the development proceeds more quickly. More
dramatic, however, is the symmetry enhancement pro-
duced by certain initial perturbations. Figure 12 shows the
same system with and without an imposed perturbation.
As Fig. 12(a) demonstrates, the unseeded system normally
has mode number ¢=4, but does not have especially high
symmetry. The seeded plasma [Fig. 12(b)] is more
evolved, and yet retains the global inversion symmetry,
(x,y) = (—x,—p). Seeded plasmas often retain their sym-
metry to quite late times, delaying the onset of vortex
merger. An appropriate perturbation can also change the
observed mode number by =+ 1. For example, a system that
normally has /=5 can be seeded to produce four larger
vortices.

V. CONCLUSION

A hollow, magnetized, pure electron plasma behaves
like a circular shear layer in an inviscid, incompressible,
2-D fluid. Our ability to directly manipulate and measure
the “vorticity” of this low-viscosity electron fluid allows us
to study long term dynamics for a variety of initial condi-
tions. Modeling the system as a fluid shear layer accurately
predicts the shape of the evolving instability but fails to
accurately predict the growth rates. At late times, three
different outcomes are observed for thin, thick, and inter-
mediate rings. Finally, certain initial perturbations result
in a persistent high degree of symmetry.
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FIG. 12. Two images of initially identical plasmas without (a) and with
(b) a symmetry enhancing perturbation. The density scaling is the same
as that in Fig. 8.
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