Marty B. Halpern Memorial: From mesons to orbifolds via affine Lie algebras

March 29-30, 2019, UC Berkeley

Infinite dimensional Lie algebras: from Marty and Korkut to brane creation

Ori Ganor (UC Berkeley)

My first correspondence with Marty

My first correspondence with Marty

Don't have original email, unfortunately, but here's how we modified our paper as a result ...

My first correspondence with Marty

Don't have original email, unfortunately, but here's how we modified our paper as a result ...

"Historically, our procedure was pioneered by Halpern [12, 13, 14]. In particular, our starting point is Halpern's 1977 field strength formulation[12] of Yang-Mills. ..."

[OJG & Sonnenschein, 1995]

- [12] M.B. Halpern, Phys. Rev. D16(1977) 1798
- [13] M.B. Halpern, Phys. Rev. D16(1977) 3515
- [14] M.B. Halpern, Nucl. Phys. B139(1978) 477, Phys. Rev. D19(1979) 517
- [15] M.B. Halpern, Phys. Rev. D19(1979) 517

Affine Lie Algebras

"... two physicists, **Bardakci and Halpern**, in ref. 4 constructed a representation of the subalgebra $\tilde{\mathfrak{gl}}(I)$ of $\tilde{\mathfrak{o}}(I)$ in the space $V((2Z+1)^I)$ (see formulas 3.1-3.11 in ref. 4). At that time the theory of affine Lie algebras began to take its first steps."

I.B. Frenkel in Proc. Nat. Acad. Sci. USA 77 (1980) 6303.

Affine Lie Algebras

"... two physicists, **Bardakci and Halpern**, in ref. 4 constructed a representation of the subalgebra $\tilde{\mathfrak{gl}}(I)$ of $\tilde{\mathfrak{o}}(I)$ in the space $V((2Z+1)^I)$ (see formulas 3.1-3.11 in ref. 4). At that time the theory of affine Lie algebras began to take its first steps."

I.B. Frenkel in Proc. Nat. Acad. Sci. USA 77 (1980) 6303.

ref. 4 –

Korkut Bardakci and Martin B. Halpern, *New dual quark models*, Phys. Rev. D **3**, 2493 (1971).

(See also Jan's talk!) $\hat{A}^{(r)}(m+\frac{r+\epsilon}{\lambda}) \equiv \lambda^{1-\Delta}A_{\Delta}(\lambda m+r+\epsilon)$ Orbifold induction procedure (Borisov, Halpern, Schweigert, 1997) $\hat{c} = 26K, \qquad K = 2, 3, 4, \dots$ Permutation type orbifolds $\frac{U(1)^{26K}}{H(\text{perm})_{K}}, \qquad \frac{U(1)^{26K}}{\mathbb{Z}_{2}(\text{w.s.})} \qquad (\text{Halpern}, 2007)$ Twisted sector $\hat{L}_{\hat{j}\hat{j}}(m + \frac{\hat{j}}{f_{\hat{j}}(\sigma)}) = \frac{13}{12} \delta_{m + \frac{\hat{j}}{f_{\hat{j}}(\sigma)}, 0} \left(f_{\hat{j}}(\sigma) - \frac{1}{f_{\hat{j}}(\sigma)}\right) \quad \text{Virasoro generators}$ $-\frac{1}{2f_i(\sigma)}\eta^{ab}\sum_{\hat{\ell}}^{f_j(\sigma)-1}\sum_{p\in\mathbb{Z}}^{J_{i-1}}:J_{0a\hat{\ell}i}(p+\frac{\hat{\ell}}{f_i(\sigma)})J_{0b,\hat{\ell}-\hat{\ell},i}(m-p+\frac{\hat{j}-\hat{\ell}}{f_i(\sigma)}):_M$ $\sum f_i(\sigma) = K$

 The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26. I. Extended Actions and New Twisted World-Sheet Gravities, [arXiv:hep-th/0703044]

- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26. I. Extended Actions and New Twisted World-Sheet Gravities, [arXiv:hep-th/0703044]
- ► The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 II. The Twisted BRST Systems of ĉ = 52 Matter [arXiv:hep-th/0703208]

- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26. I. Extended Actions and New Twisted World-Sheet Gravities, [arXiv:hep-th/0703044]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 II. The Twisted BRST Systems of c = 52 Matter [arXiv:hep-th/0703208]
- ► The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 III. The Spectra of ĉ = 52 Strings [arXiv:0704.1540]

- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26. I. Extended Actions and New Twisted World-Sheet Gravities, [arXiv:hep-th/0703044]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 II. The Twisted BRST Systems of c = 52 Matter [arXiv:hep-th/0703208]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 III. The Spectra of ĉ = 52 Strings [arXiv:0704.1540]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 IV. Orientation Orbifolds Include Orientifolds [arXiv:0704.3667]

- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26. I. Extended Actions and New Twisted World-Sheet Gravities, [arXiv:hep-th/0703044]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 II. The Twisted BRST Systems of c = 52 Matter [arXiv:hep-th/0703208]
- ► The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 III. The Spectra of ĉ = 52 Strings [arXiv:0704.1540]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 IV. Orientation Orbifolds Include Orientifolds [arXiv:0704.3667]
- The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c = 26 V. Cyclic Permutation Orbifolds [arXiv:0705.2062]

And more ...

- The Orbifold-String Theories of Permutation-Type: I. One Twisted BRST per Cycle per Sector, [arXiv:1008.1453]
- The orbifold-string theories of permutation-type: II. Cycle dynamics and target space-time dimensions, [arXiv:1008.2576]
- The Orbifold-String Theories of Permutation-Type: III. Lorentzian and Euclidean Space-Times in a Large Example, [arXiv:1009.0809]
- The Lorentzian Space-Times of the Orientation-Orbifold String Systems, [arXiv:1010.1893]

1980 Julia: 1+1d dimensionally reduced gravity (and supergravity) \longrightarrow affine lie algebras!

1980 Julia: 1+1d dimensionally reduced gravity (and supergravity)

 \longrightarrow affine lie algebras!

E.g.,
$$\widehat{SL(2,\mathbb{R})},\ldots,\widehat{E_8}=E_9$$

1980 Julia: 1+1d dimensionally reduced gravity (and supergravity) \longrightarrow affine lie algebras! E.g., $\widehat{SL(2,\mathbb{R})}, \dots, \widehat{E_8} = E_9$

1987 Breitenlohner, Maison, Gibbons: dim'ly reduced SUGRA $\longrightarrow G/H \sigma$ -models

1980 Julia: 1+1d dimensionally reduced gravity (and supergravity) \longrightarrow affine lie algebras! E.g., $\widehat{SL(2,\mathbb{R})}, \dots, \widehat{E_8} = E_9$

- 1987 Breitenlohner, Maison, Gibbons: dim'ly reduced SUGRA $\longrightarrow G/H \sigma$ -models
- 1992 Nicolai: 0+1d dimensionally reduced gravity (and supergravity) \longrightarrow infinite dimensional lie algebras of hyperbolic type.

1980 Julia: 1+1d dimensionally reduced gravity (and supergravity) \longrightarrow affine lie algebras! E.g., $\widehat{SL(2,\mathbb{R})}, \dots, \widehat{E_8} = E_9$

1987 Breitenlohner, Maison, Gibbons: dim'ly reduced SUGRA $\longrightarrow G/H \sigma$ -models

1992 **Nicolai**: 0+1d dimensionally reduced gravity (and supergravity) \longrightarrow infinite dimensional lie algebras of hyperbolic type.

E₁₀

E_{10}

< □ ▶ < 圖 ▶ < 필 ▶ < 필 ▶ < 필 ▶ 로 少へで 8132

• $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)
- Root $\alpha \rightarrow$ Instanton action

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)
- Root $\alpha \rightarrow$ Instanton action
- α + β = γ → Chern-Simons term
 See, e.g., [Henneaux, Kleinschmidt, Lekeu, 2015]

•

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

- Root $\alpha \rightarrow$ Instanton action
- α + β = γ → Chern-Simons term
 See, e.g., [Henneaux, Kleinschmidt, Lekeu, 2015]

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)
- Root $\alpha \rightarrow$ Instanton action
- α + β = γ → Chern-Simons term
 See, e.g., [Henneaux, Kleinschmidt, Lekeu, 2015]

•

- $\Gamma = E_{10}(\mathbb{Z}) \rightarrow \text{U-duality} (\text{Hull & Townsend})$
- Weyl(E_{10}) \subset U-duality
- ► \triangle on $\Gamma \setminus E_{10}(\mathbb{R}) / KE_{10} \rightarrow$ (at least) "minisuperspace" [E.g., Kleinschmidt, Nicolai, 2009]
- ▶ Root $\alpha \in \Delta^+_{\mathsf{real}}(E_{10}) \rightarrow \mathsf{flux}$ (e.g., C_{IJK} , g_{IJ}/g_{JJ} , etc.)
- Root $\alpha \rightarrow$ Instanton action
- α + β = γ → Chern-Simons term
 See, e.g., [Henneaux, Kleinschmidt, Lekeu, 2015]

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

10 | 32

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2,$$

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} \left(\sum_{1}^{10} n_i\right)^2.$$

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2, \qquad \boxed{I_{\alpha} \equiv R_1^{n_1} R_2^{n_2} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} \left(\sum_{1}^{10} n_i\right)^2.$$

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2, \qquad \boxed{I_\alpha \equiv R_1^{n_1} R_2^{n_2} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} \left(\sum_{1}^{10} n_i\right)^2.$$

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2, \qquad \boxed{I_{\alpha} \equiv R_1^{n_1} R_2^{n_2} \cdots R_{10}^{n_{10}}} \qquad (M_{pl} = 1)$$

Flux created by instanton
$$E_{10} \text{ root: } \alpha = (n_1, n_2, \dots, n_{10})$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\text{pl}} = 1)$$

Flux created by instanton with action $2\pi I_{\alpha} \rightarrow$

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux created by instanton with action $2\pi I_{\alpha} \rightarrow$ root

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux created by instanton with action $2\pi I_{lpha}
ightarrow {
m root} C_{123}$

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2, \qquad \boxed{I_{\alpha} \equiv R_1^{n_1} R_2^{n_2} \cdots R_{10}^{n_{10}}} \qquad (M_{pl} = 1)$$

Flux created by instanton with action
$$2\pi I_{\alpha} \rightarrow \text{ root}$$

$$C_{123}$$
 M2-brane $2\pi R_1 R_2 R_3$ $(1, 1, 1, 0, \dots, 0)$

1

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$

$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^2 = -dt^2 + \sum_{1}^{10} R_i^2 dx_i^2, \qquad \boxed{I_{\alpha} \equiv R_1^{n_1} R_2^{n_2} \cdots R_{10}^{n_{10}}} \qquad (M_{pl} = 1)$$

 $\begin{array}{lll} \mbox{Flux} & \mbox{created by instanton} & \mbox{with action } 2\pi I_{\alpha} \rightarrow & \mbox{root} \\ C_{123} & \mbox{M2-brane} & 2\pi R_1 R_2 R_3 & (1,1,1,0,\ldots,0) \\ g_{12}/g_{22} & & \end{array}$

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\rm pl} = 1)$$

Flux	created by instanton	with action $2\pi I_{lpha} ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g_{12}/g_{22}	KK		

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux	created by instanton	with action $2\pi I_lpha ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g ₁₂ /g ₂₂	KK	$2\pi R_1/R_2$	$(1,-1,0,\ldots,0)$

$$E_{10} \text{ root:} \quad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} \left(\sum_{1}^{10} n_i\right)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux	created by instanton	with action $2\pi I_{lpha} ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g ₁₂ /g ₂₂	КК	$2\pi R_1/R_2$	$(1, -1, 0, \dots, 0)$

$$E_{10} \text{ root: } \alpha = (n_1, n_2, \dots, n_{10})$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux	created by instanton	with action $2\pi I_{lpha} ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g_{12}/g_{22}	KK	$2\pi R_1/R_2$	$(1,-1,0,\ldots,0)$
\widetilde{C}_{123456}	M5		

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux	created by instanton	with action $2\pi I_lpha ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g_{12}/g_{22}	KK	$2\pi R_1/R_2$	$(1,-1,0,\ldots,0)$
\widetilde{C}_{123456}	M5	$2\pi R_1 \cdots R_6$	

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{pl} = 1)$$

Flux	created by instanton	with action $2\pi I_lpha ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g_{12}/g_{22}	KK	$2\pi R_1/R_2$	$(1,-1,0,\ldots,0)$
\widetilde{C}_{123456}	M5	$2\pi R_1 \cdots R_6$	
Etc.			

$$E_{10} \text{ root: } \qquad \boxed{\alpha = (n_1, n_2, \dots, n_{10})}$$
$$n_i \in \mathbb{Z}, \qquad \sum_{1}^{10} n_i \in 3\mathbb{Z}, \qquad 2 \ge \alpha^2 \equiv \sum_{1}^{10} n_i^2 - \frac{1}{9} (\sum_{1}^{10} n_i)^2.$$

$$ds^{2} = -dt^{2} + \sum_{1}^{10} R_{i}^{2} dx_{i}^{2}, \qquad \boxed{I_{\alpha} \equiv R_{1}^{n_{1}} R_{2}^{n_{2}} \cdots R_{10}^{n_{10}}} \qquad (M_{\mathsf{pl}} = 1)$$

Flux	created by instanton	with action $2\pi I_lpha ightarrow$	root
C ₁₂₃	M2-brane	$2\pi R_1 R_2 R_3$	$(1, 1, 1, 0, \ldots, 0)$
g ₁₂ /g ₂₂	KK	$2\pi R_1/R_2$	$(1, -1, 0, \dots, 0)$
\widetilde{C}_{123456}	M5	$2\pi R_1 \cdots R_6$	
Etc.			
Φ_{lpha}		$2\pi I_{lpha}$	α

$$\alpha + \beta = \gamma \rightarrow \mathsf{CS} \text{ term}$$

$$\boxed{\alpha + \beta = \gamma} \rightarrow \mathsf{CS term}$$

$$\int C \wedge dC \wedge dC \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456}$$

$$\boxed{\alpha + \beta = \gamma} \rightarrow \text{CS term}$$

$$\int C \wedge dC \wedge dC \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456}$$

$$C_{123} \rightarrow \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)$$

$$\begin{array}{l} \hline \alpha + \beta = \gamma \\ \int C \wedge dC \wedge dC & \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} & \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456} \\ C_{123} \rightarrow & \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ C_{456} \rightarrow & \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \end{array}$$

$$\begin{array}{l} \hline \alpha + \beta = \gamma \\ \int C \wedge dC \wedge dC & \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} & \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456} \\ C_{123} \rightarrow \quad \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ C_{456} \rightarrow \quad \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{C}_{123456} \rightarrow \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \end{array}$$

$$\begin{split} \hline \alpha + \beta = \gamma \\ \int C \wedge dC \wedge dC & \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} & \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456} \\ C_{123} \rightarrow & \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ C_{456} \rightarrow & \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{C}_{123456} \rightarrow \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \end{split}$$
If in the presence of N_{γ} units of $d\Phi_{\gamma}/dt$ we increase Φ_{β} from 0 to $2\pi N_{\beta}$

$$\begin{split} \hline \alpha + \beta &= \gamma \\ \int C \wedge dC \wedge dC &\to \int C_{456} (dC)_{0123} (dC)_{789\,10} &\to \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456} \\ C_{123} \to & \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ C_{456} \to & \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{C}_{123456} \to \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \\ \hline If in the presence of N_{\gamma} units of d\Phi_{\gamma}/dt \\ we increase \Phi_{\beta} from 0 to 2\pi N_{\beta} \\ \to N_{\beta}N_{\gamma} units of d\Phi_{\alpha}/dt are created! \end{split}$$

$$\begin{split} \hline \alpha + \beta = \gamma \\ \hline \gamma \\ \hline \zeta \land dC \land dC & \rightarrow \int C_{456} (dC)_{0123} (dC)_{789\,10} & \rightarrow \int C_{456} \dot{C}_{123} \dot{\tilde{C}}_{123456} \\ \hline C_{123} \rightarrow \qquad \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ \hline C_{456} \rightarrow \qquad \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \hline \tilde{C}_{123456} \rightarrow \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline If in the presence of N_{γ} units of $d\Phi_{\gamma}/dt$
we increase Φ_{β} from 0 to $2\pi N_{\beta}$
 $\rightarrow N_{\beta}N_{\gamma}$ units of $d\Phi_{\alpha}/dt$ are created! $\Leftrightarrow \int N_{\gamma}\Phi_{\alpha}\dot{\Phi}_{\beta}dt$$$

$$\begin{aligned} \overline{\alpha + \beta} &= \gamma \\ \rightarrow \mathsf{CS term} \\ \overline{\int \mathcal{C} \wedge d\mathcal{C} \wedge d\mathcal{C}} &\to \int \mathcal{C}_{456}(d\mathcal{C})_{0123}(d\mathcal{C})_{789\,10} &\to \int \mathcal{C}_{456}\dot{\mathcal{C}}_{123}\dot{\widetilde{\mathcal{C}}}_{123456} \\ \mathcal{C}_{123} \to \quad \alpha &= (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ \mathcal{C}_{456} \to \quad \beta &= (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{\mathcal{C}}_{123456} \to \gamma &= (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \widetilde{\mathcal{C}}_{123456} \to \gamma &= (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \mathbf{If in the presence of } N_{\gamma} \text{ units of } d\Phi_{\gamma}/dt \\ \text{we increase } \Phi_{\beta} \text{ from } 0 \text{ to } 2\pi N_{\beta} \\ \to N_{\beta}N_{\gamma} \text{ units of } d\Phi_{\alpha}/dt \text{ are created!} \\ \end{aligned}$$

$$\begin{split} \hline \alpha + \beta &= \gamma \\ \rightarrow \mathsf{CS term} \\ \hline \int \mathcal{C} \wedge d\mathcal{C} \wedge d\mathcal{C} &\to \int \mathcal{C}_{456}(d\mathcal{C})_{0123}(d\mathcal{C})_{789\,10} &\to \int \mathcal{C}_{456}\dot{\mathcal{C}}_{123}\dot{\tilde{\mathcal{C}}}_{123456} \\ \mathcal{C}_{123} \to & \alpha = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ \mathcal{C}_{456} \to & \beta = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{\mathcal{C}}_{123456} \to \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \tilde{\mathcal{C}}_{123456} \to \gamma = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \mathbf{If in the presence of } N_{\gamma} \text{ units of } d\Phi_{\gamma}/dt \\ \text{we increase } \Phi_{\beta} \text{ from } 0 \text{ to } 2\pi N_{\beta} \\ \to N_{\beta} N_{\gamma} \text{ units of } d\Phi_{\alpha}/dt \text{ are created!} \\ \end{split}$$

$$\begin{aligned} \overline{\alpha + \beta} &= \gamma \\ \rightarrow \mathsf{CS term} \\ \overline{\int \mathcal{C} \wedge d\mathcal{C} \wedge d\mathcal{C}} &\to \int \mathcal{C}_{456}(d\mathcal{C})_{0123}(d\mathcal{C})_{789\,10} &\to \int \mathcal{C}_{456}\dot{\mathcal{C}}_{123}\dot{\tilde{\mathcal{C}}}_{123456} \\ \mathcal{C}_{123} \to \quad \alpha &= (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) \\ \mathcal{C}_{456} \to \quad \beta &= (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) \\ \widetilde{\mathcal{C}}_{123456} \to \gamma &= (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \tilde{\mathcal{C}}_{123456} \to \gamma &= (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) \\ \hline \mathbf{If in the presence of } N_{\gamma} \text{ units of } d\Phi_{\gamma}/dt \\ \text{we increase } \Phi_{\beta} \text{ from } 0 \text{ to } 2\pi N_{\beta} \\ \to N_{\beta}N_{\gamma} \text{ units of } d\Phi_{\alpha}/dt \text{ are created!} \end{aligned}$$

$\operatorname{Nilp}(\mathbb{Z}) \subset E_{10}(\mathbb{Z})$ Nilpotent subgroup

$\operatorname{Nilp}(\mathbb{Z}) \subset E_{10}(\mathbb{Z})$ Nilpotent subgroup

 $\Phi_{\alpha}, \Phi_{\beta}, \Phi_{\gamma} \Longrightarrow$ circles in the coset $\mathsf{Nilp}(\mathbb{Z}) \setminus \mathcal{E}_{10}(\mathbb{R}) / \mathcal{K}\mathcal{E}_{10}$

$\operatorname{Nilp}(\mathbb{Z}) \subset E_{10}(\mathbb{Z})$ Nilpotent subgroup

 $\Phi_{\alpha}, \Phi_{\beta}, \Phi_{\gamma} \Longrightarrow$ circles in the coset $\mathsf{Nilp}(\mathbb{Z}) \setminus \mathcal{E}_{10}(\mathbb{R}) / \mathcal{K}\mathcal{E}_{10}$

・ロ・・西・・ヨ・・ヨ・ ・ ヨ・ うへぐ

12 | 32

$$\left| \alpha + \beta = \gamma \right| \Longrightarrow$$

$$\operatorname{Nilp}(\mathbb{Z}) \subset E_{10}(\mathbb{Z})$$
 Nilpotent subgroup

 $\Phi_{\alpha}, \Phi_{\beta}, \Phi_{\gamma} \Longrightarrow$ circles in the coset $\mathsf{Nilp}(\mathbb{Z}) \setminus \mathcal{E}_{10}(\mathbb{R}) / \mathcal{K}\mathcal{E}_{10}$

$$\begin{array}{ccc} (\Phi_{\gamma}) & & \\ S^{1} & \longrightarrow & X & \subset \operatorname{Nilp}(\mathbb{Z}) \setminus E_{10}(\mathbb{R}) / K E_{10} \\ & \downarrow & & \\ & & & T^{2} \\ & & & (\Phi_{\alpha}, \Phi_{\beta}) \end{array}$$

・ロ・・西・・ヨ・・ヨ・ ・ ヨ・ うへぐ

12 | 32

Simple roots - SKIP

Root	Field
$\alpha_{-1} = (1, -1, 0, 0, 0, 0, 0, 0, 0, 0)$	g_{12}/g_{22}
$lpha_{0}=(0,1,-1,0,\ 0,0,0,0,\ 0,0)$	g ₂₃ /g ₃₃
$lpha_{1}=(0,0,1,-1,\ 0,0,0,0,\ 0,0)$	g ₃₄ /g ₄₄
$lpha_2 = (0, 0, 0, 1, -1, 0, 0, 0, 0, 0)$	g 45/ g 55
$lpha_{3}=(0,0,0,0,\ 1,-1,0,0,\ 0,0)$	g 56/ g 66
$lpha_{4}=(0,0,0,0,\ 0,1,-1,0,\ 0,0)$	g 67/ g 77
$lpha_{5}=(0,0,0,0,\ 0,0,1,-1,\ 0,0)$	g 78/ g 88
$lpha_{6} = (0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0)$	g 89/ g 99
$lpha_{7}=(0,0,0,0,\ 0,0,0,0,\ 1,-1)$	$g_{9layle}/g_{ m bh}$
$lpha_{f 8}=(0,0,0,0,\ 0,0,0,1,\ 1,1)$	$C_{89\natural}$

We need M5-branes

(ロ)、(型)、(注)、(注)、(注)、(注)、(15)(32)

We need M5-branes

We need M5-branes

ORBIFOLD!

► M-theory on T⁵/Z₂ has 32 fixed points [Dasgupta, Mukhi, 1995].

We need M5-branes

ORBIFOLD!

- ► M-theory on T⁵/Z₂ has 32 fixed points [Dasgupta, Mukhi, 1995].
- ▶ Witten [1995] observed that there are also 16 M5-branes.

We need M5-branes

ORBIFOLD!

- ► M-theory on T⁵/Z₂ has 32 fixed points [Dasgupta, Mukhi, 1995].
- ▶ Witten [1995] observed that there are also 16 M5-branes.
- Setup is a U-dual of Hořava-Witten's orbifold (S¹/Z₂)

Define \mathbb{Z}_2 action on root lattice.

 $DE_{18(10)}$ incorporates 16 M5-branes

The Dynkin diagram of the real form $DE_{18(10)}$ of DE_{18} .

White circles correspond to noncompact directions.

 $DE_{18(10)}$ incorporates 16 M5-branes

・ロン ・四 と ・ ヨ と ・ ヨ

The Dynkin diagram of the real form $DE_{18(10)}$ of DE_{18} .

White circles correspond to noncompact directions.

Black circles correspond to compact directions. They generate $D_8 \rightarrow so(16)$.

 $DE_{18(10)}$ incorporates 16 M5-branes

The Dynkin diagram of the real form $DE_{18(10)}$ of DE_{18} .

White circles correspond to noncompact directions.

Black circles correspond to compact directions. They generate $D_8 \rightarrow so(16)$.

New so(16)-charged Lie algebra generators.

M-theory on $\mathcal{T}^{10}/\mathbb{Z}_2$ with 16 M5's

 $DE_{18(10)}$ incorporates 16 M5-branes

The Dynkin diagram of the real form $DE_{18(10)}$ of DE_{18} .

White circles correspond to noncompact directions.

Black circles correspond to compact directions. They generate $D_8 \rightarrow so(16)$.

New so(16)-charged Lie algebra generators. New roots \rightarrow new fluxes.

 $DE_{18(10)}$ incorporates 16 M5-branes

The Dynkin diagram of the real form $DE_{18(10)}$ of DE_{18} .

White circles correspond to noncompact directions.

Black circles correspond to compact directions. They generate $D_8 \rightarrow so(16)$.

New so(16)-charged Lie algebra generators. New roots \rightarrow new fluxes.

[Brown, Ganguli, OJG, Helfgott, 2005]

・ロン ・四 と ・ ヨ と ・ ヨ

Examples of new fluxes

x, y are two periodic directions.

M5-brane is wrapped on x but not on y.

イロト イヨト イヨト イヨト

- 3

18 | 32

Note: Relation between $DE_{18(10)}$ and DE_{10}

 $DE_{18(10)}$

Note: Relation between $DE_{18(10)}$ and DE_{10}

 $DE_{18(10)}$

Commutant of D_8 (black nodes): $\mathfrak{g}^{(com)} \simeq DE_{10} \subset E_{10}$

 $\chi = (\beta_6 + 2\beta_7) + (2\beta_9 + 2\beta_{10} + 2\beta_{11} + 2\beta_{12} + 2\beta_{13} + 2\beta_{14} + \beta_{15} + \beta_{16}).$

The double orbifold: *M* on $T^{10}/(\mathbb{Z}_2 \times \mathbb{Z}_2)$

Direction	1	2	3	4	5	6	7	8	9	10
\mathbb{Z}_2	+	+	+	+	_	_	_	_	_	+
\mathbb{Z}_2'	_	_	_	_	+	+	+	+	_	+
M5	=	=	=	=						=
M5'					=	=	=	=		=
24 M2's									=	=

<ロト</i>
<ロト
<目ト
<目ト
<目ト
<10
<10<

TT₂₇ - Rank-27 Infinite Dimensional Lie Algebra

 TT_{27} – Rank-27 Infinite Dimensional Lie Algebra Captures fluxes of M-theory $T^{10}/(\mathbb{Z}_2 \times \mathbb{Z}_2)$

 TT_{27} – Rank-27 Infinite Dimensional Lie Algebra Captures fluxes of M-theory $T^{10}/(\mathbb{Z}_2 \times \mathbb{Z}_2)$ And more?!?!

Э

$$S_0 = \sum_{n=0}^{\infty} (n + \frac{1}{2})[b^{\dagger}(n)b(n) + d^{\dagger}(n)d(n)]$$
 Equation (3.4')

▲□▶ ▲圖▶ ▲불▶ ▲불▶ 불 ♡Q@ 23132

$$S_0 = \sum_{n=0}^{\infty} (n + \frac{1}{2})[b^{\dagger}(n)b(n) + d^{\dagger}(n)d(n)]$$
 Equation (3.4')

Korkut and Marty introduced fermions with anti-periodic b.c.

<□▶ <륜▶ <불▶ <불▶ 불 ♡ Q (?) 23 | 32

$$S_0 = \sum_{n=0}^{\infty} (n + \frac{1}{2})[b^{\dagger}(n)b(n) + d^{\dagger}(n)d(n)]$$
 Equation (3.4')

Korkut and Marty introduced fermions with anti-periodic b.c.

Filled up to level N_{α} :

Energy
$$\propto \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \dots + (N_{\alpha} - \frac{1}{2}) = \frac{1}{2}N_{\alpha}^{2}$$

<□▶ < @ ▶ < 볼 ▶ < 볼 ▶ 물 의 Q (~ 23 | 32

$$S_0 = \sum_{n=0}^{\infty} (n + \frac{1}{2})[b^{\dagger}(n)b(n) + d^{\dagger}(n)d(n)]$$
 Equation (3.4')

Korkut and Marty introduced fermions with anti-periodic b.c.

Filled up to level N_{α} :

Energy
$$\propto \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \cdots + (N_{\alpha} - \frac{1}{2}) = \frac{1}{2}N_{\alpha}^2 \rightarrow \text{Quadratic like flux.}$$

<□▶ < @ ▶ < 볼 ▶ < 볼 ▶ 물 의 Q (~ 23 | 32

$$S_0 = \sum_{n=0}^{\infty} (n + \frac{1}{2})[b^{\dagger}(n)b(n) + d^{\dagger}(n)d(n)]$$
 Equation (3.4')

Korkut and Marty introduced fermions with anti-periodic b.c.

Filled up to level N_{α} :

Energy $\propto \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \dots + (N_{\alpha} - \frac{1}{2}) = \frac{1}{2}N_{\alpha}^2 \rightarrow \text{Quadratic like flux.}$ (1+1d bosonization.)

(ロ) (同) (量) (量) (量) (量) (型) (23) (32)

The root \rightarrow flux of M2-branes

The root \rightarrow flux of M2-branes

The root \rightarrow flux of M2-branes

(ロ) (四) (至) (至) (至) (至) (100 mm) (

$$\begin{aligned} \zeta := \sum_{k=-4}^{4} \beta_{k} &= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

M2-brane creation as an M5-brane is dragged through M5'.

M2-brane creation as an M5-brane is dragged through M5'.

$$\begin{array}{lll} \alpha & = & \displaystyle\sum_{k=-4}^{4} \beta_{k} \xrightarrow{\text{claim}} \text{Brane-created M2-branes} \\ \beta & = & \displaystyle\beta_{-12} + \beta_{-11} + 2 \sum_{k=5}^{10} \beta_{-k} + \sum_{k=1}^{4} \beta_{-k} \to \text{M5-Momentum} \\ \gamma & = & \displaystyle\beta_{-12} + \beta_{-11} + 2 \sum_{k=1}^{10} \beta_{-k} + \sum_{k=0}^{4} \beta_{k} \to \text{M5'-hypotenuse} \end{array}$$

M2-brane creation as an M5-brane is dragged through M5'.

$$\begin{array}{lll} \alpha & = & \displaystyle\sum_{k=-4}^{4} \beta_{k} \xrightarrow{\text{claim}} \text{Brane-created M2-branes} \\ \beta & = & \displaystyle\beta_{-12} + \beta_{-11} + 2 \sum_{k=5}^{10} \beta_{-k} + \sum_{k=1}^{4} \beta_{-k} \to \text{M5-Momentum} \\ \gamma & = & \displaystyle\beta_{-12} + \beta_{-11} + 2 \sum_{k=1}^{10} \beta_{-k} + \sum_{k=0}^{4} \beta_{k} \to \text{M5'-hypotenuse} \end{array}$$

$$\gamma = \alpha + \beta$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Another test

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Another test

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

28 | 32

Dragged string-endpoint creates electric flux.

► Marty's discoveries introduced us to ∞-dimensional Lie algebras (among many other things);

Summary

- ► Marty's discoveries introduced us to ∞-dimensional Lie algebras (among many other things);
- Almost 50 years later, we are still exploring new applications;

Summary

- ► Marty's discoveries introduced us to ∞-dimensional Lie algebras (among many other things);
- Almost 50 years later, we are still exploring new applications;
- There seems to be a connection to branes in M-theory;

Summary

- ► Marty's discoveries introduced us to ∞-dimensional Lie algebras (among many other things);
- Almost 50 years later, we are still exploring new applications;
- There seems to be a connection to branes in M-theory;
- ► (Also dual to M-theory on K₃ × K₃ and M-theory on CY; created-branes are dual to G-flux.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへの

29 | 32

Outlook and open questions

 M2-brane interactions from automorphic forms on TT₂₇? (See Obers-Pioline, Kleinschmidt-Nicolai-Palmqvist, ...)

Outlook and open questions

- M2-brane interactions from automorphic forms on TT₂₇? (See Obers-Pioline, Kleinschmidt-Nicolai-Palmqvist, ...)
- Relations to dynamics of exotic branes? [de Boer, Shigemori, 2010]

Outlook and open questions

- M2-brane interactions from automorphic forms on TT₂₇? (See Obers-Pioline, Kleinschmidt-Nicolai-Palmqvist, ...)
- Relations to dynamics of exotic branes? [de Boer, Shigemori, 2010]
- Can autmorphic forms on E₁₀ and other infinite dimensional Lie groups provide new predictions for M-theory dynamics?

Forever grateful to Marty,

for his friendship, mentorship and discoveries.

More of Marty's results

$$D = \int d^4x \left[-\frac{1}{2g} G\mathfrak{F}(\mathcal{J}(G)) - \frac{1}{4}G^2 - \chi \frac{g}{2}\mathcal{G}\chi \right]$$

Field-strength formulation of quantum chromodynamics [Halpern, 1977]

 $\langle \mathsf{Tr}_A U[C] \rangle \sim N^2 (e^{-2\sigma_F A[C]} + N^{-2} e^{-4\sigma_F P[C]})$

Suppression of color screening at large N [Greensite and Halpern, 1982]

$$H_{5} = \int d^{D}x \left[-\frac{1}{2} \frac{\delta^{2}}{\delta \phi^{2}} + \frac{1}{8\hbar^{2}} \left(\frac{\delta S}{\delta \phi} \right)^{2} - \frac{1}{4\hbar} \frac{\delta^{2} S}{\delta \phi^{2}} \right] = \frac{1}{2} \int d^{D}x R^{+}(x) R(x) \ge 0.$$

Stabilizing bottomless action theories [Greensite & Halpern, 1984]

$$|\nu = \frac{1}{3}\rangle = r^2 \left\{ -K_{2/3} \left(\frac{2g}{3} r^3\right) + e^{-i\phi} K_{1/3} \left(\frac{2g}{3} r^3\right) \overline{\psi}_1 \overline{\psi}_2 \right\} |0\rangle, \qquad z = r e^{i\phi}$$

Supersymmetric Ground State Wave Functions [Claudson and Halpern, 1985]

and much more ...