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Abstract

Studies of Cryogenic Electron Plasmas in Magnetic Mirror Fields

by

Ramesh Gopalan

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Joel Fajans, Chair

This thesis considers the properties of pure electron plasmas in Penning traps which

have an axially varying magnetic ¯eld. Our theory of the thermal equilibrium of such

plasmas in magnetic mirror ¯elds indicates that their behavior may be characterized

by the ratio of their temperature to their central density T=n. For cold, dense plasmas

the density along the plasma axis scales linearly with the magnetic ¯eld, while for

hot, tenuous plasmas, at the opposite limit of the parameter range, the density is

constant along the axis, similar to the behavior of a neutral plasma in a magnetic

mirror. We are able to conclude from this that the electrostatic potential varies along

the ¯eld lines, in equilibrium. As the plasma charge and potential distribution must

be consistent with the grounded potential on the trap walls, the plasma pro¯le does

not follow the geometry of the magnetic ¯eld lines; the plasma radius in the high-¯eld

region is smaller than would be obtained by mapping the ¯eld lines from the radial

edge of the low-¯eld region. Another interesting feature of these mirror equilibria is

that there are trapped populations of particles both in the low-¯eld and high-¯eld

regions.

Our experiments on the Cryogenic Electron Trap have con¯rmed many of these

theoretical results over a wide parameter range. We have been able to sample the

volume charge density at various points on the axis. We have also measured the line-
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charge distribution of the plasma. Both these experiments are in general agreement

with our theory of the global thermal equilibrium in the mirror-¯eld.

A surprising observation has been the unexpectedly long-life of the m = 1 dio-

cotron mode in these traps where the magnetic ¯eld varies by » 100% across its

length. We report these observations, along with plausible explanations for them.

The trap we have constructed is intended for the eventual study of very cold elec-

tron plasmas in strong magnetic ¯elds, where the plasma electrons are expected to

be in the lowest quantized cyclotron orbits - the Landau levels. In such plasmas the

interaction energy of the intrinsic spin-magnetic moment of the electron with the mag-

netic ¯eld becomes comparable with the energy in the Landau levels, suggesting that

spin-dependent e®ects may become noticeable in such plasmas. We have constructed

an experiment to observe such e®ects. Along with the Cryogenic Trap, which can

cool electrons down to cryogenic temperatures, this apparatus includes a polarization

detection apparatus, and a source of polarized electrons to calibrate the experiment.

The physics and construction details for the Spin-Experiment are described in the

Appendix.

Professor Joel Fajans
Dissertation Committee Chair
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To the memory of my dear grandmother,

Kamala
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Chapter 1

Introduction & Summary

The properties of pure non-neutral plasmas, plasmas containing only ions or elec-

trons, not both, have been studied for over two decades in Penning-Malmberg traps.

These traps have an uniform axial magnetic ¯eld for radial con¯nement of the charged

plasma, and axial end potentials which con¯ne it along the axis. The axial magnetic

¯eld has always been axisymmetric, since this maximizes the lifetime of the con¯ned

plasmas. However, there is no requirement that the magnetic ¯eld be axially uniform,

and plasmas in traps with axially-varying ¯elds are interesting for several reasons.

Electron plasmas can be cooled through cyclotron radiation to temperatures near

that of liquid Helium. This cooling proceeds e±ciently in strong trap magnetic ¯elds.

In these strong magnetic ¯elds (greater than a Tesla), and low temperatures, we

expect that the energy required to °ip the electron intrinsic spin magnetic moment in

the external magnetic ¯eld becomes comparable with the typical thermal energy kT .

In such cold plasmas, we expect to see e®ects related to the electron-spin magnetic

moment. In a plasma con¯ned by a magnetic ¯eld with an axial gradient, for example,

it is suggested that electrons with spin-magnetic moment aligned with the magnetic

¯eld will migrate along the ¯eld lines to the region of stronger ¯eld, while the electrons

with spin-magnetic moment aligned anti-parallel to the magnetic ¯eld will tend to

migrate to the opposite end.

The possibility of studying such e®ects has led us to describe the equilibrium of

a non-neutral plasma in an axially varying magnetic ¯eld. We have discovered that
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this con¯guration has several interesting features. For cold, dense plasmas (where the

plasma potential greatly exceeds the plasma temperature) the density of the plasma

in its bulk scales linearly with the magnetic ¯eld strength. This is a consequence of

the fact that in equilibrium the entire non-neutral plasma rotates around its axis like

a rigid-rotor, at a constant angular frequency. This rotation comes about through

the combination of the E £ B drift and the diamagnetic drift due to the radial

density gradient. We have discovered that the relative variation of the density of a

plasma in a `magnetic-mirror' ¯eld can be parametrized by the ratio of its temperature

to its density. In cold, dense plasmas the E £ B drift dominates, but as we go

toward the opposite limit, of hotter plasmas, or of lower density, the diamagnetic drift

dominates in the rotation and the density increase with the magnetic ¯eld is more

gradual. Indeed, in the limit of hot, tenuous plasmas (where the plasma temperature

is comparable to the space charge potential) the density is essentially independent of

the magnetic ¯eld strength, much like the case of a neutral plasma in non-uniform

magnetic ¯eld.

The density can be expected to follow a Boltzmann distribution along the ¯eld

lines, so we have concluded that the density variation along the magnetic lines is

produced by an equilibrium potential variation along these lines - the ¯eld lines are

no longer equipotentials. This is in contrast to the neutral plasma case where there

is no thermal equilibrium electric ¯eld along the magnetic ¯eld lines.

The variation of the electrostatic potential in the bulk plasma must be compatible

with the boundary conditions on the grounded walls of the plasma trap. In this self-

consistent description of the plasma the plasma's radial edge pro¯le does not follow

the geometry of the magnetic ¯eld lines: the radius of the plasma in the high-¯eld

region is smaller than would be obtained by mapping the magnetic ¯eld lines from

the plasma's radial edge in the low ¯eld region.

Our theoretical description of a pure electron plasma in a magnetic mirror ¯eld

reveals another interesting conclusion. Since the ¯eld lines are no longer equipotentials

we have populations of trapped particles both in the low-¯eld region and the high-

¯eld region. The low-¯eld region trapping, of course, is similar to that of a neutral

plasma in a magnetic mirror. However, the presence now of an electric ¯eld along the
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magnetic ¯eld lines also traps low-energy particles in the high-¯eld region.

We have also studied such mirror equilibria of electron plasmas experimentally.

We established an ¯eld gradient across the length of our trap by moving it axially

to positions in the bore of a superconducting solenoid magnet where the magnetic

¯eld varied along the axis. By sampling through a pin-hole plasma charge from

di®erent points along its axis we were able to measure the density variation along the

axis. These measurements were found to be in general agreement with the theoretical

expectations.

We were also able to measure the line-charge density of the plasma at points along

its length and these too matched the trends predicted in the theory.

The plasmas we studied included a wide range in the relevant parameter - the

ratio of the temperature to the density, and we noticed that this single parameter

adequately characterized the experimental plasmas.

The simplest and most commonly studied mode in pure electron plasmas is the

m = 1 diocotron mode which is excited by the radial displacement of the plasma

cylinder from the trap axis. Although this mode, due to E £ B drift, is remarkably

stable in traps with uniform axial B ¯eld, we have also observed similar long-lived

oscillations in our trap with an axial gradient present. The details of our observations,

and possible reasons for the long-life of this mode in gradient magnetic ¯elds are

described in Chapter 5.

Pure electron plasmas have been cooled at UCSD to cryogenic temperatures

through cyclotron radiation. The trap we have constructed for the experiments on

the mirror equilibria is enclosed by a liquid Helium dewar allowing it to be cooled to

cryogenic temperatures when we need to produce cold plasmas.

At low temperatures, and strong magnetic ¯elds, the plasmas become `strongly-

magnetized' - the typical distance of closest approach between colliding particles

becomes larger than the Larmor radius. The most signi¯cant consequence of this is

the sharp drop in the anisotropic temperature equilibration rate in these plasmas.

This exponential decrease in the collisional equilibration has been observed at UCSD.

The intrinsic spin-moment of the plasma particles has been irrelevant to the study

of plasmas in general, with a few exceptions. It has been suggested, for instance,
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that the nuclear reaction rates in fusion plasmas may be enhanced (by » 50%) by

aligning the (nuclear)spins of the colliding tritium and deuterium nuclei parallel to

the con¯ning magnetic ¯eld [7]. The electron-spin moments were not included in

this analysis because they do not a®ect the reaction rate in these hot, quasi-neutral

plasmas.

However, as mentioned earlier, e®ects related to the intrinsic electron-spin moment

may become observable in cold electron plasmas, in strong magnetic ¯elds. I describe

some of these e®ects and the experiment we have set up to study them in cold plasmas

con¯ned in axially varying ¯elds.

This thesis is organized in the following fashion. Chapter 2 describes our theory

of the equilibria of non-neutral plasmas in Penning traps with axially varying ¯elds.

Chapter 3 details the considerations that went into the design and construction of

the Cryogenic Electron Trap which was used for the experiments. Our experimental

observations of these mirror equilibria are described in Chapter 4, along with com-

parisons with the theory. Chapter 5 is on the diocotron oscillations observed in the

axial ¯eld gradient.

The possibilities for further research on such plasmas are covered in Chapter 6,

including a description of spin-related experiments. We have set up an experiment to

study the spin-polarized electron plasmas; the details on the design and construction

of this experiment are given in Appendix A.
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Chapter 2

Theory of Non-neutral Plasma

Equilibria in Magnetic Mirrors

2.1 Introduction

The radial con¯nement of a pure electron plasma in a cylindrical Penning-Malmberg

trap is assured to the extent that its canonical angular momentum in the axial mag-

netic ¯eld is conserved. The plasma's angular momentum is conserved when the

electric and magnetic ¯elds imposed on the plasma are axisymmetric [8]. While the

magnetic ¯eld has to be axisymmetric to ensure long plasma lifetimes, there is no

requirement on uniformity along the ¯eld axis and pure electron plasmas can be

studied in traps with an arbitrary gradient along the magnetic ¯eld axis z. All prac-

tical Penning traps have some axial non-uniformity in their magnetic ¯elds, and the

properties of plasmas in traps with substantial gradients are interesting for several

reasons. Many of the electron-spin dependent e®ects in cold electron plasmas de-

scribed in Chapter 6 require a magnetic ¯eld gradient. However, the equilibria of

non-neutral plasmas in magnetic mirrors, or similar axial gradients have, so far, not

been described in detail. The special case of the equilibrium of a low-density electron

gas with a `loss-cone' distribution in a magnetic-mirror ¯eld was described by David-

son [9]. However, the space charge potential was assumed to be much smaller than

the electron temperature, and the case of a dense plasma which is con¯ned axially by
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negative potentials was not considered.

The `rigid-rotor' Vlasov equilibrium of an electron beam propagating through a

periodic axial magnetic ¯eld is treated in [10], yet this does not cover the case of a

trapped plasma where the axial °uid momentum is zero.

The study of neutral plasmas in `magnetic-mirror' ¯eld con¯gurations is almost as

old as plasma physics itself; magnetic mirror con¯gurations have been implemented

as possible routes to achieving magnetic-con¯nement fusion in deuterium plasmas.

A `magnetic mirror' is, of course, a cylindrically symmetric ¯eld con¯guration where

the axial ¯eld strength is a minimum between two regions of greater strength. See

Fig. 2.1. All charged particles, performing cyclotron motion in this ¯eld, have mag-

netic moments which point anti-parallel to the local direction of the magnetic ¯eld.

Plasma ions and electrons are trapped in the low-¯eld region to the extent that

their kinetic energies parallel to the magnetic ¯eld are unable to overcome the force

repelling their magnetic moments from the high-¯eld regions at either end of the

`mirror'. The magnetic moment of each particle is, of course, proportional to the

Figure 2.1: A Particle in a Magnetic Mirror

ratio of its perpendicular kinetic energy and the local magnetic ¯eld strength, and is

an adiabatic invariant. The con¯ning force on each particle is then proportional to

the perpendicular kinetic energy of the particle and the local (relative) gradient in
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the magnetic ¯eld. Thus, particles with a combination of small perpendicular kinetic

energy and large parallel kinetic energy will not be con¯ned by this mechanism and

this leads to a `loss cone' in velocity space, whose apex angle is determined by the

magnetic mirror ratio [11].

There are various methods of `plugging' the `loss-cone', such as by using an ra-

diofrequency signal to pump up the perpendicular kinetic energy of the electrons to

keep them to the exterior of the `loss-cone'. When the loss of particles with large

parallel kinetic energy is reduced or eliminated, the plasma in the mirror may be

described by a thermal equilibrium distribution, with a Maxwellian velocity distri-

bution everywhere in the plasma. Usually, of course, the ions and electrons have

di®erent temperatures. Yet, it is characteristic of such neutral plasmas in Boltzmann

equilibrium that the density in the plasma interior is independent of the magnetic

¯eld strength; the magnetic ¯eld makes no contribution to the total energy of the

particles. Also the electrostatic potential along the magnetic ¯eld lines is a constant;

there are no equilibrium electric ¯elds in a neutral plasma in a magnetic mirror.

Pure electron (and pure ion) plasmas in uniform magnetic ¯elds have been studied

through theory and experiment for over twenty years. Thermal equilibria of cylin-

drical electron plasmas in uniform magnetic ¯elds have been described theoretically

[12, 13] and observation of transport to global thermal equilibrium has been observed

experimentally [14]. It is characteristic of the plasmas in these investigations that the

electrostatic potential is constant along the magnetic ¯eld lines, in the interior of the

plasma, away from the axial ends. Similarily, the density is also constant throughout

the bulk of the plasma, away from the axial and radial edges.

We have considered the thermal equilibrium of a non-neutral plasma in a magnetic-

mirror and have drawn some conclusions that distinguish it from the case of a neutral

plasma in a magnetic mirror, and the case of a non-neutral plasma in uniform-¯eld

Penning-Malmberg trap, as described above. Since the non-neutral plasma typically

has space-charge potential that exceeds its temperature, it is most often con¯ned at

the axial ends by large electrostatic potentials. This naturally eliminates the `loss-

cone', trapping all particles, regardless of their velocities.

We have found that in non-neutral plasmas where the temperature is much less
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than the space-charge potential, density scales linearly with the magnetic ¯eld strength.

Since this means that the thermal equilibrium density varies along any magnetic ¯eld

line in the bulk of the plasma, the electrostatic potential varies along the ¯eld line to

make this density change possible. This situation is, of course, di®erent from the case

of the neutral plasma in a magnetic mirror, or a non-neutral plasma in a uniform-¯eld.

As temperature is increased in the non-neutral plasma, the density increase with

magnetic ¯eld becomes slower, and when the temperature becomes comparable or

greater than the space charge potential of the plasma, the density is very nearly

constant. Of course, this is the limit in which the plasma particles act almost inde-

pendently of each other, and simulates the behavior of a neutral plasma in a varying

magnetic ¯eld.

Another consequence of our theory is that the plasma's radial pro¯le does not

follow the geometry of the ¯eld lines. The plasma radius in the high-¯eld region is

smaller than would be obtained by following the magnetic ¯eld lines from the plasma's

radial edge in the low-¯eld region into the high-¯eld.

A neutral plasma in a magnetic mirror has particles trapped in the low-¯eld region

and particles are similarily con¯ned in the low-¯eld region of a non-neutral plasma.

An unique feature of non-neutral plasmas is that there are also trapped particles in

the high-¯eld region. I will discuss the reason and consequences of this later in the

chapter.

In the following sections, I will ¯rst describe the essential features of the uniform-B

¯eld non-neutral plasma equilibrium since an understanding of this theory is essential

to the treatment of the case where the ¯eld varies along the axis of the trap. Then, I

will describe our theory of the equilibrium in an axially-varying ¯eld. Finally, I will

elaborate on some of the predictions of this theory.

2.2 The Equilibrium in an uniform magnetic ¯eld

Prasad and O'Neil calculated thermal equilibria of pure electron plasmas in uni-

form magnetic ¯elds [12] and we summarize their theory in this section.

We consider the simple case of a cylindrical electron plasma in a Penning-Malmberg
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Electron plasmaB z
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Figure 2.2: Scheme of a simple Penning trap

trap with a magnetic ¯eld along the symmetry axis z. The scheme is shown in Fig. 2.2

and the mechanism for plasma con¯nement is described in Chapter 3. The metal

cylinders (or gates) at the ends of the plasma are biased ¢V negative relative to

the central cylinder to provide axial con¯nement of the plasma. Since the system is

time-independent and has cylindrical symmetry, the single electron Hamiltonian or

energy function H and canonical angular momentum Pµ are constants of the motion,

through Noether's theorem.

Any function of these constants, f(H;Pµ), is a solution of the Vlasov equation,

through Jeans' theorem, and we seek self-consistent distributions f i.e. those that

are consistent with the electric potential Á(r; z) described by Poisson's equation. In

thermal equilibrium the conserved quantities H and Pµ must enter the distribution

function on an equal footing, i.e. in linear combination [15, 16]. Therefore we choose

f(H;Pµ) = f (H¡!Pµ), where ! has to be a constant so that the argument H¡!Pµ
is a constant of the electron motion and f is a Vlasov solution.

The electron energy is H =
p2

2m
¡ eÁ(r; z), where Á is the electric potential and

m, ¡e, and p are the electron mass, charge, and kinetic momentum. (Notice that

H does not include the magnetic ¯eld explicitly - the magnetic ¯eld does no work

on the electron). The canonical angular momentum is Pµ = pµr ¡ (
e

c
)Aµ(r)r, where

pµ(r) is the azimuthal component of the kinetic momentum and c is the speed of

light. We can use Aµ(r) = Br=2 for the azimuthal component of the vector potential,
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giving the electromagnetic contribution to the electron momentum. ! has the physical

interpretation of being the azimuthal angular velocity of the electron °uid [17]. To

see this, we write explicitly, with  = eB=mc,

f (H ¡ !Pµ) = f

Ã
pz

2

2m
+
pr

2

2m
+

(pµ ¡m!r)2

2m
¡ eÁ(r; z) +

m

2
!(¡ !)r2

!
(2.1)

In the expression in parentheses on the right only the third term involves pµ, the

kinetic azimuthal momentum. The azimuthal °uid velocity is then,

Vµ =

Z
pµ
m
f(H ¡ !Pµ)d3p

Z
f (H ¡ !Pµ)d3p

= !r (2.2)

Since the electron °uid spins around the axis at the same uniform rate, plasmas

described by distributions of the form f(H ¡!Pµ) are termed `rigid-rotor equilibria';

these plasmas have no radial shear in their rotation. Any steady-state axisymmetric

plasma in thermal equilibrium can be described as such.

In global thermal equilibrium f takes the familiar Boltzmann form [12]

f = n0(
m

2¼T
)3=2exp[¡(

1

T
)(H ¡ !Pµ)] (2.3)

As pointed out by Davidson [17], f being a monotonically decreasing function of the

argument (H ¡ !Pµ) is a su±cient condition for the stability of the Vlasov solution

f(H ¡ !Pµ) in any axisymmetric ¯eld, even one with variation along the symmetry

axis. Clearly, the Boltzmann form satis¯es this stability condition.

By `global thermal equilibrium' we mean that collisions have established equilib-

rium along and across ¯eld lines and the entire plasma is described by a single kinetic

temperature T . The electron density is, of course, n =
R
fd3p and the electrostatic

potential is determined self-consistently through Poisson's equation,

1

r

@

@r
r
@Á

@r
+
@2Á

@z2
= 4¼en = 4¼en0exp(¡ 1

T
[¡eÁ(r; z) +

m

2
!(¡ !)r2]) (2.4)

In thermal equilibrium the two terms in the exponential balance each other to give

constant density out to some radius r beyond which the last term gets large enough
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that the density decreases exponentially at large r. Similarily, when Á becomes too

negative, due to the con¯ning potentials on the end gates for example, the density

drops o® and the plasma is axially con¯ned.

Poisson's equation is solved subject to boundary conditions on the cylinder of

the trap and the solution depends on the parameters n0; T; !( ¡ !); rc; zc;and the

con¯ning potential ¢V:[Fig. 2.2]. rc and zc are the trap radius and axial extent. V

is chosen to make Á(r; z) zero at the origin (r; z) = (0; 0), so n0 is the value of the

density at the origin. As in [12] we rescale the variables,

Ã ´ eÁ

T
¡ m!(¡ !)r2

2T
; ½ ´ r

¸D
; » ´ z

¸D
;

¸2
D ´

T

4¼n0e2
; ° ´ 2m!(¡ !)

4¼n0e2
¡ 1; (2.5)

and Eq. 2.4 becomes

1

½

@

@½
½
@Ã

@½
+
@2Ã

@»2
= (eÃ ¡ 1)¡ °; (2.6)

and the density is given by n(½; ») = n0exp[Ã(½; »)]. The solutions to Eq. 2.6 are

uniquely determined by the parameters °,
e¢V

T
, ½c =

rc
¸D

, and »c =
zc
¸D

(¸D is, of

course, the Debye length).

If we ignore axial dependence, [13, 18, 15]then for a given trap wall radius the

thermal equilibrium of an in¯nitely long column of plasma with a given plasma tem-

perature T and central density n0 is completely described by the value of the parame-

ter °; ° may be interpreted as determining the plasma's radius, when the values of the

other parameters are already prescribed. Excluding » dependence, Eq. 2.6 becomes

1

½

@

@½
½
@Ã

@½
= (eÃ ¡ 1)¡ ° (2.7)

The boundary conditions on the solution Ã(½) to Eq. 2.9 are Ã(0) = 0, since we

choose Á = 0 at (r; z) = (0; 0), and Ã0(0) = 0, required by the cylindrical symme-

try. The solution to Eq. 2.9 is Ã(½) = °[1 ¡ I0(½)], where I0 is the Bessel function

with imaginary argument. ° can be expressed in terms of the scaled radius of the

plasma, ½p, de¯ned by Ã(½p) ´ ¡1, as ° = ¡1=[1 ¡ I0(½p)] which is approximately
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(2¼½p)1=2exp(¡½p), for ½p =
rp
¸D
À 1. (We de¯ne the `radius' of the plasma to be

where the density has fallen to 1=e of its central value).

To demonstrate the behavior of Ã(½) we look at the case of ½p À 1 where ° is

small and positive. (Although we will not restrict ourselves to that case, the strict

de¯nition of a non-neutral plasma is one for which the rp À ¸D). For such °, Ã(½)

remains small (and slightly negative) and essentially constant up to a large value of ½

after which it decreases sharply as I0(½) becomes essentially exponential. Therefore,

the density n = n0exp(Ã) remains nearly constant up to a large value of ½ after

which it drops rapidly to zero, de¯ning the radial edge of the plasma. This density

dependence with scaled radius is shown in Fig. 2.3.

Figure 2.3: (Normalized)Density n vs. scaled radius ½, for ° = 10¡2 and 10¡3

In the interior of the plasma, and away from the axial ends, the potential is

constant along ¯eld lines and hence the exponential term in Eq. 2.4 is constant along

a ¯eld line at some r; the plasma in thermal equilibrium has uniform density along

the ¯eld lines, and nearly uniform density out to a radius rp, beyond which it falls o®
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to zero over a few Debye lengths.

At the edge of the density fallo® region Ã(½) ' ¡°I0(½) and as ° ! 0+ Eq. 2.6

can be approximated as
d2Ã

d½2
= exp(Ã)¡ 1 (the term » @Ã

@½
is dropped since Ã0(½) '

¡°I 00(½) and ° ¿ 1). This equation is independent of ° and una®ected by a transla-

tion in ½. Since I0(½) is exponential in nature the ° dependence of Ã manifests itself

only as a shift along the ½ axis. Therefore, the curves Ã(½; °) for di®erent (yet small)

values of ° are essentially the same in the fallo® region and di®er only by a lateral

shift along ½. This is shown in Fig. 1 of [13] and reproduced in Fig. 2.4.

Figure 2.4: Universal nature of Ã(½; °)

So, while the radius at which the fallo® occurs depends on °, the actual radial edge

pro¯le is determined only by the central density and temperature, which determine

the Debye length.

We have so far described the behavior of the radial density pro¯le for an in¯nitely

long plasma, and this is adequate to describe the charge distribution of a ¯nite length

plasma, far away from its axial ends. We, of course, are only considering plasmas
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whose length is much greater than its radius.

The plasma behavior at the axial edges, at the con¯ning end cylinders, is described

in [12, 19]. Electron plasmas are described as being `thick' or `thin', and as being

`well- or poorly- con¯ned'. `Thick' plasmas have space charge potential Áp À T ; this

condition being equivalent to rp À ¸D. Plasmas with Áp ¿ Ág , the con¯nement

gate potential, are described as 'well-con¯ned', since the plasma does not penetrate

signi¯cantly into the con¯nement gate. This description of the charge distribution

at the axial ends of the plasma, at the con¯ning gates, also applies in the case of an

axially varying magnetic ¯eld , since the typical plasma radius is much smaller than

the magnetic ¯eld scale length.

2.3 The Equilibrium in an Axially varying ¯eld

The theory in the previous section can be easily extended to treat the equilibrium

with an axially varying but cylindrically symmetric magnetic ¯eld in a Penning trap.

H and Pµ remain single electron constants of motion and the thermal equilibrium is

still described by Eq. 2.3. We may imagine that the ¯eld consists of piece-wise uniform

sections. A complication that arises with the formalism is that the axial variation of

B means that there will necessarily be a slight variation of Bz with radial position at

a ¯xed z. The Maxwell equations provide an estimate of this; r¢B = 0 implies Br ¼
(r=2)@Bz=@z and r£B = 0 gives @Bz=@r = @Br=@z. So @Bz=@r ¼ (r=2)@2B=@z2.

We may estimate the radial variation of Bz as ±Bz=Bz ¼ (r2=Bz)@
2Bz=@z

2 » (r2=L2)

or ¼ 1% for a typical axial ¯eld scale length of L ¼ 10 cm and r » 1 cm; barring

the case of very steep magnetic ¯eld gradients, the radial variation of Bz may be

ignored to a good approximation. To the extent this small variation is ignored we

can continue to use the mathematical formalism of the uniform-B case. The azimuthal

vector potential is Aµ = 1=r
R
Bz(r

0; z)r0dr0 ¼ Bz(0; z)r=2 and the cyclotron frequency

 ´ eBz(z)=mc. We can rescale the Poisson equation[Eq. 2.4] as in Eq. 2.5. Recall

that in the uniform-B case, n0 is the density at the origin where the potential Á is

set to zero; in this case also n0 is the electron density at a point on the z-axis (r = 0)

where the potential is set to be zero. We may arbitrarily choose this point to be at the
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low-¯eld end of the plasma. Note that the scaling length, ¸D, in Eq. 2.5 corresponds

to the density n0 at that reference point, and is not necessarily the Debye length at

other points in the plasma. Eq. 2.6 looks the same, except that now ° now varies

with z (because now  = (z)).

1

½

@

@½
½
@Ã

@½
+
@2Ã

@»2
= (eÃ ¡ 1)¡ °(»); (2.8)

In principle, Eq. 2.8 can be solved numerically for a varying °. (We have to pick

a value for the plasma radius rp at a particular reference point in the plasma, such

as where the density is n0; this speci¯es °(z) at that point, and use Eq. 2.5, with

 ´ eBz(z)=mc, to determine °(z) at other points).

It is more helpful to consider what happens in a magnetic ¯eld con¯guration that

changes smoothly from one uniform level B0 to an uniform higher level B1, as depicted

in Fig. 2.5. We can ignore the transition zone and assume that the equilibrium in the

semi-in¯nite uniform ¯eld regions is of the same nature as the in¯nitely long uniform-

B case described in section 1.2 . We then calculate how the equilibrium in one region

relates to the equilibrium in the other.

B B0 1

Figure 2.5: Plasma in a piece-wise uniform ¯eld

Considering the case of a piecewise-uniform ¯eld where the axial ¯eld magnitude

steps quickly from one value B0 to another higher value B1 leads to an accurate
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description of a real situation with smooth, continuous variation provided that the

plasma and wall radii are much smaller than the scale length of the magnetic ¯eld

[19]. This condition is easily met since the scale length is typically greater than or

comparable to the plasma length which, of course, is typically much greater than the

plasma radius.

Recall that in a (semi-) in¯nite uniform ¯eld region the Eq 2.8 simpli¯es to

1

½

@

@½
½
@Ã

@½
= (eÃ ¡ 1)¡ ° (2.9)

The parameter °, which, for a given trap wall radius,plasma temperature T and

central density completely describes the equilibrium for that particular axial magnetic

¯eld value, takes di®erent values °0 and °1 in the two regions. We start by assuming

a value for the central density in the low ¯eld region, n0, and a value for the low-¯eld

plasma radius (de¯ned as the radius at which the plasma density has dropped to 1=e

of its central value). Thus we prescribe the Debye length in the low-¯eld region ¸D0,

and with the chosen value of rp0 this sets °0 ´ ¡1=[1¡ I0(rp0=¸D0)]. Given these, we

want to calculate the values of °1 and the central density n1 in the high-¯eld region,

thereby completing our description of the equilibrium in the axially varying B ¯eld.

The quantity that relates the two regions is the common value of the rotational

velocity !. Given °0 we can calculate ! by inverting the expression for ° in Eq. 2.5.

Using the quadratic root formula for 1=! we get,

! =
!2
p0(1 + °0)

0 +

vuut1¡ 2!2
p0

2
0

(1 + °0)

(2.10)

where !2
p0 = 4¼n0e

2=m and 0 refers to the low-¯eld B0 region, and we take the '+'

root in the quadratic formula as being the physically relevant one [20].

We take an iterative approach to the numerical calculation of n1 and °1. The

two sections are connected by two requirements: a) the entire plasma rotates as a

`rigid-rotor' at frequency !, and b) the density variation along the symmetry axis

(r = 0) follows a Boltzmann equilibrium; an estimate obtained from the ¯rst require-

ment must be consistent with the other. We begin with guesses based on physical
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arguments; each estimate is checked for self-consistency, providing a better estimate

for a subsequent iteration. When the estimates after repeated iterations settle to

stable values we have a self-consistent description of the equilibrium.

The plasma radius in the high-¯eld region, rp1 is de¯ned as the radius at which

the density has fallen to 1=e of its value at r = 0 in the high-¯eld region. An initial

guess for the high-¯eld radius may be provided by assuming that the plasma's radial

edge will tend to follow the magnetic ¯eld lines, that is , rp1 ¼ rp0

q
1=´, where we

use ´ = B1=B0, to represent the mirror ratio. This seems a reasonable assumption

to begin with since we expect the plasma electrons to move back and forth along the

¯eld lines. We also need a value for the high-¯eld Debye length ¸D1, for which we

need an initial estimate of the high-¯eld density n1. In a cold, high-density plasma

where the rotation of the plasma around its axis is dominated by the E £ B drift

(the remaining contribution, from the diamagnetic drift, will be relatively negligible)

we expect the rotation frequency ! to be proportional to n=B. Since this ! must be

constant throughout we may expect that, as a ¯rst estimate, the density along the

symmetry axis will scale with the magnetic ¯eld strength. So, we have an initial guess

for °1, given by ¡1=[1¡ I0(rp1
p
´=¸D0)], where we have used ¸D0=

p
´ as an estimate

of the high-¯eld Debye length ¸D1, accounting for the expected scaling of the density.

(Recall that the Debye length is ¸D =
q
T=4¼ne2). We can now recalculate a better

value for n1.

With !p1 estimated from the values of °1 obtained above,

!p1 =

vuut2!´0

³
1¡ !

´0

´

1 + °1
(2.11)

The ! was obtained from Eq. 2.10, using the given low-¯eld values.The high-¯eld

density is found from the !p1,

n1 =
m!p1

2

4¼e2
(2.12)

These guess values will be closer to the actual values for some plasmas than for

others, but we have found this to be reliable starting point for all cases.
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We have used the constancy of ! to get an estimate of °1, as well as an estimate

for n1 (which also determines the Debye length ¸D1). So, we have the values of n and

° in both regions. Now we can numerically integrate Eq. 2.9 independently for each

region, with grounded wall boundary condition Á(r = rw; z) = 0, given the separate

values for ° in the two sections. The potential Á can be recovered from Ã in each

case using the appropriate value for  (0 in the low-¯eld and ´0 for the high-¯eld)

in the scaling equation Eq. 2.5, shown again below

Ã ´ eÁ

T
¡ m!(¡ !)r2

2T
(2.13)

Thus we get the values of the central potential Á0 and Á1 (at r = 0), and we have

the di®erence between the high and low regions

¢Á = Á1 ¡ Á0 (2.14)

We want these values to be consistent with the requirement that the density

variation along the central ¯eld line (r = 0) must be in Boltzmann equilibrium.

Recall that Poisson's equation, Eq. 2.4, with n(r; z) , also holds for an axially varying

¯eld and we have that the density along the axis must scale as n / exp(eÁ=T ). This

means that the di®erence in the central potential between the high and low ¯eld

regions is equal to T ln(n1=n0). We can rewrite part of Eq. 2.5 independently for the

high and low ¯eld regions and we have,

°0 ´
2m!(0 ¡ !)

4¼n0e2
¡ 1; °1 ´

2m!(´0 ¡ !)

4¼n1e2
¡ 1 (2.15)

and we may invert each equation above to express the n's in terms of the °'s. Then

the potential di®erence along the axis, as required by the need for a Boltzmann

equilibrium, may be expressed in terms of the °'s and the mirror ratio ´ as,

¢Á = T ln

"
´

Ã
1 + °0

1 + °1

!Ã
1¡ !

´0

1¡ !
0

!#
(2.16)

For self-consistency we want this potential di®erence, estimated by Eq. 2.16, to

be equal to the di®erence calculated earlier (Eq. 2.14), arrived at from the constancy

of !.
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The iteration begins with the initial guesses for °1 and n1 and it is iterated till the

values become stable. We vary °1 around the latest best estimate until the di®erence

between the two estimates of ¢Á vanishes, and the values become stable. If the

numerical root-¯nding algorithm does not converge e±ciently to a sensible value, we

perturb the initial guesses slightly, until the convergence is improved.

Since we integrate to calculate the function Ã(½) in each section, we also get the

radial density distribution in both sections through n = n0 exp(Ã), which gives the

density everywhere inside the trap.

Thus, we have described the thermal equilibrium of a pure electron plasma in

a piece-wise uniform axial magnetic ¯eld. It is trivial to extend this to the more

practical case of a smooth and continuously varying ¯eld by dividing the ¯eld and

plasma into sections, connected by a constant value of !, and relating each section to

the one just preceding it. Through this procedure we recover the variation of n and

° along the axis, and the description of the axial equilibrium is complete. Of course,

we assume the typical case where the radius of the plasma is much smaller than the

axial variation lengths.

2.4 Characteristics of the Mirror Equilibrium

The mathematical description of an electron plasma in an axially varying ¯eld was

completed in the last section. The features which di®erentiate the gradient equilibria

from uniform ¯eld-case include:

Density varies linearly with B

In the limit of a cold plasma (T ¿ Áp, the plasma potential), the density n along

the axis scales linearly with the magnetic ¯eld B.

This result is predicted by the calculation described in the last section, but there

is a more obvious reason for this conclusion. As mentioned earlier the plasma must

rotate about its axis as a rigid-rotor with frequency given by !. The rotation fre-

quency of a cold-°uid (T ! 0) plasma about its axis is ! = 2¼nec=B [20]; since this

frequency must be constant throughout the plasma clearly we must have n / B.

As the plasma temperature is increased, the density increase with magnetic ¯eld
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Figure 2.6: plot of n vs B at di®erent temperatures. rp=0.375 cm, low-¯eld=10
kGauss and low-¯eld density n0 = 107 cm¡3. For 2 cm wall radius the central potential
in the low-¯eld for a cold plasma (T < 0.1 eV) is Á0=4.5 Volts

becomes smaller; at very high temperatures, the plasma density becomes almost con-

stant, and shows little dependence on the magnetic ¯eld. The reason is that with

increasing temperature, the azimuthal diamagnetic drift (driven by the pressure gra-

dient, which scales with the radial density gradient) contributes increasingly to the

azimuthal velocity !r, and the contribution of the cold-°uid E£B drift is correspond-

ingly less. Of course, this is the limit where the long-range interactions between the

electrons are small when compared with their thermal energy, and matches the be-

havior of a neutral plasma in a magnetic mirror where the density is independent of

the magnetic ¯eld strength. However, as shown in Fig. 2.6 the scaling of n with B

becomes slower than linear, even at temperatures well below the plasma potential Áp.

The ¯eld lines are not equipotentials

Along the `central ¯eld line', r = 0, the density must have the dependence n =

n0 exp(Ã) = n0 exp(Á(z)=T ), from Eq. 2.5. Then in the cold plasma limit, where
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the density scales linearly with B, the electrostatic potential must vary along this

¯eld line in order to produce a greater equilibrium density in the higher ¯eld region.

Since we have assumed that the potential at r = 0 in the low-¯eld region is zero, the

potential increase ¢Á into the high-¯eld region is, in the T ! 0 case, simply

¢Á = T ln
µ
B1

B0

¶
(2.17)

In the cold-°uid limit the potential variation is exactly the same on all magnetic

¯eld lines which remain in the interior of the plasma, and is given by Eq. 2.17.

At higher plasma temperatures, the density becomes more nearly constant and the

potential variation along ¯eld lines becomes less than that given by Eq. 2.17; but it

still increases in the same direction.

This is in contrast to the situation in uniform B¡ ¯eld plasmas (or in equilibrium

neutral plasmas) where (except that the ends) the potential is constant along a ¯eld

line in the plasma.

The plasma pro¯le does not follow the ¯eld lines

The plasma must adjust its radius in the axially varying ¯eld so that, together

with the density variation prescribed earlier and the boundary conditions on the trap

walls, it achieves the potential variation prescribed by ¢Á. In the self-consistent

plasma equilibrium the plasma radius varies such that the plasma shape does not

necessarily follow the geometry of the magnetic ¯eld lines. Typically this means that,

for ¯nite trap wall radius, the plasma radius in the high ¯eld region is smaller than

would be obtained by following the ¯eld lines from the plasma's outer edge in the

low-¯eld region. The equilibrium plasma, surrounded by grounded walls, sets up an

electrostatic potential distribution which causes the radius adjustment. This happens

because particles at the outer radial edge of the plasma in the low-¯eld region are

re°ected back by an electric ¯eld along those ¯eld lines which keeps them out of the

high-¯eld region.

It is helpful to consider how the density variation along the magnetic ¯eld lines

is determined. The plasma density is everywhere described by n = n0 exp(Ã). Thus

the contours of equal density of the plasma are determined by the `equi-potential'

contours of Ã. The function Ã is described in Eq. 2.5 for the case of an uniform axial
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magnetic ¯eld but this can be easily generalized to the case of an axially varying

¯eld, to make more apparent the adjustment of the plasma radius with the magnetic

¯eld. We go back to Eq. 2.3 and rewrite the expression in the exponential H ¡ !Pµ
in di®erent form. Pµ = (pµ ¡ (e=c)Aµ(r))r, but we may drop the ¯rst term, involving

the kinetic momentum, since it is negligible in comparison with the second term for

most typical plasmas considered experimentally. [It can be shown that the ratio of

the two terms is comparable in magnitude to the ratio nmc2=(B2=8¼) [21]. This

ratio becomes equal to unity at the`Brillouin limit' - the maximum possible plasma

density that can be stably con¯ned for a given magnetic ¯eld strength; for typical

experimental electron plasmas this ratio is much less than unity - a 107 cm¡3 density

plasma in a 1 kGauss ¯eld, for example, the ratio is less than 10¡3]. Thus, we can

keep only the term involving the vector potential in the expansion for H ¡ !Pµ in

Eq. 2.3 with H = p2=2m ¡ eÁ, as usual. Then, performing the integral over the

Maxwellian distribution in momentum space, we have for the density n,

n =
Z
fd3p = n0 exp[¡(

1

T
)(¡eÁ(r; z)¡ !(

e

c
)Aµ(r)r)] (2.18)

The equation may be placed in more transparent form when we notice that

Aµ(r)r = (1=2¼)Aµ(r)2¼r = (1=2¼)
H
Aµ(r)dl = (1=2¼)

R
s B ¢ da = (1=2¼)©, using

Stokes' theorem. Here © is the magnetic °ux through a circle of radius r at the

location of the particle. See Fig. 2.7. Thus, Eq. 2.18 can be written as,

n = n0 exp[¡(
1

T
)(¡eÁ(r; z)¡ (

!

2¼
)(
e

c
)©)] (2.19)

A contour of constant plasma density is clearly the surface for which the argument

of the exponential in Eq. 2.19 is a constant. The magnetic °ux © is, of course, a

constant along any given magnetic ¯eld line, as shown in Figure 2.7. Therefore,

along a magnetic ¯eld line, the density follows the simple form n / exp(eÁ=T ).

Recall that within the bulk of the plasma we already have potential variations of

order T along any magnetic ¯eld line . At the radial edge of the plasma the boundary

conditions of the nearby grounded trap walls can cause the potential along a ¯eld line

to be substantially more negative (for electrons) in the high-¯eld region than in the
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Figure 2.7: Constant °ux along a ¯eld line

low-¯eld. This result is evident in all our numerical calculations, including plasmas

where the values of parameters such as density, temperature, and low-¯eld radius

have been varied over the entire range; but we have no analytic proof that includes

all cases.

We show in Fig. 2.8 and Fig. 2.9 the inverse of the ratio (low-¯eld/high-¯eld)

of the plasma radius squared in the two regions versus the ratio of the magnetic

¯eld strength, for two values of the density 5 £ 106 cm¡3 and 5 £ 107 cm¡3. The

diagonal line shows what the curves would be like if the plasma cross-sectional area

did vary as 1=B. It is clear in all the plots that the plasmas deviate substantially

from this straight line. Some trends are clear in both plots: hotter plasmas tend to

be closer to following the ¯eld lines than colder ones; and as the wall-radius becomes

larger relative to the plasma radius, the plasma pro¯le better matches the ¯eld line

geometry. This is what we expect since in the limit of a plasma with walls at in¯nity

there would be no boundary conditions to match and the pro¯le would follow the

¯eld lines exactly.
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Figure 2.8: Ratio of the inverse plasma radius squared vs. the ratio of magnetic ¯elds
in the two regions, for a (low-¯eld) density of 5 £ 106 cm¡3. The (hi-¯eld) plasma
radius was chosen to be 0.25 cm for both plots Fig. 2.8 and Fig. 2.9. The traces are
shown for two values of the plasma temperature, and di®erent wall radii



25

Figure 2.9: Ratio of the inverse plasma radius squared vs. the mirror ratio, for a
(low-¯eld) density of 5£ 107 cm¡3.

2.5 Trapped Particles

In a plasma contained in a Penning-Malmberg trap with an uniform axial magnetic

¯eld, the electrons zip to and fro at the `bounce' frequency along the entire length of

the plasma, being re°ected back only at the ends by the negative potentials of the

con¯ning gates. Perhaps the most surprising aspect of an electron plasma trapped

in an axially varying magnetic ¯eld is that the particles typically do not traverse the

entire length of the plasma. It is well known that in a conventional neutral plasma

in a magnetic mirror, some particles are trapped in the low-¯eld region through

the magnetic moment adiabatic invariant. Similarily, in a non-neutral plasma in

a mirror, particles with large enough perpendicular kinetic energy and low enough

parallel kinetic energy are trapped in the low-¯eld region by the force of the magnetic

¯eld gradient which repels the magnetic moment of the electrons from the stronger

¯eld back into the lower ¯eld region. However, as noted in the last section, the ¯eld

lines are not equipotentials, and there is now a potential increase toward the high ¯eld
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region, of order the temperature T . The thermal equilibrium velocity distribution is,

of course, Maxwellian everywhere, both in v? and vk, and by equipartition the typical

parallel kinetic energy is everywhere T=2. This means that a substantial fraction of

the electrons in the high-¯eld region will be trapped by this potential drop ¢Á, and

will not make it all the way into the low-¯eld region. The plasma thus has particles

trapped both in the low-¯eld region and the high-¯eld region. The phase space regions

that are trapped in each case are shown schematically in Fig. 2.10 and Fig. 2.11. The

geometry of the `untrapped' phase space in the low-¯eld region is changed from the

loss-cones (of a neutral plasma) to the interior region of a (one-sheet) hyperboloid,

due to ¢Á.

Figure 2.10: Phase spaces in the low-¯eld region. Particles such that m=2vk2 <
(m=2v?2(´ ¡ 1) + e¢Á) are trapped in this region. (´ is the mirror ratio, and ¢Á is
the potential di®erence between the high-¯eld land low-¯eld regions.)

As mentioned in the previous section, the plasma's radial edge does not follow

the geometry of the magnetic ¯eld lines. Electrons at the plasma's outer radial

edge in the low ¯eld region are re°ected back along the ¯eld lines by the electrostatic
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Figure 2.11: Phase space in the high-¯eld region. Particles such that m=2(v?2+vk2) <
e¢Á are trapped. (¢Á is the potential di®erence between the high- and low- ¯eld
regions).

potential which results from the combination of the charged plasma and the boundary

conditions on the conducting trap walls. In that sense, all the electrons at radial edge

of the plasma in the low-¯eld region are trapped entirely in this region. It is this

that leads to the plasma 'necking down' into the high ¯eld region, faster than the

converging ¯eld lines.

In Figure 2.12 and Figure 2.13 we show the trapped fraction in the respective

regions for a typical plasma at temperatures of 0.1 eV and 5 eV. In Figure 2.12 we

can see that the fraction of particles trapped in the low-¯eld is somewhat less than

the similar fraction that would be trapped in a neutral plasma in a magnetic mirror.

This is, of course, because there is the potential increase ¢Á from the low-¯eld region

into the high-¯eld region which reduces the trapping e±cacy of the magnetic mirror.

As the temperature increases ¢Á becomes smaller (the density variation is smaller),

and the trapped fraction is very nearly the same as the neutral plasma case, as seen in
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Figure 2.12: The fraction of trapped particles in the respective regions for a 0.1 eV
plasma, with density 107 cm¡3, and rp0=0.75 cm and rw=1.5 cm

Figure 2.13. For this reason also the high-¯eld trapped fraction becomes much smaller

at the higher temperature; the potential drop is not as deep as in the low-temperature

case. Yet in both cases, the high-¯eld fraction is smaller than the low-¯eld fraction

because the volume of trapped phase space is much smaller.

The phenomenon of bounce-averaging along z is critical to the integrity of Penning

trap electron plasmas and makes possible the study of long-term 2-D °uid-like e®ects

in them. The fact that there are axially trapped particles renders such bounce-

averaging ine®ective in plasmas that are trapped in axial gradients, and may have

consequences for the long-term coherence of simple modes such as them = 1 diocotron

oscillation.
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Figure 2.13: The fraction of trapped particles in the respective regions for a 5 eV
plasma, with density 107 cm¡3, and rp0=0.75 cm and rw=1.5 cm
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Chapter 3

The Cryogenic Electron Trap

3.1 Introduction

The experiments described in this thesis were performed on the Cryogenic Electron

Trap. This trap was constructed at Berkeley to conduct experiments on cold, strongly

magnetized plasmas in an axially varying magnetic ¯eld. The Trap is designed to be

cooled by a liquid Helium dewar. This produces very good vacuums in the region of

plasma con¯nement, and allows the electrons to be cooled to cryogenic temperatures.

The cylindrical dewar can be moved axially in the bore of a superconducting solenoid

magnet, providing a simple means of varying the magnitude of the axial magnetic

¯eld along the trap length. We are able to study the equilibria of electron plasmas in

magnetic mirror-like ¯eld con¯gurations. The trap has a thermionic ¯lament cathode

to produce the electrons, and has the diagnostic features of other typical Penning-

Malmberg traps such as a phosphor screen-CCD camera based imaging system. The

cathode and these diagnostics are, of course, operated at room temperature, so the

trap has large thermal gradients on both sides when it is operated in the cryogenic

regime.

This experiment is unique in its combination of so many aspects into one set-up.

Designing a cold trap with warm regions on either end has presented some technical

challenges. In this chapter I will describe the physics and engineering issues that arise

in the development and operation of the Cryogenic Trap. I will also discuss some of
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the experimental techniques used to study the plasmas in this trap.

This trap will also form part of the Spin Experiment which is described in detail

in Appendix A.

3.2 The Penning-Malmberg Trap

The basic scheme for a typical trap is shown in Fig. 3.1. The cutaway shows a

cylindrical rod of charged plasma being con¯ned axially between two negatively biased

cylinders, while an external magnetic ¯eld provides the radial con¯nement. The axial

magnetic ¯eld is coaxial with the trap cylinders and typically uniform along the axis,

but as we shall see in this thesis this need not always be the case. The hollow metal

cylinders are typically called `gates'.

Plasma

Filament

B

-V -V

Figure 3.1: A typical Penning-Malmberg trap

A tungsten-¯lament wound into a spiral-shape is located at one end of the trap and

acts as the cathode. Tungsten wire with a trace of thorium is often used because it is

a better thermionic emitter of electrons when current is passed through the wire to

heat it up (to 1500-2000 K). The ¯lament is usually wound in a spiral-shape because

the resulting potential drop across the radius of the ¯lament better matches the / r2

potential of an equilibrium plasma with a °at-top density distribution; this usually

results in denser plasmas with low intial temperatures. The plasma radius may be

controlled by adjusting the negative bias at the center of the ¯lament [22]. When
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under the in°uence of a strong magnetic ¯eld (¸ 10 kG), and prolonged heating, the

¯lament can distort considerably from its initial shape due to the I £B forces. Since

all the data in this thesis was taken on plasmas with relatively small radii, and at a

strong magnetic ¯eld, a simple straight-line ¯lament of thoriated 0.05 mm tungsten

wire was used for these experiments. The ¯lament was biased negatively to produce

electron plasmas and we observed that the initial plasma temperatures were at or

below the voltage drop across the ¯lament (¼ 1V), and the space charge of resulting

plasma scaled more or less linearly with the ¯lament bias, up to about -30 V . The

densities were typically in the high 107 cm¡3 range.

For the proposed Spin Experiment the electron plasma would be produced by the

GaAs photocathode which is described in detail in Appendix A.

A plasma experiment is typically performed in an `inject-hold-dump' cycle. During

the `inject' phase, the `dump' gate, located at the far end from the ¯lament, is biased

negatively, with all other gates at ground. Electrons from the hot ¯lament, biased

at a negative voltage, stream along the magnetic ¯eld lines, and ¯ll the region in

between the ¯lament and the dump gate. After a suitable wait period, generally on

the order of tens of milliseconds, the `inject' gate, located nearer the ¯lament is biased

negatively, pinching o® a plasma in the `hold' region between the inject and dump

gates. The plasma is then held in the hold gate for the time that is relevant to the

experiment. At the end of the `hold' time, the dump gate is grounded, and the plasma

electrons stream out, along the magnetic ¯eld lines, toward diagnostics located at that

end of the trap. These diagnostics may include measurement of the total charge of

the plasma and the plasma temperature at dump. A phosphor screen placed at that

end, and biased at a high positive voltage, is used to produce a 2-D image of the

plasma, providing information of the radial density variations. The phosphor screen,

along with a CCD camera to record the images on it, now have become standard

diagnostics on such traps since it was demonstrated to image plasmas sucessfully in

[23].

Since the plasma is usually `dumped' and destroyed when a measurement is made,

any time-sequence of measurements must be made on di®erent plasmas. The situation

is saved by the fact that plasmas produced from a ¯lament are highly reproducible
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[22], allowing measurements on a sequence of plasmas to be as meaningful as if they

were performed on a single plasma shot. It is the simplicity and reproducibility of

these plasmas that makes them such a good test area for plasma physics in general.

3.3 Con¯nement of a Pure Electron Plasma

This section will explain how a pure electron plasma is con¯ned in equilibrium

for very long times. John Malmberg at UCSD pioneered the use of the static electric

and magnetic ¯eld con¯guration of a Penning trap to con¯ne and study thermal

equilibrium electron plasmas. Stable pure electron (and pure ion) plasmas are now

studied in a variety of traps based on the principle of the Penning-Malmberg trap;

the experiment described in this thesis is one such variation.

3.3.1 Radial Con¯nement

A cylindrical pure electron plasma cannot be con¯ned in stable equilibrium by

static electric ¯elds alone. However, the combination of an axial magnetic ¯eld to

provide the radial con¯nement, and negative electrostatic potentials to provide axial

con¯nement, works very well.

The simple explanation of radial con¯nement through the axial magnetic ¯eld is

that the charged particles tend to remain on the magnetic ¯elds, and that radial drifts

across the magnetic ¯eld lines, toward the trap walls, occur on a time scale that is

generally much slower than that of the plasma dynamics of interest.

We can also gain some insight into the radial con¯nement by considering conserva-

tion of the total angular momentum of the plasma. The plasma angular momentum,

Pµ, as described in Chapter 2, is due to both the kinetic momentum of the electrons

and the momentum due to the electromagnetic ¯eld. If we assume a non-relativistic

plasma, well below the Brillouin limit (!2
p=2 ¿ 1 ), the case of most experimental

plasmas, the plasma angular momentum is almost entirely due to the ¯eld momentum
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and can approximated as [8]

Pµ ' ¡
B

2c
(r2
w

X

j

qj ¡
X

j

qjr
2
j ) (3.1)

We assume qj = ¡e for electrons, and the sum is over all the plasma particles' posi-

tions rj. The ¯rst term above, involving the trap wall radius rw, is constant. Then,

to the extent the plasma angular momentum is conserved,
P
r2
j is constant, and the

particles' radial positions are constrained. The plasma can expand to the walls only

through the application of torques, such as due to collisions with neutral gas molecules

and non-axisymmetric external ¯eld perturbations. A trap with perfectly axisymmet-

ric electric and magnetic ¯elds, will conserve Pµ, through Noether's theorem, and the

radial positions of the plasma particles will remain bounded for ever. The details of

the mechanism through which small asymmetries in the trap couple torque into the

plasma and ultimately drive it into the wall are still poorly understood. Yet, a lot

of care is taken to minimize azimuthal asymmetries in these traps, to reduce radial

transport. Generally, such care has led to better plasma lifetimes [24].

Recently, a `rotating-wall' technique has been developed which injects angular

momentum into such plasmas. This technique, which consists of applying sinusoidal

electric ¯elds which `rotate' slightly faster than the plasma rotation, has the e®ect of

injecting angular momentum into the plasma, counteracting the slow action of torques

due to the asymmetries. This method has been sucessful in con¯ning ion plasmas at

near thermal equilibrium for days, which is essentially forever [25].

3.3.2 Axial Con¯nement

The plasma is con¯ned axially in a grounded gate by the negative electrostatic

potentials (for electrons) on the end gates, which create a potential well along the

z-axis. The space charge of the plasma produces a negative plasma potential Áp

along the z-axis, and the plasma is well-con¯ned if ¡e(Vb ¡ Áp)À T where Vb is the

maximum (negative) potential produced by the con¯ning gate potentials, along the

axis. For ¯nite length gates, Vb is always somewhat less than the potential applied

to the con¯ning gates. It is good practice to make Vb more negative than the plasma
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potential Áp by at least several times the plasma temperature T so that even the

hottest plasma electrons are con¯ned. Making the con¯nement gate potential too

negative can have the e®ect of reducing the plasma length, as the potential on the

end gates penetrates further into the `hold' gate [19].

3.4 Basic Plasma Dynamics

In order to better understand the results presented in this thesis, it is helpful to

note some basic aspects of the dynamics of a non-neutral plasma in a typical Penning-

Malmberg trap. While I will describe pure electron plasmas, almost everything said in

this section applies to pure ion plasmas too, (with the polarities of voltages reversed

for positive ions). An electron in a typical plasma undergoes three simultaneous

motions: these are usually well-separated in time-scales (and length-scales) and may

be considered individually.

3.4.1 Cyclotron motion

Each electron performs circular cyclotron motion in the external magnetic ¯eld.

This is typically the motion with the fastest time scale (over 50 GHz/kGauss), and

the Larmor radius is smaller than all the other spatial scales in the plasma. Hence,

the guiding center approximation is good enough to describe the dynamics of the bulk

plasma [17]. However, when considering processes that depend on electron-electron

collisions, one has to look at the cyclotron motion in detail, as will be described in

Chapter 6.

3.4.2 Bounce motion

As each electron undergoes cyclotron motion, it also bounces back and forth along

the magnetic ¯eld lines, along the length of the plasma. The frequency of this mo-

tion is, of course, directly proportional to the parallel thermal velocity and inversely
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proportional to the plasma length.

fb =
vk

2Lp
(3.2)

The cyclotron motion is superimposed on this bounce motion, and the electron

traces a helical path between the ends of the plasma, as shown in Fig. 3.2. Typically,

the bounce motion occurs on the second largest time scale in the plasma.For a 1 eV

electron, and a 40 cm long plasma, the bounce frequency is ¼ 1 MHz.

Figure 3.2: Axial drift motion of the plasma electron

3.4.3 Rotation of the Plasma

A cylindrical non-neutral plasma always has a macroscopic equilibrium electric

¯eld that points radially inward (for electrons), in the bulk of the plasma. This radial

electric ¯eld, together with the external axial magnetic ¯eld, causes the entire plasma

to perform E £ B motion around the trap symmetry axis. This rotational velocity

would be in the azimuthal direction, and coupled with the axial magnetic ¯eld, results

in a Lorentz force which opposes the radial repulsion due to the electric ¯eld. The two

forces balance each other, and the plasma can stay in stable equilibrium, essentially

forever.

It is easily shown that for a °at-top density distribution, which is case of a plasma

in thermal equilibrium, the rotation rate is constant throughout the plasma; the entire



37

plasma rotates as a rigid-rotor with frequency !R. For a 'cold' plasma, where we may

neglect the diamagnetic drift at the plasma edges, it is easily shown [17] that the

angular frequency of rotation is

!R =
2¼nec

B
(3.3)

This end-of-plasma view of this motion is shown in Fig. 3.3. For a plasma with an

electron density 107 cm¡3 in a 10 kGauss magnetic ¯eld the rotation frequency is

about 15 kHz. Typically, this drift motion of the plasma electrons about the plasma

symmetry axis is the slowest motion of them all. As the plasma temperature is

increased, or alternatively its density reduced, the plasma may no longer maintain

the `°at-top' density pro¯le. When the radial density gradient becomes substantial,

the diamagnetic drift will make a larger contribution to the rotation velocity [13], and

this contribution to the local drift velocity is given by

Vd =
T

mn

@n

@r
(3.4)

Yet, as we showed in Chapter 2, the thermal equilibrium plasma still rotates as a

rigid-rotor, around its symmetry axis.

The motion of each individual plasma particle is always a superposition of these

three motions. It is well-known in plasma physics that there are adiabatic invariants

associated with each of the motions described above: the magnetic moment is associ-

ated with the cyclotron motion; the bounce action, proportional to vkLp, is associated

with the bounce motion; and the magnetic °ux enclosed by a circular drift orbit is

the adiabatic invariant related to the drift motion about the symmetry axis.

3.5 The Trap

In the following sections I will describe aspects of the trap construction and how

it is placed in the liquid Helium dewar. The trap description will be followed by a

description of the dewar design and its construction.
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Figure 3.3: Rotational drift around the trap axis

3.5.1 Trap Construction

The useful part of the trap is about 60cm long and has 13 `gates', as shown in

Figure 4.5. All gates are hollow metal cylinders of inner diameter of 2.413 cm (0.950")

and are 2.54, 3.81, 5.08 or 10.16 cm long (respectively 1, 1.5, 2 or 4 inches).

Sectors:
(axial view)

13121110987654321Gate:

24 inches

Figure 3.4: Gates' scheme for the Cryogenic Electron Trap

The gates are stacked against each other and insulated from each other by 0.030"

thick ceramic spacer rings, milled °at to better than 0.001", as shown in Fig. 3.5.

The gates at the end of the trap are pushed inward by screws, ensuring that the gates
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do not slip apart during assembly.

1.350"

0.040"

0.010"

0.045"

Figure 3.5: Adjacent gates stacked against each other

On the inside, the gates have a 0.010" gap between them. The gates are machined

from OFHC copper to tolerances of better than 0.002 cm 0.001". They are gold-plated

to prevent oxidation; it is feared that an oxide layer may produce stray electric ¯elds

which could have reduced plasma lifetimes on previous experiments [26]. A `strike-

layer' of nickel is put down ¯rst, before gold plating, to prevent slow di®usion of the

gold into the bulk copper.

U-Channel

60
o

alumina spacer..

Vacuum bore

.

I. D. 1.87"

Figure 3.6: Axial view of trap, with gates resting on the U-channel

The gates are stacked in a row on a pair of (0.125") alumina rod spacers, which

insulates them from the `U-channel' - the chassis that holds the entire trap together.
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This is shown in the axial end view of the trap in Fig. 3.6. The `U-channel' is attached

to a copper ring at each end, which ¯ts snugly into either end of the 4.75 cm (1.87")

I. D. copper tube that forms the vacuum chamber for the cryogenic trap. It is this

outer copper tube that is cooled by the liquid Helium reservoir. To cool the trap gates

to near 4.2 K, we need to ensure good thermal contact between the trap chassis and

the reservoir, through the copper rings. Thermal conduction between two surfaces

is usually proportional to the normal force between them. At very low-temperatures

we need a large force to ensure enough cooling since the thermal gradients become

small too [27]. One of the copper rings supporting the `U-channel' was provided with

a lip; we used four screws to tighten it against the copper °ange of the liquid helium

reservoir, providing over 150 lbs. of contact force, ensuring adequate cooling at low

temperatures.

The dewar, with the trap inside it, is designed to be moved axially through the

bore of the superconducting solenoid, and this allows us to place various sections of

the trap in regions with varying axial magnetic ¯eld gradients. In a typical position

taken by the trap in the solenoid, it may be thought of as having three sections,

shown in Fig. 3.4: a section on the left is meant to be in the uniform ¯eld region

of the solenoid and one on the right is in the region with a strong gradient in the

magnetic ¯eld; both regions are about 15 cm long. The intermediary region between

them has a moderate axial gradient in the magnetic ¯eld. When the ¯eld in the

uniform region is 3 Tesla, for example, the ¯eld at the far end of the non-uniform

¯eld region has fallen to about 0.7 Tesla.

All three regions have gates with sectors placed at 90o to damp and grow diocotron

modes (See Chapter 5. Gate G3 (in the uniform ¯eld region) has four sectors,

symmetrically placed, while G7 and G11 have two each.

In the following sections I will describe the construction and operation of parts

of the cryogenic trap, as well as the liquid Helium dewar that contains it. Many

technical issues, great and small, had to be considered while constructing this trap; I

have elaborated on these to give a sense of this trap's unique features.
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3.6 Sector Gate Construction

The trap has three gates which have sector probes located at 90o to each other, as

shown in Fig. 3.4 These sectors provide a non-destructive diagnostic on the plasma

because they allow the observation and manipulation of the diocotron mode of the

plasma. The diocotron mode amplitude, determined by the size of the diocotron orbit,

can be damped out when the signal from one of the sectors is ampli¯ed and sent to

an adjacent sector. These techniques are discussed in greater detail in Chapter 5.

In the construction of these gates, the challenge is to make the separate pieces of

the gate and its sectors so that the assembled product maintains azimuthal symmetry,

with the sectors remaining insulated from the gate that contains them. To make the

sector gates, slots were milled out in a `skeleton' gate into which the sectors were

placed. The sectors were held precisely in place with three ceramic pins, and each

sector was kept separated from the gate by alumina washers on these pins. Figures 3.7

and 3.8 give some idea of how these were put together. This method of construction

has also made possible the production of sector gates in which the sectors extend over

the entire length, and which cover all azimuthal angles. This scheme, with sectors held

by ceramic pins, has been used in the `Vortex' electron trap at UC Berkeley where

it is expected to enable the study of plasmas which have been distorted azimuthally

into highly asymmetric shapes, over their entire length.

3.7 Dewar Construction

All the previous research on cold electron plasmas has been conducted on the `CV'

trap at UCSD, (there has also been some recent related work at Harvard University

[28]); in CV the vacuum can enclosing the CV trap is immersed entirely in the liquid

helium reservoir that also cools the superconducting magnet coil. The vacuum can is

pumped down to a reasonable vacuum and then cooled in the liquid helium reservoir;

since the entire trap is at very low temperature, essentially all gases are condensed

out, and the resulting pressure is very low [29].

In our trap, we have included the ability to cool the electrons down to cryogenic
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Figure 3.7: Sector Gate Construction

temperatures by cooling the trap walls with a liquid Helium reservoir. The trap

is maintained at cryogenic temperatures to enable cyclotron cooling of the electron

plasma, and also to provide an extremely good vacuum in the plasma con¯nement

region. However, we also have a phosphor screen, and microchannel plate (MCP) -

based temperature diagnostic, which needs to be operated at temperatures well above

4.2 K. The phosphor screen image needs to be visible to the CCD camera, and the

MCP needs to be warm enough so that it recharges itself quickly after ampli¯cation of

a large pulse of electrons. In our design we have placed these in a room temperature

section, located at one end of the trap. The challenge was then to thermally isolate

the cryogenic section of the trap from the room temperature parts. To keep the cold

parts su±ciently cold we have to keep the warm parts su±ciently far away so that

the thermal load is minimized. The thermal load is, of course, through radiation and

conduction along the numerous electrical connections that run along the length of the

trap. A cutaway of the dewar, without the trap inside it, is shown in Fig. 3.9

As described earlier, the trap is held in a copper tube at the center of the dewar.

This copper tube forms the inside surface of a liquid Helium reservoir, which holds

about 5 liters when full. The cold helium vapor from this cylindrical tank is passed

through tubing that cools a `vapor shield' that surrounds the helium reservoir. This
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Figure 3.8: Sector Gate Construction

design keeps the vapor shield in the temperature range 20-50 K and thus keeps the

thermal radiation load on the liquid helium reservoir to a negligible level. We used

low-thermal conductivity stainless steel tubing between the helium reservoir and the

vapor shield, but used copper tubing on the vapor shield itself to allow adequate

cooling as the cold vapor passes through many turns on the shield. The vapor shield

is surrounded by a stainless steel tank designed to hold liquid nitrogen. This entire

setup is then wrapped up like a `mummy' in mylar foil. We found that this was

necessary to reduce the radiation from the 300 K outer walls of the dewar, which

make up the rest of the dewar chamber. The inner surface of the dewar vacuum wall

was electropolished to a bright ¯nish, reducing its thermal emissivity. A vacuum lower

than 10¡3 torr in this chamber is adequate to provide thermal insulation. We placed

zeolite molecular sieve on the vapor shield and the liquid nitrogen tank. While the

chamber is brought to a rough vacuum with a mechanical pump, cooling the zeolite

with liquid Nitrogen or Helium pumps away the residual gas and produces a vacuum
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Figure 3.9: Cutaway of the Dewar

that is good enough for our purposes.

We have been careful to reduce the radiation load to the liquid Helium reservoir.

We must also make sure that thermal conduction from room temperature is also

reduced to a negligible level. This has proved tricky, since we want to operate the

dewar with its axis lying horizontal, with both ends open. Further, we were unable to

use the common materials for thermal insulation such as G10 on the insides of the trap

vacuum, since such ¯berglass materials are not compatible with baking to achieve a

ultra-high vacuum. Since stainless steel is the ideal UHV material we decided to use

bellows made of 321SS to mechanically attach the copper tube holding the trap to

the outermost °ange on the dewar, which is at room temperature. The bellows allow

us to support a high internal vacuum even with very thin walls (0.006"). The thin

walls reduce the thermal conduction considerably. Also, the convolutions on these

bellows provide an increased path length from room temperature to liquid Helium

temperature. Both the vapor shield and the liquid Nitrogen tank are attached at

either end to °anges. We have bellows (of increasing diameter) from the copper tube

to the vapor shield °ange; from the vapor shield °ange to the liquid Nitrogen °ange

and ¯nally, from the liquid nitrogen °ange to the room temperature °ange of the

dewar. This series of three bellows (on each side), provided a extended thermal path

on both sides of the liquid Helium reservoir, reducing the heat transferred through

conduction to a tolerable level.

On both ends of the Cryogenic Electron trap were a series of four ba²es which
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obstructed the view of the trap from the outside. This blocked out almost all the

room-temperature thermal radiation that might otherwise be incident on the much

cooler trap. The outermost, and largest, ba²e faced the room temperature section.

The one just behind it was bolted tightly to the °ange attached to the liquid nitrogen

reservoir. This ensured that this ba²e and all those interior to it were at 77 K,

or colder. If all the surfaces seen by the trap were at this temperature or colder,

the radiation load is reduced by a factor of (77=300)4 ¼ 4 £ 10¡3, bringing it to

tolerable levels. Drift tubes, with 1.0" I. D., and machined from OFHC copper,

were placed in the center of the ba²es, to allow the electrons to reach the trap from

the ¯lament, and to exit the trap and reach the phosphor screen and other room

temperature diagnostics. The outer surfaces of these drift tubes was provided with

a bright, smooth ¯nish, to provide greater re°ectivity against incoming radiation,

while the inner surfaces were given a rough ¯nish, which reduced the transmission

of infrared and microwave room-temperature photons along the insides of these drift

tubes, into the trap region. These inner surfaces may be given a coating of certain

metal oxides, which often have large absorption bands in the infrared, and further

reduce transmission of warm photons along the insides of the drift tubes. The ba²es

are given a shiny polish too to reduce their emissivity.

The set of three bellows on each side of the trap tube make up the vacuum wall.

However, these bellows do not give any mechanical support; this is provided by a set

of four G10 tubes which connect between each set of °anges, three sets in all on each

side of the trap. These 3/8" G10 tubes are short enough that the `sag' of the trap

from the outer °anges on the dewar is negligible.

Besides the radiation °ux, the dominant thermal load on the cold trap insides is

that due to conduction along the various electrical connections between the trap gates

and the feedthroughs located on the end chamber, located at room temperature. This

was kept to a minimum by using 0.009" diameter manganin wire, a poor thermal

conductor, to make most of the electrical connections [30]. We used te°on tubing

as insulation on the outsides of these wires. Electrical connections to the sectors,

which needed to be quiet, were made with coaxial cable from Lakeshore Corp.; this

cable had a stainless steel central conductor, and stainless steel braid shielding, with
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te°on insulation in between. Since this wire had a continuous sleeve of te°on on

the outside, we introduced periodic cuts in the sleeving to allow e±cient pump out

of the trapped gases. To connect to the gates, we also tried using stainless steel

wire earlier, but it tends to kink easily, and appeared to break when strains due to

thermal contraction in cryogenic environment became signi¯cant. Besides, stainless

steel is usually slightly magnetic, and may cause small asymmetries in the ¯eld, which

could reduce plasma lifetimes. Phosphor bronze, another material commonly used in

cryogenic applications, was avoided because it is detrimental to a ultra-high vacuum

system. The te°on insulation on the wires was adequate for purposes of the data taken

for this thesis, in which the trap was only cooled to liquid nitrogen temperatures. At

lower temperatures, down to liquid helium, the te°on would be too great a thermal

load, and would have to be eliminated. One scheme to use at the lower temperatures is

to insulate the thin manganin wire by sections of alumina tubes. The alumina tubing

would be split at intervals which would essentially eliminate thermal conduction along

the entire length. Grounded copper tubing surrounding the alumina would provide

shielding against noise, needed for sensitive measurements of very low temperatures.

The Lakeshore cryogenic cable may also be used, but using large quantities may

increase the possibility of virtual leaks from the tight ¯tting insulation and braiding.

While we had attempted using this scheme from the very beginning, we frequently

developed problems with wires shorting to ground through their outer shields, and we

dropped this scheme for the simpler solution of using manganin wire insulated with

te°on tubing.

The wires connected to the trap gates and sectors exited the trap through a series

of small holes in the ba²es. They then connected to electrical feedthroughs on an

end chamber attached to the dewar. A silicon diode sensor, from Omega Electronics,

placed on one of the trap gates allowed the temperature of the trap to be monitored

accurately by measuring the voltage across a pair of leads, while a 10 ¹ A measuring

current was passed through the other pair.

The dewar has a ¯ll line going to each reservoir. The ¯ll tube to the liquid Helium

reservoir reaches the bottom of that tank, which is tilted slightly with respect to

horizontal so that any remaining liquid collects at this end when the reservoir is near
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empty. As mentioned earlier, the exit tube from the liquid Helium reservoir winds

its way back and forth several times on the vapor shield before leading out the dewar

°ange. The vacuum jacket of the ¯ll lines are a part of the overall dewar vacuum,

which must be pumped out before any ¯lling is begun.

Magnet dewar

Trap dewar
 electron trap 

Floor

Ion Pump

5 feet

End piece
with electrical feedthroughs
and optical viewport for camera

.

to turbo (or roughing)
 pump

Linear motion feedthrough
flange

Filament 
flange

Figure 3.10: The scheme for the experiment

3.8 The Trap Vacuum

In general it is desirable to keep the neutral gas pressure in the trap as low as

possible. The time scale for inelastic collisions of a plasma electron with trap neutrals

can be less than a second at pressures of 10¡8 torr ; the plasma's temperature and the

velocity distribution of the electrons may be substantially a®ected through neutral

collisions over this time scale, marring the observation of any intrinsic dynamical

evolution of the plasma. Besides, a poor vacuum generally reduces the plasma lifetime,

as the neutral gas applies torque to the plasma and the electrons di®use radially
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outward to the trap wall through repeated collisions with neutrals. As shown in

Fig. 3.6, the trap sits inside of a narrow tube of I.D. 1.87", which is about 24" long

and is at the center of the LHe dewar. Most of the conductance is along the 1" I. D.

tube formed by the trap gates, and this is no more than about 6 l/s. This tube opens

out, through the dewar bellows, into an end chamber which have all the electrical

feedthroughs to the trap. A 30 l/s ion pump hangs at the end of a long tube, with

I.D. 2.5", attached to the bottom of this end chamber. The long tube ensures that

the ion pump operates normally by being placed far enough out of the fringing ¯eld

of the superconducting solenoid magnet. This ion pump provides the only external

pumping on the ultra-high vacuum trap. A pumping speed much greater than about

30 l/s is not useful since the conductance from the plasma con¯nement region is much

less anyway. At either end of the trap, were placed two cylindrical `cages' containing

activated charcoal. This charcoal is baked along with the rest of the trap and the

containers become extremely e±cient pumps when cooled to cryogenic temperatures.

The charcoal absorbs almost all residual gases, except hydrogen and helium, when

cooled by liquid Nitrogen in the dewar, and the remaining hydrogen and helium are

condensed out by liquid helium cooling. Each of the containers provides an estimated

pumping speed of 150-200 l/s [31].

For the bake-out the dewar is heated to 150oC for a few days, during which the

trap vacuum is pumped on by a turbo pump (the superconducting magnet is o®

during this time!). To bake out we introduce about 200 mtorr of dry nitrogen into

the dewar vacuum and heat its exterior. The nitrogen gas makes sure that all parts

of the trap tube and bellows are heated uniformly. As the bake is ended, the turbo

pump is disconnected from the chamber, by closing an all-metal UHV valve, and

the ion pump is started to provide pumping down into the UHV range. The base

pressures achieved are in the low 10¡9 torr range, as measured in the `end-chamber'

region. We have found that we are able to reach very good vacuums even though

we have charcoal in the trap. When the trap is at room temperature, the pressure

inside may be an order of magnitude or more higher, due to the poor conductance.

However, when the trap is cooled to cryogenic temperature, the poor conductance

to the room temperature part actually helps the base pressure achieved in the trap,
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as the charcoal pumps can produce a pressure in the trap that is about 40 times

lower than that measured by the ion gauge, located near the ion pump. This pressure

can be as low as the high 10¡11 torr range, which is adequate for the purposes of

this thesis, although some improvements may need to made for the Spin Experiment

described in Appendix A.

3.9 The Cathode Filament

As mentioned earlier, the plasmas studied for this thesis were produced by a

small length (¼ 7 mm) of 0.05mm thoriated tungsten wire. This wire was connected

between the pins of a current feedthrough on a °ange. The ¯lament was typically

biased negative (about 10 Volts), and a small copper plate behind the ¯lament was

also maintained at this bias. We have noticed more e±cient production of electrons

for plasmas when the ¯lament is operated with this copper plate behind it; the plate

remains more negative than any other point on the ¯lament.

We have placed two irises in between the ¯lament and the trap. One of these,

with diameter 0.5", is in the middle of the drift tubes of the ba²es. The other, nearer

to the trap, has diameter 0.216". These irises reduce the thermal radiation from the

¯lament to the trap. Also, we were able to limit the diameter of our plasmas to the

length of the ¯lament that is mapped along the ¯eld lines through the smaller iris.

This is very useful since we have no other way of controlling the radius of our plasmas.

We noticed that the plasmas created were slightly larger than the 0.216" of the iris,

but remained otherwise reproducible.

It is di±cult to maintain precise alignment of the ¯lament with the iris and the

center of the trap. We have mounted the ¯lament °ange on a bellows. This bellows

is given mechanical support by four rods which are held rigid by a Aluminium ring.

We can move the ring around until the ¯lament is `visible' and centered with respect

to the irises.
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3.10 The End-piece diagnostics

Aside from the measurements of the diocotron modes through the sector gates,

all other observations of the plasmas occur by `dumping' it out of the trap towards

the diagnostics at the other end. In the end-piece chamber of the trap we have a

linear motion feedthrough containing a set of such measuring devices. Located on a

base-plate held by this feedthrough is a phosphor screen, which is used to produce 2-D

images of our plasmas. The base-plate also has a holder which can alternatively hold

a pin-hole charge measurement diagnostic or a micro-channel plate (MCP) electron

multiplier. In a third position on this plate is a hole with a drift tube, to let electrons

from the trap to pass through, as will be required by the Spin Depolarization exper-

iment described in Appendix A. The motion of this feedthrough is perpendicular to

the trap axis and it allows us to choose the diagnostic we want to use by translating

the feedthrough to di®erent positions.

The plasma electrons exit the trap along the magnetic ¯eld lines and may be

imaged on the phosphor screen which is at a high-voltage. This 2-D imaging diagnostic

has been described in [32]. One side of the 2.47" diameter quartz plate screen is coated

with P43 phosphor and aluminized. We considered imaging our plasmas with a CCD

camera which is ¯tted with a green ¯lter, and we chose the P43 phosphor because it

is an e±cient emitter of green light. The plasma electrons that leave the trap along

the magnetic ¯elds hit the phosphor and produce a visible image when the phosphor

is biased at a high-voltage (about 11-15 kV). Since the light from any part of the

phosphor is proportional to the number of electrons that hit that region, we have

diagnostic on the radial density variations of the plasma. The phosphor is given a

coating of aluminium to block out the visible light from the ¯lament, which would

otherwise interfere with our plasma images. The phosphor screen was insulated from

the copper base plate that held it by a Macor ring. A stainless steel ring, placed

on top of the screen makes electrical contact to it. This ring was held down to the

base plate with three nylon screws, which provided the necessary tension to keep the

screen in place.

A smaller voltage (» 40V) is enough to draw all the plasma electrons onto the
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phosphor screen, and we can observe the voltage signal resulting from the dumped

charge on an oscilloscope. The voltage can be translated to a charge value when we

measure separately the capacitance of the screen and the attached cabling. This is a

diagnostic of the total plasma charge.

The other diagnostic is a copper plate with a pin-hole (diameter 0.110") in it,

with a charge collection plate behind it. The back plate collects the charge that

makes it through the pin-hole when the plasma is dumped. This diagnostic allows

us to measure the volume charge density of the plasma through a technique better

described in Chapter 4.

This pin-hole diagnostic is located in a copper housing which provides shielding

from noise for the measurements of very small charge amounts. This housing, shown

in Figure 3.11 can also be used to hold a MCP electron multiplier that will be used

to measure very low plasma temperatures (below 50 K).

Top Ring (SS)MCP
OR
 pin-hole plate

Macor insulator

Soft copper back

Charge collector plate

Outer housing 
(copper)

to electron trap

Figure 3.11: Cutaway of the Micro-channel plate holder

When we want to measure low temperatures the MCP takes the place of the pin-

hole plate in the assembly shown in Figure 3.11. The MCP is held down by a stainless

steel ring on to a copper ring which is annealed soft to protect the fragile 0.017" thick
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glass plate that makes the MCP. We use a `wave-disc spring' (made of beryllium

copper) in between to provide cushioning for the MCP. The SS ring biases the front

face (facing the electron trap) of the channel plate while the copper back ring biases

the rear side. A plate at the back of the Macor insulator collects the charge that has

resulted from the MCP ampli¯cation (or made it through the pin-hole diagnostic).

All of this is in the copper housing which shields it from external noise, and reduces

the capacitance to ground.

The electrical connections to the MCP and charge collecting back-plate are made

through wire insulated with te°on tubing. We have (grounded) copper braid on the

outside of the te°on insulators to provide electrical shielding to the signals. These

connecting cables were wound in a coil around a post to provide °exibility when the

linear feedthrough moved to various axial positions.

3.11 The Axial Magnetic Field

The magnetic ¯eld was produced by a superconducting solenoid magnet, con-

structed at the Kurchatov Institute of Atomic Energy in Moscow, Russia. The room

temperature bore measured 26 cm in diameter, and the uniform ¯eld region of the

solenoid was 60 cm in length. The magnet could be charged up to a maximum of 3

Tesla, and all the experiments in this thesis were performed at this ¯eld strength. The

¯eld pro¯le along the axis is shown in Figure 4.1, illustrating how the ¯eld strength

varies along the trap length.

3.12 Aligning the Trap with the Magnetic Field

In the typical Penning-Malmberg trap the coils for the solenoid that provides the

axial magnetic ¯eld are typically wound in place around the bore of the vacuum can

of the trap. This automatically ensures that the magnetic ¯eld and the trap gates

share the same symmetry axis. Since we use a superconducting solenoid, we need to

be more subtle in achieving this alignment.
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The electron trap gates rest on U-channel which is within a tube located in the

center of a much larger dewar with an outer diameter of about 9.6". The dewar is

moved axially in and out of the bore of a superconducting magnet which has a bore

of diameter about 10.25", as shown in Fig. 3.10. In order to minimize torques on the

plasma that would arise through non-axisymmetric ¯elds, causing radial transport,

the axis of the trap must be aligned with the axis of the magnetic ¯eld of the solenoid.

The superconducting magnet coils are thermally isolated from the physical magnet

bore and are not necessarily coaxial with it. Further, the axis of the trap gates is

not necessarily coincident with the axis of the dewar tube which encloses it. So it is

di±cult, if not impossible, to achieve alignment of the trap axis with the solenoid axis

by mechanically centering the dewar in the magnet bore. We can use a procedure

detailed in [33] to achieve this alignment, however. In this technique, we look at the

m = 1 diocotron mode of the plasma where the plasma orbits about the trap axis,

as shown in Fig. 3.12. Typically, we grow the mode to a ¯xed amplitude according

to the methods described in Chapter 5. The plasma orbits around an axis which is

parallel to the direction of the magnetic ¯eld. If this magnetic ¯eld is tilted with

respect to the axis of the conducting gates, then during half of the diocotron cycle

one end of the plasma is closer to the trap wall while during the other half the other

end gets closer to the trap wall, as shown in Fig. 3.12

.
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Figure 3.12: Observing a misaligned ` = 1 diocotron mode

Since the diocotron frequency is much less than the plasma frequency (fd » 25

kHz ¿ fp » 15 MHz), this e®ect of this motion can been seen as a quasistatic
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change in the plasma equilibrium. The simple physical picture is that the electrons

tend to accumulate wherever they can be closer to the positive image charge on the

conducting wall, since that lowers the total energy. The electrons are constrained to

move along the ¯eld lines, so plasma density tends to increase at end close to the gate

during one half of the cycle, while decreasing at the opposite end. Thus, the plasma

density `sloshes' back forth along its length. This `sloshing' signal can be observed as

the output of a di®erential ampli¯er connected to two gates, each located at opposite

ends of the trap. The signal, even though at the diocotron frequency, would typically

be out of phase with it. As the tilt angle decreases, and goes through zero, the output

signal of the di®erential ampli¯er decreases in amplitude, and changes sign. Thus the

trap axis can be aligned by noting where the phase between the sloshing signal and

the diocotron signal changes sign. (In principle, the sloshing signal should go to zero

when the tilt angle is zero, but even if the tilt angle along one axis is reduced to zero,

there is always a slight misalignment along the other axis, so there is always a small

sloshing signal in practice. This makes the phase a better measure of the alignment).

In practice the trap tilt was changed gradually by adding te°on sheet shims about

0.010" thick on one axis (horizontal or vertical) at a time. Thus the trap, which is

> 20" long, can be aligned to better than about 0.5 milliradian.

3.12.1 Alignment for Maximum Lifetime

While we have used the technique described in the last section with some sucess,

a more straightforward procedure involves adjusting the trap alignment until the

lifetimes of the trapped plasmas are maximised.

In general it is desirable to have plasmas last as long as possible in such traps.

The longer a plasma is held in a trap the closer it is to thermal equilibrium. A global

thermal equilibrium is usually the simplest situation to understand theoretically, and

one would like to conduct experiments that are as close as possible to this state. As

the plasma slowly expands to the wall it tends to heat up as the electrostatic energy

converts to random thermal energy of the particles. Therefore, in experiments where

a very cold electron plasma is desired, it is important to reduce the radial transport
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rate to a minimum.

As mentioned earlier the plasma electrons migrate to the walls through a combina-

tion of various torques which change the angular momentum of the electron plasma.

These torques may be due to the presence of the residual neutral gas in the trap,

and the non-axisymmetry of the magnetic (and electric) ¯elds of the trap itself. We

have noticed that in the mid-10¡8 torr pressure regime that we typically operate the

transport is mainly due to the slight misalignment of the magnetic ¯eld axis relative

to the trap axis. We adjust the tilt in the trap axis to increase the lifetimes.

The trap is, of course, located at the center of the dewar cylinder with an outer

diameter that is nearly equal to the inner diameter of the bore of the superconducting

solenoid magnet. To e®ect the adjustment we have a set of four screws, two at each

end of the magnet bore. Turning these screws slightly, one at a time, allows us to

scan around a particular position to see if we can move the trap alignment to a newer

position which results in a longer-lived plasma. Since each pair of screws are located

at 90o angle at the bottom of each magnet bore end, all positions of horizontal and

vertical tilt are accessible. These 3/8"-24 screws allows to vary the tilt angle by as

little as 0.1 milliradian at a time, allowing us to `tune' the trap into the right position.

To do this scan quickly it is not necessary to measure the lifetime at each tilt

position. We found it adequate to set the plasma hold time to a value that leaves

behind only a small fraction of the original plasma charge, as measured when the

plasma is dumped to the end diagnostic. Then we measure how much charge remains

after this ¯xed hold time, for each tilt position, and vary the position until this

residual charge is maximised. While this technique is somewhat crude it is generally

e®ective in achieving better lifetimes. If we are more interested in maximising plasma

density than total charge, then we look at the residual charge that makes it through

a pin-hole when the plasma is dumped. Generally, there is little more than a factor

of 2 di®erence between the two estimates.

We usually begin with a good `eyeball' position for the alignment, making sure,

for example, that the plasmas are dumped near centered on the phosphor screen

visual diagnostic. Then we iterate the four screws until a position is found that

results in a (usually dramatic) improvement in the amount of charge remaining. We
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Figure 3.13: Residual plasma charge vs. time for a plasma held between G2 and G12
(¼ 49 cm). The maximum ¯eld was 3 Tesla and the ratio of the ¯elds between the
ends of the plasma was » 1.5. The trap was not aligned for maximum lifetime.

have generally not sought to try to ¯nd the `global' optimum position for the lifetimes,

usually running the experiment where the transport rate is small enough not to matter

to the measurements we seek.

3.13 Plasma Lifetime

After an initial period of rapid transport, the quiescent plasma slowly loses charge

to the walls. As its charge density declines, it may or may not expand and increase

its radius. We de¯ne the `lifetime' of the plasma in the trap to be the time over which

the plasma's total charge declines by a factor of e. The change in the residual charge

of the plasma held between gates G2 and G12 is shown in Figure 3.13

The lifetime of a pure electron plasma in a uniform axial ¯eld generally increases

with magnetic ¯eld as B2, and decreases with plasma length, scaling as L¡2 [24]

We have operated our plasma experiment without varying the maximum ¯eld of the
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solenoid (maintained at 3 Tesla). Although, we have no data for direct comparison,

what we have observed with the axially varying ¯eld in our trap agrees qualitatively

with previous work.

When the plasma is trapped only in the uniform, `good' ¯eld region, we have seen

the plasma last for nearly 1000 seconds. A plasma that extends out to a much greater

length, including the non-uniform ¯eld region lasts for times on the order of tens of

seconds. As the dewar is pushed further into the solenoid, including more `good' ¯eld

length, this number improves by a factor of about two, and decreases by a similar

amount when the dewar is pulled out to include more of the region where the axial

gradient is most pronounced.

While the misalignment seemed to be the major limiting factor on the plasma

lifetime we were also able to make some improvements by improving the vacuum in

the trap. This was done by cooling the trap by introducing LN2 into the liquid helium

tank. Lowering the trap pressure (into the 10¡10 torr range) we noticed a lifetime

improvement by a factor » 5 at an alignment position that was roughly near the

'global' best for the alignment.

3.14 Plasma Temperature Control and Measure-

ment

One of advantages in the study of a pure electron plasma is that its temperature

can be controlled easily, over a wide range. In a magnetic ¯eld of su±cient strength,

the plasma cools through the emission of cyclotron radiation to the temperature of

the surrounding trap. This process is described in the next section. The plasma

can be heated by applying a noise signal, in the MHz frequency range, to one of the

gates that contains the plasma. Although the exact heating mechanism is not well

understood, the noise signal probably excites waves in the plasma which then damp

out increasing the kinetic energy of the plasma electrons. By choosing an appropriate

balance between these heating and cooling mechanisms, the plasma temperature can

be controllably varied over a wide range. In our experiment, we have been able to vary
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the plasma temperature between 0.11 eV and 12 eV, acquiring data over two orders

of magnitude in this parameter. The experimental details of the heating method are

described in Chapter 4. The plasma temperature can be measured by raising the

dump gate potential slowly to allow electrons from the radial center of the plasma

to trickle out. The amount of charge that escapes as a function of gate potential is

¯tted to a Maxwellian, which then provides a value for the parallel temperature of the

plasma electrons. This technique has been used since the earliest days of pure electron

plasma physics, and a more detailed description can be found in [29], for example.

As shown in this reference, if Ne is the number of electrons that exit the plasma (and

are collected on the phosphor screen) as a function of the barrier potential Vb, then

the temperature T is determined (to within 5%) from

1

e

d

dVb
log(Ne) '

1:05

kBT
(3.5)

This provides a good estimate of the temperature of the plasmas down to about

T ¼ 500K ¼ 0:05eV . This trap is also designed to operate with colder plasmas,

and the measurement technique for lower temperatures is considered in a following

section.

3.14.1 Cyclotron Cooling

The plasma electrons undergoing cyclotron motion in the plane perpendicular to

the magnetic ¯eld emit cyclotron photons and radiate away their perpendicular kinetic

energy. Thus T? is lowered, and since the anisotropic temperature equilibration

time º?k¡1 is typically much faster than this cooling rate, the plasma temperature

is lowered until it comes into thermal equilibrium with the thermal radiation in the

trap. This cooling rate is easily determined from a simple classical model of the

electron cyclotron orbit in a magnetic ¯eld B = Bẑ. The electron's motion in the

perpendicular plane is given by vx = v? sin(t) and vy = v? cos(t) where  =

eB=mc is the cyclotron frequency. The acceleration of the electron charge is then

a? = v? and this accelerating charge radiates. The classical Larmor formula gives
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the power radiated by the circular motion

dE?
dt

=
2

3

e2

c3
a?

2 =
4e22

3mc3
E? (3.6)

where E? = mv?2=2. Assuming that the velocity distributions stay Maxwellian

throughout, the cooling rate of the plasma temperature is

dT

dt
=

2

3

1

kB

Ã
dE?
dt

!
= ¡4e22

3mc3
T = ¡ 1

¿r
T (3.7)

where the braces denote the ensemble average, and the factor of 2/3 includes the

cooling of the parallel temperature, which proceeds simultaneously, since the T?¡Tk
equilibration rate is typically much faster than the cooling rate. ¿r is, therefore,

an estimate of the cyclotron cooling time. A thorough calculation of the cooling

rate of a pure electron plasma through cyclotron radiation including such e®ects as

the proximity of a conducting trap walls, which act as a waveguide, is in [8]. This

classical formula is remarkably good at predicting the cooling rate down to very low

temperatures of about 50 K [29]. At lower temperatures, i.e. where the energy

separation between the quantized cyclotron orbits or Landau levels ¹h ¼ kBT , a

large fraction of the electrons are in their lowest quantum energy levels and are no

longer able to radiate; and the classical formula above must be modi¯ed to include

the slowing in the cooling rate. We have observed our plasmas to cool from initial

temperatures of about 0.8eV to 0.11eV in 3 seconds. This cooling rate is less that

predicted by ¿r ¼ 1 s for a average magnetic ¯eld in our trap of about 2 Tesla. We

believe this is due to the slow radial expansion of the plasma, and also a low level of

noise (» 10-20 mVp¡p)on the high-voltage pulsers that drive our con¯nement gates.

This noise slowly heats the plasma. We believe that we should be able to achieve

lower temperatures in the trap, by eliminating this noise with suitable ¯ltering, and

by also improving the plasma lifetime through better alignment.

3.15 Measuring Very Low Plasma Temperatures

Through cyclotron cooling the electron plasma may be cooled to essentially the

temperature of the trap, which can be 4 K, the temperature of liquid Helium (or even
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lower if the dewar is pumped on). However, as the plasma's temperature is lowered T

becomes an even smaller fraction of the plasma's space charge potential. This makes

it harder to measure very low temperatures, as fewer electrons are observed at the

high-energy tail of the parallel-velocity Maxwellian distribution. A more subtle model

of the charge dump process is required, as described in [29]. The analysis described

in this reference can make sense of temperature measurements down to 4 K. While

we have not observed temperature less than 0.1eV (1100 K) on our trap so far, we

expect to be able to do so if we take greater care. Beck and Fajans [1] produced colder

plasmas on the CV trap at UCSD, but they were unable to measure temperatures

below about 30 K with much certainty. The charge was dumped onto a plate in their

scheme and this voltage signal was fed to a front stage ampli¯er which was external

to the cryogenic dewar of the trap. Microphonic noise on the cable going to this

external ampli¯er limited the ability to measure T below 30K. The MCP diagnostic

described in section 3.10 is expected to provide enough initial gain (> 103) on the

electron signal to overcome this problem of front end noise.
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Chapter 4

Experimental Results on Mirror

Equilibria

4.1 Introduction

In this chapter I will describe observations of equilibria of pure electron plasmas

in a magnetic mirror ¯eld. I will describe the several techniques we have employed

to study these equilibria. Comparisons of these observations with the predictions of

the theory of such non-neutral plasmas in thermal equilibrium, presented in Chapter

2, will also be made.

We have studied plasmas with di®erent levels of axial magnetic ¯eld gradient

across them. The ¯eld gradient across the length of the trap can be varied by moving

the dewar to di®erent axial positions in the bore of the solenoid, as shown in Fig-

ure 4.1. We show the pro¯le of the magnetic ¯eld alongside the trap scheme. As the

trap is pulled out of the bore, the average magnetic ¯eld across its length is decreased,

and the (relative) gradient is increased.

In the simplest description of an equilibrium plasma in an axially varying magnetic

¯eld, we seek to know the charge distribution everywhere - the nature of the variation

of the charge density along the axis of the plasma, and the variation of the density

with radius at each axial position. We have determined these variations using three

main diagnostic techniques. We measure the central density of the plasma along the
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Figure 4.1: The trap in dewar scheme, with the magnetic ¯eld pro¯le shown

axis through the `two-split' experiment. As described in Chapter 3 we can measure the

plasma charge by dumping it to a charge collector diagnostic located at one end of the

trap. We can split the plasma into longitudinal sections by applying negative biases

on intermediate gates (typically, in two places), before the dump. The plasma may

then be dumped in sections; we measure the charge from each section in the sequence

that it is dumped to the end diagnostic. When the plasma is dumped the charge that

reaches a particular point on the charge collector gets there by propagating along the

magnetic ¯eld lines. By collecting the charge that makes it through a pin-hole at

this end we were able to sample the plasma density in each section. The `two-split'

experiment allows us to measure the relative variation of the density with magnetic

¯eld, along the axis of the plasma. We will see that these measurements compare well

with the theoretical model of such plasmas.

The plasma is made up of un-neutralized charge and is con¯ned in a metal cylin-

ders that are typically at ground potential. When the plasma is dumped the amount

of charge that °ows into the gate from ground is equal (and of opposite sign) to the

amount of plasma in the hollow of the gate, as is required by Gauss' law. The total

plasma charge that resides in a given gate at the end of the `hold' period, can be
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observed easily on a scope when the plasma is `dumped' out of the trap, at the end

of this period. When we measure this charge from each gate in the stack we have a

straightforward diagnostic on the charge per unit length, the linear charge density of

the plasma, at various points along its length. Our line-charge measurements and the

theoretically expected values seem to be in general agreement.

Our third diagnostic measures the (axially averaged) radial density pro¯le of the

plasma. The pin-hole charge collector is placed on a linear motion feedthrough which

allows us to move the pin-hole (and charge collector) in a line perpendicular to the

trap axis. We move this pin-hole to various positions along this line, and by measuring

the charge each time we are able to acquire a map of the radial distribution of plasma

density (averaged over the plasma length, of course). If the plasma were dumped in

sections, we acquire the radial density maps of each section, allowing us to compare

the radial pro¯les of the low-¯eld region with that of the high-¯eld region.

From the `line-charge' measurement and the measurements through the pin-hole

of the charge density along the axis we acquire knowledge of the charge distribution

of the plasma. The description of the plasma would be complete if we knew the

velocity distribution of the particles at each point in the plasma. At present, there

is no diagnostic that measures the entire velocity distribution of an electron plasma.

(Techniques using laser-induced °uorescence have been used very e®ectively to study

the velocity-space dynamics in a pure-ion plasma [34] but there are no bound states

for the free electron, and this technique does not work for pure electron plasmas). We

content ourselves with the assumption that even if the temperature is not uniform

across the plasma, the velocity distribution is everywhere a Maxwellian. We can

leak out the electrons at the high-energy tail and estimate the temperature by ¯tting

this charge signal to a Maxwellian, giving us the temperature at the radial center

of the plasma; this method has been described in greater detail in Chapter 3. Since

most experiments allow the plasma to equilibrate for at least a few electron-electron

collision times, the assumption that particles are Maxwellian at least along ¯eld lines

appears a good one, and seems to be adequate to describe the data.

The extremes of plasma behavior are expected at the limit of cold, high density

plasmas on the one hand, and hot, tenuous plasmas on the other. We cover these
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limits, and the parameter region in between, by lowering the density, or increasing

the temperature of the plasmas' initial state which is cold and dense.

We have not tried a combination of `splitting' and heating, since it was not nec-

essary to cover the parameter range of interest.

As we described earlier the axial gradient across the length of the plasma is varied

by placing the dewar in di®erent axial positions in the magnet bore. We have taken

data on the `two-split' experiment and the line-charge measurement with the trap

placed in two positions - one with the dewar °ange about 9 cm from the magnet

bore end, and another with it pulled out to about 25 cm. Since we know the ¯eld

distribution of the solenoid magnet in the entire region relevant to the experiment

we can ascertain the magnetic ¯eld pro¯le across the length of the trap in any axial

position.

We also took data on comparing the radial pro¯les of the two-split plasma, and

these data were taken with the trap placed in between these positions, with the dewar

pulled out 16 cm, where the e®ect was most likely to be observed.

All our data was taken with the solenoid charged up to a maximum ¯eld strength

of 3 Tesla (30 kGauss); a large ¯eld provides a longer lifetime and a faster cooling

rate for the plasma.

In the following sections, we will describe how we create the plasma equilibrium

and control its density and temperature. Next, we cover how the diagnostics were

used to reveal features of the plasma equilibrium, and compare these observations

with the global thermal equilibrium theory of Chapter 2. Where the observations

deviate signi¯cantly from the theoretical prediction, plausible explanations are given

for the di®erence.

4.2 Creating the Plasma Equilibrium

To study the plasma equilibria we need to be able to produce plasmas where

we can control the radius, density and temperature in a reproducible manner. The

theory of Chapter 2 refers to a plasma that is in global thermal equilibrium. An

electron plasma created in our machine would take a relatively long time to achieve
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this complete thermal equilibrium. This time is limited by the rate of cross-¯eld

transport in electron plasmas. From the observations of the approach of plasmas

toward thermal equilibrium in [14], we estimate that this does not happen in our

plasmas for perhaps 10 seconds or more. For practical reasons, we have chosen to

look at plasmas after a hold time that is much shorter; so we expect that most or

all of the plasmas we have studied for this thesis are not in this ideal state. Yet we

expect that they are all in a Vlasov equilibrium that is some approximation of the

global thermal equilibrium state.

As mentioned in Chapter 3, the electron plasma was created from the thermionic

emission of a ¯lament; the space charge of plasma created was roughly equal to the

(negative) bias on the ¯lament relative to ground, equal to -10 V . An iris placed in

front of the ¯lament, with radius equal to 0.275 cm, allows us to control the radius

of the plasma that was formed since electrons on ¯eld lines outside of this radius do

not make it into the trap to create a plasma. The radius of the plasma created (in

the high-¯eld region) was typically slightly larger than the iris radius, but otherwise

remained reproducible. We used inject times (duration for which the inject gate is

at ground) of 100 milliseconds (ms), since this produced the plasmas with the most

amount of total charge, with the least level of shot-to-shot °uctuation.

In Chapter 2 we showed that the thermal equilibrium state of the plasma in

a mirror ¯eld is completely determined by the values of the parameter ° and the

central density n at a reference point on the axis. Given the values of n0 and °0 we

can calculate the density everywhere else. However, if we are only concerned with the

relative density distribution then all we need is the value of ° at the reference point. °

is, of course, set by the value of the plasma radius and the Debye length at that point.

Since the plasma radii at the high-¯eld end are set by the iris, we can parametrize

all our plasmas by ¸D. Since ¸D /
q
T=n, we can look at all of our data in terms of

the parameter ratio T=n. Dense, cold plasmas and hot plasmas of low density would

be at the opposite limits of plasma behavior, in this viewpoint. High temperatures

are equivalent to lower densities, and vice versa. We begin by creating cold, dense

plasmas; this is a desirable starting point since it is easy to heat the plasma, or lower

its density, to cover the rest of the parameter range. We have not tried a combination
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of `splitting' and heating, since it was not necessary.

4.2.1 Varying the Density

The plasma's total space charge potential, after initial injection, was essentially

¯xed by the bias on the ¯lament, and produced plasmas with a density (averaged over

its length) of about 7£107 cm¡3. We estimate this by dumping the entire plasma onto

the phosphor screen; the resulting voltage signal is translated to a charge value when

multiplied by the capacitance (to ground) of the phosphor screen. We determine this

phosphor screen capacitance by putting it in series with another calibrated capacitor,

and measuring the voltage attenuation when a sinusoidal signal is fed between the

ends. We have an estimate of the plasma radius from the size of the ¯lament iris, and

we are able to con¯rm this from the pin-hole diagnostic. Along with our knowledge

of the plasma length, set by the con¯nement region, this allows us to estimate the

density of the plasma and we have found it high enough to con¯rm the predictions

of our theory. To produce `thinner' plasmas, with lower densities, we use `splitting',

where a section of the plasma is split (by applying a negative bias on an intermediate

gate) and dumped and this sequence is repeated to reduce the density of the plasma

that remains by as much as is desired. The scheme for this is shown in Figure 4.2.

We have been able to reduce the total charge in the plasma by as much as 100 times

less than the initial value, i.e., into the 105 cm¡3 range.

4.2.2 Varying the Temperature

Our method of determining the plasma temperature was described in Chapter 3.

The plasma were created with initial temperatures ¼ 0.7 eV. As described in Chap-

ter 3 we can lower this by holding the plasma for long enough that cyclotron cooling

takes e®ect. After a 3 second hold time we were able to produce reproducible plasma

temperatures of 0.11 eV. This cooling rate is smaller than the theoretical rate given by

the classical Larmor formula for dipole radiation in a 3 Tesla ¯eld. This is because of

the slow radial expansion of the plasma, which causes Joule heating [29], and perhaps

also some residual high-frequency noise on the pulsers that drive the con¯nement
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Figure 4.2: The `splitting' scheme to lower the plasma density. The split-dump-
expand procedure may be repeated many times to reduce the density by a factor of
over » 100.

gates, which may cause some heating during the hold period. However, temperatures

of about 0.4 eV were low enough to con¯rm the high-density, low-temperature limit

of our theory and this temperature was obtained after a hold time of only 1 second.

Thus, we chose our hold times to be 1 second long; longer times would correspond-

ingly lower the rate at which we acquired data (We typically averaged over 25 shots

for each data point). We noticed that the temperatures of plasmas whose density

had been reduced by `splitting' also remained near 0.4 eV, after a 1 second hold time.

The measurement of low temperatures (less than 0.7 eV) was complicated by high-

frequency noise coupling into the charge signal, from the dump pulser. We included

a circuit on the output of the dump pulser to reduce the level of this noise.

To study plasmas with temperatures greater than 0.4 eV, we heated the plasma

with 10 MHz `white' noise from a signal generator, fed to G10 for the entire `hold'

time. By increasing the amplitude of this noise signal we were able to create plasmas

with (¯nal) temperatures as high as 12 eV. The ¯nal observed plasma temperature

as a function of the heater noise amplitude is shown in Figure 4.3.

This heating method also caused the total plasma charge to change considerably.
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Figure 4.3: Final plasma temperature vs. heating noise level

As the amplitude of noise signal from the signal generator was increased from 0

to 200mV the amount of plasma charge, at the end of the hold time, also increased.

We have assumed that this was due to ionization of the background neutrals, which

increases as the plasma electrons become more energetic.

However, above a certain noise level, we noticed that the total plasma charge

began to decrease as a function of noise amplitude. This decrease may be due to

the fact that the electrons were getting hot enough that the hottest electrons may be

slowly being evaporated over the -80 V con¯nement gate potentials [35]. We noticed

that we were able to reduce this e®ect somewhat by passing the noise signal through a

high-pass ¯lter with cut-o® at 20 kHz. We found that this also allowed us to vary the

temperature more smoothly as a function of the heater amplitude. We have used the

¯ltering for all levels of heating amplitude, and the measurements shown in Figure 4.3
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were performed with the ¯lter included in the heating circuit. The plasma charge at

a heating level of 1.3 V was about one tenth the charge at 0.2 V, even as the ¯nal

temperature was nearly three times bigger.

When observing plasmas that have been heated to high temperatures, we tried

to include as much of the dumped charge signal as possible into our analysis of the

temperatures; this eliminates the problem that the high energy end of the Maxwellian

tail may be depleted through evaporation over the con¯nement gates.

During the entire time of the hold, we kept the diocotron mode suppression on,

to kill any stray o®-axis drift of the plasma (The o®-axis dioctron mode and its

damping through feedback is described in Chapter 5). After the 1 second heating,

the plasma was held quiescent for 50 ms, with no feedback or diocotron suppression,

before any measurements were made. This `quiet' time allows collisions to thermalise

the electron velocity and density distributions, at least along ¯eld lines.

Thus, starting with cold, dense plasmas we were able to cover the entire parameter

range necessary to con¯rm our theory, by lowering the density, or alternatively, raising

the temperature. Reductions of a factor of 100 in the density n and increases in the

temperature T of over a factor of 10 were easily achieved, and we have been able to

cover a range of more than two orders of magnitude in the relevant parameter T=n.

4.3 Density variation with Magnetic Field

The simplest theoretical prediction of a plasma in an axially varying magnetic

¯eld is the variation of the volume charge density of the plasma along the axis. We

have used a simple technique to sample the density in symmetrical sections of the

plasma, located in regions with di®erent values of the magnetic ¯eld strength (and

axial ¯eld gradient).

When the plasma is dumped, the charge that reaches a particular point on the

charge collector at one end of the trap gets there by following the magnetic ¯eld lines.

If this charge is collected through a pin-hole, we collect all the charge in the volume

that is mapped by the ¯eld lines from the pin-hole back into the plasma. If the plasma

is split along its length, and dumped in sections, we are able to sample the volume
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determined by the `mapped cross-section' of the pinhole, as shown schematically in

Figure 4.4.

Figure 4.4: Measuring density from two sections

Since we know the ¯eld strength everywhere along the axis we know the (relative)

volumes of the region whence came the charge that made it through the pin-hole.

Dividing by the length of the section which issued the charge signal, and the mapped

cross-section of the pinhole, yields the volume charge density of the plasma in each

section (averaged over the length of each section, of course).

As shown in Fig. 4.5, the trap is symmetrical about its mid-point; gates of equal

length are located at equal distances from this mid-point. Gates G5 and G9, for

instance, are both 1 inch long and located 6 inches from the corresponding ends of

the trap. If G12 and G2 were used as the inject and hold gates respectively, then

applying a high negative bias to G5 and G9 simultaneously would split the plasma

into three sections, the outer two being of the same length. The two sections of equal

length are located in regions with a di®erent magnetic ¯eld strength.

As mentioned earlier, we hold all plasmas for 1 second each. The heating, if

necessary, is done during the duration of the hold time. Any `splitting' to reduce

density is performed before the hold time. At the end of the `quiet' period of 50

ms which follows the hold we split the plasma into three sections by rapidly applying

negative biases on G5 and G9 simultaneously. It is important to perform this splitting

on the two gates as symmetrically as possible. Both gates are connected to the same

pulser to achieve this. About 60 microseconds (¹s) after G5 and G9 are biased

negative, to -80 volts, we ground the 'dump' gate G2, to let out the section of plasma

that is trapped between G2 and G5. Soon after the plasma is split into three parts,
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Figure 4.5: Gates' scheme for the Cryogenic Electron Trap

with G5 and G9 driven by the same high voltage pulser, we use a relay to switch G9

to another pulser. This pulser ensures that G9 stays negative even after the pulser

connected to G5 goes to ground, dumping the middle section of the plasma. About 10

ms after the ¯rst section is dumped to the diagnostic, we dump the middle section by

grounding G5. About 25 ms after the middle section is dumped, the pulser connected

to G9 goes to ground, causing the third and last section to be dumped to the charge

collection diagnostic.

When each section is dumped it is important to ensure that the plasma is centered

as close as possible to the trap axis before it exits the trap, that is, there is no

large amplitude diocotron oscillation present. This is to ensure that the pin-hole

only samples charge from the radial center of the plasma, and not from its edges.

The `splitting' gates switch from ground potential to -80 Volts in less than a few

microseconds. This relatively fast potential change can induce the plasma in each

section to drift o®-axis, initiating a diocotron mode. We found that by dumping the

¯rst section almost immediately after the splits have occurred (about 60 ¹s later),

such drifts are minimized, and the plasmas remain close to the center of the trap.

Similarily, after the middle section is dumped, we keep diocotron suppression on for

about 25 ms on the sectors of G11, to ensure that the last plasma section is pushed

back to the axis of the trap. We do not worry about this problem for the middle

section since we generally do not include this section of plasma in our analysis.

It is important to ensure that the four high-voltage pulsers used to produce a split
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plasma are all equivalent. This means that they all go to the same negative bias

of -80 V when pulsing, and go to 0 Volts (within 10mV) when they are supposed

to be at `ground'. This ensures that the plasmas in the `front' and `back' sections

are treated equivalently. A higher negative bias on one end pulser, for example, will

squeeze the plasma length in that section more, resulting in the two sections seeing

di®erent conditions during the splitting process.

Once a section is dumped, it leaves the trap region along the magnetic ¯eld lines,

toward the charge collection diagnostic. Given knowledge of the magnetic ¯eld along

the axis of the trap, we can measure the volume charge density in the two sections

of the plasma, one of which is in a region with where the average ¯eld is low and the

other where the average ¯eld is a factor of 1.5-3.0 higher. As mentioned earlier, we

allow each dumped section of the plasma to hit a plate with a 0.279 cm pin-hole in

the center. Behind the pin-hole is another plate that collects the charge that makes

it through the pin-hole. As described in Chapter 3, both these plates are placed in

a grounded copper housing which provides adequate electrostatic shielding, reducing

coupling noise on the measurements of small signals. Both the plate with the pin-

hole and the back-plate behind it are independently connected using shielded coaxial

conductors. I typically bias the front plate to +60 Volts, using a battery; a voltage

this high seems necessary to make sure that all the charge makes it out of the trap.

The back plate, where the charge through the pin-hole is collected, is biased at +90

Volts. The other end of the biasing battery box (a series of standard batteries) is

connected to a Voltage pre-ampli¯er (a Stanford Research Systems 560 ampli¯er),

typically operated with a gain of 100.

The oscilloscope trace of this ampli¯er output will show three distinct charge sig-

nals, separated in time from each other. The RC decay time of each charge dump

signal is about 2 ms resulting from the 100 M  input impedance of the SRS ampli¯er

and capacitance of the back-plate+cable to ground. Each charge dump can be ob-

served distinctly because, as mentioned earlier, they are separated by at least 10 ms.

Digital background subtraction was used to eliminate the e®ect of electrical coupling

(from the switching voltages on the dump gates) from the total signal traces on the

scope. This subtraction was most accurate with the oscilloscope on a fast time scale
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(» 10¹s/div), so we observed the dump signals from the front and back sections of

the plasma on separate scopes with each scope being triggered by the dump pulser

that grounded the appropriate gate.

To acquire the signal entirely due to coupling in the vicinity of each dump, we

turned the plasmas o® by biasing the ¯lament positive, and averaged over 25 scope

acquisitions of the coupling signal. The charge signals were also averaged over 25

shots. Since there was 10-15% shot-to-shot variation on some plasmas, we made sure

we started and stopped the acquisitions on both scope at the same times, in order to

ensure that they both had averaged over the same set of plasmas.

Let us consider what we expect of the charge signals for a plasma that is cold and

dense. As pointed out in Chapter 2 we expect the density along the plasma's axis

to scale with the magnetic ¯eld strength. Yet the volume of the region sampled by

the pinhole must be inversely proportional to the magnetic ¯eld strength, since the

charge follows the ¯eld lines. Thus, for a cold, dense plasma, the total amount of

charge collected from each section through the pin-hole must be very nearly equal.

In the case of a high-temperature, low-density plasma we expect the density to

be essentially constant along the length of the plasma. This means that the charge

signals observed through the pin-hole from the front and back of the plasma will be

proportional to the volume sample from each section. The signal from the low-¯eld

end will then be greater than the signal from the high-¯eld end by a factor equal to

the ratio of the (spatially-averaged) magnetic ¯eld strength in each section.

Our experimental results con¯rm these expectations. We have created plasmas

with varying densities, using the `splitting' method, and graphed the ratio of the

pin-hole charge signals from the low-¯eld and high-¯eld regions. This is shown in

Figure 4.6, for the trap axial position that corresponded to a magnetic ¯eld ratio of

» 2:1 in the two regions. The temperature of the plasmas remained ¼ 0.4 eV, even as

the densities were varied. The predicted dependence according to Chapter 2 is also

shown. We see that the ratio of signals varies from little more than 2 for low-densities

plasmas to nearly unity for high-density plasmas.

The agreement between theory and data is less precise at the low-density limit. We

do not have an explanation for this, at the present moment. It is quite possible that
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in this limit of low-collisionality (the densities are low), the experimental equilibrium

is quite di®erent from the theoretical case treated in Chapter 2 but it quite possible

that the discrepancy is due to an e®ect of the splitting process itself, and may not

re°ect the actual plasma densities.

Figure 4.6: The density ratio in the two regions vs. plasma density. The temper-
ature for all the plasmas remained ¼ 0:4eV. The prediction according to the global
equilibrium theory of Chapter 2 is also shown for comparison

We also measured this density ratio by varying the temperature of the plasmas.

However, as mentioned earlier it was not possible to change the temperature of our

plasmas without a®ecting the density of the ¯nal plasma state. Since we were unable

to take data by varying T , while holding n constant, we decided to parametrize our

temperature variation data according to the ratio T=n. Hot, tenuous plasmas would

have large values for this parameter, while cold, dense ones would have lower values.

Our results for such a scan in temperature are shown in Figure 4.7, taken at the same



75

axial position, with ¯eld ratio » 2:1. The horizontal axis is presented in convenient

units.

Figure 4.7: Experimental results of the pin-hole charge, from a range of plasma
temperatures. The theoretical prediction is also shown for comparison

Once again, we have good agreement between theory and the data in the regime of

cold, dense plasmas but they deviate considerably when the ratio T=n gets large, as it

does for a hot (or low-density) plasmas. Of course, this is the limit where the collision

frequency (due to the large T ) is low and the plasma may not yet have reached the

global thermal equilibrium state described in Chapter 2. The splitting process too

may a®ect the measurement for hot plasmas, although at the moment, we have no

consistent model of how this happens.

From our theory of Chapter 2 we expect that the behavior of cold, low-density

plasmas will be equivalent to the behavior of hot plasmas of higher density; if two

plasmas have the same value for T=n, then their equilibrium properties, such as the

distribution of relative density must be the same. We can infer the volume charge

densities in the two regions from our knowledge of the axial magnetic ¯eld pro¯le. To

recover the density in each region, we divide each signal by the value of the (average)
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magnetic ¯eld in that section. The results of both the density and temperature scan

versus the parameter T=n are shown together in Figure 4.8. For reference, we also

indicate the locations of two plasmas, at extremes of the parameter range. Also shown

is a similar set of data from the trap in the other axial position, where the gradient

is smaller, and the ¯eld ratio is » 1:2. The theoretical curves are also shown.

Figure 4.8: The ratio of the densities, as determined from the pinhole charge vs. T/n.
The n and T values for two plasmas are also shown.

The agreement is very good for cold, high-density plasmas, that is, for plasmas

with a low value for T=n. Here the ratio of the densities is essentially the ratio of the

magnetic ¯eld strengths averaged over the two sections. As we go toward larger values

of T=n, that is toward hotter and more tenuous plasmas the agreement between the

theory and data is less precise, but the trend is de¯nitely toward the ratio approaching

unity.

We may speculate that a plausible reason for the less-than-perfect agreement

between the data and our theory is that the plasmas we created were not in global

`shear-free' thermal equilibrium. This could mean that the angular frequency of the
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rotation of the plasma ! is not constant across the ¯eld lines, even if the values

for this parameter were uniform along these lines. The mechanisms which causes

the radial velocity pro¯le to relax to the `shear-free' state are not well understood,

but it is expected to be mediated through electron-electron collisions. The collision

frequency º » n=T 3=2, and the collisionality is reduced in the limit of low-densities

and/or high-temperatures. It is possible that the experimental plasmas do not have

a `°at-top' distribution in !. This would mean that the radial density distribution is

not `°at-topped' either, and the diamagnetic drift makes a substantial contribution

to !. Since our estimates of the density ratio depend on the assumption that ! is

constant throughout the plasma, the experimental density ratios may then di®er quite

signi¯cantly from the theoretical case.

Why does this `splitting' diagnostic yield sensible results ? Any section of the

plasma is by itself a valid equilibrium con¯guration. Thus we expect the `splitting'

process to preserve the original properties of the equilibrium if it does not cause any

gross rearrangement of the charge along the ¯eld lines. That the agreement between

the theory and the data is surprisingly good leads us to believe that this may indeed

be the case. The plasma is split by voltages on the gates G5 and G9 which drop to

-80V from ground in less than a few microseconds. Both gates are relatively small (1"

long each), and any charge contained in them would make only a small addition to

the charge in the split sections. Ideally, we would like to drive this negative voltages

as quickly as possible to split the plasma faster than any of the time scales that might

rearrange the plasma charge in the split sections such that they are di®erent from

the distribution in the initial equilibrium. However, the speed of the HV pulsers are

limited by the Tektronix PG505 pulse generators which are unable to ramp up to

voltage faster than a microsecond. This time scale is comparable with the typical

`bounce' time of the electrons in the plasma - the time for an electron to travel across

the plasma with its thermal velocity along a magnetic ¯eld line - the bounce time is

1¹s for a 1 eV electron in a 40 cm long plasma. Yet the situation is better than at

¯rst appears; the space charge potential of the plasma, the potential at the center

¯eld line is never more -15 Volts, and the gates potential needs to be only of this order

to split the plasma. The splitting gates may achieve this potential in less than the



78

bounce time, preventing any substantial rearrangement of charge along the length of

the plasma. Note that the splitting does occur faster than the rotation time for the

plasma about its axis; for a 5£ 107 cm¡3 plasma in a 2 Tesla ¯eld, for example, this

time is about 30 ¹s.

Another point of concern is that the splitting of the two sections does not occur

equally because there is necessarily a potential variation along the axis of the plasma.

For a cold plasma this potential di®erence is T ln(´) (´ is the mirror ratio), and is

typically less than 1 Volt. This variation is much less than the space charge potential

of these plasmas » 10 V. For hot plasmas, the density variation along the axis is

small, and the potential variation is also substantially smaller than the plasma space

charge potential.

4.4 The Line Charge density

Another method of diagnosing the equilibrium of an electron plasma in an axially

varying ¯eld is measuring the variation of the total line charge density of the plasma

along its length. Except for the end gates, the gates of the trap which con¯ne the

plasma are at ground potential. Since these cylindrical conductors stay at ground

through the entire hold period, Gauss' law for electric ¯elds requires that the presence

of a (charged) plasma within them must be balanced by an equal amount of charge

(of opposite sign) that °owed into the conductor from ground. When the plasma

in the interior is dumped, the charge in the conductor returns to ground, and the

resulting voltage across the cable capacitance can be observed on an oscilloscope. We

can measure the amount of this charge for each gate and this provides us with an

experimental measurement of the line-charge density of the plasma along its length.

The measurements were performed by attaching each gate to a cable which led to

a scope. We measured the capacitance of each gate, with the (same) cable attached,

by placing it in series with a known capacitor and measuring the voltage across the

cable+gate combination, with a ¯xed amplitude sinusoidal signal being fed across

the ends of both capacitances. The gates, along with their internal wiring within the

vacuum chamber, usually had a capacitance of a few hundred pf; the capacitance in
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the measurement was dominated by the over 30 feet of 30 pf/ft BNC cable that ran

between the chamber and the oscilloscope. (Almost all our electronics was located in

room di®erent from the one with the superconducting magnet and experiment; the

scopes would not be able to operate in the high-magnetic ¯eld-hence the long cable

length). Knowing the capacitance of the cable+gate combination in each case allowed

us to calculate the charge from the voltage signal measured on the scope.

We varied the plasma temperature and density as described earlier, and measured

the charge on each gate, for each value of T and n. When a low-density plasma

is dumped it becomes di±cult to measure the voltage on the gates; the signal is

barely visible above the noise. This problem becomes more pronounced when there

is a substantial level of coupling between the dump gate and the gate on which the

charge signal is being measured; this coupling often occurs between the wires leading

to the gates, within the vacuum system, and can be substantial even if the gates

themselves are not near each other. As the dump gate is switched to ground from -80

Volts, the coupling on nearby gates can overwhelm the much smaller signal generated

by plasma exiting the gates.

We devised a method to reduce the level of this coupling when the signal is ob-

served on the scope. This coupling signal is proportional to the voltage switching

signal on the dump gate, that is, it has the same time structure. We built a circuit

that takes the signal obtained by inverting the output of the pulser which drives the

dump gate and feeds it to the same input of the preampli¯er that also looks at the

actual gate signal. To observe only the coupling level on the scope we turned o® the

plasma, by biasing the ¯lament positive. We looked at the output of the ampli¯er on

the scope, which is a sum of the coupling signal from the gate and the inverted signal

coming directly from the pulser. Using our circuit we were able to (smoothly) adjust

the gain on the inverted signal fed into the input until it cancels out the coupling

signal from the gate, fed into the same input. When this pure coupling signal has

been eliminated we start producing plasmas again, to see the e®ect due to the charge

alone. We continue to use digital background subtraction to eliminate any residual

e®ect of the coupling on the total signal.

This technique allows us to measure charge signals on the scope that are much
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Figure 4.9: Relative line charge density across the trap for plasmas at various tem-
peratures (and densities). The theoretical (spline-¯t) curves are also shown for
comparison.

smaller than the coupling level; this makes possible observations of plasmas with very

low density, in the 105 cm¡3 range.

Our experimental observations of the the line-charge for plasmas with various

values for the density and temperature are shown in Figure 4.9 and Figure 4.10. The

trap axial position in the magnet bore corresponded to a ¯eld ratio across its length

of » 2.1 .

We can see that the experimental measurements of the line-charge density are in

reasonable agreement with the theoretical curve ¯ts. As we mentioned earlier, it is

likely that ! is not constant across the ¯eld lines, a requirement for the theoretical

model, and this may explain some of the discrepancies observed.
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Figure 4.10: Relative line charge density across the trap for plasmas at the same
temperature ¼ 0:4eV, yet at di®erent densities. The theoretical (spline-¯t) curves
are also shown for comparison
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4.5 The Radial Pro¯les

The pin-hole can be moved in a line perpendicular to the trap axis, so we are

able to measure the charge collected through the hole at various points along this

line, thus measuring the radial density pro¯le of the plasma. If the plasma is dumped

in sections, as it is in the `two-split' experiment, we can simultaneously measure the

radial pro¯les of both sections. The pin-hole is located in a region where the magnetic

¯eld is much smaller than the maximum axial value, so the plasma expands as it leaves

the trap. Such a map is shown in Fig. 4.11

Figure 4.11: The radial pro¯les of two sections. lo-¯eld density n=4x107cm¡3, T =0.4
eV

We can recover the actual density pro¯les of the plasma by scaling the pro¯le mea-

sured by the pin-hole by
p
B. If the plasma pro¯le were to follow the magnetic ¯eld

lines across the low- and high- ¯eld regions then the two pro¯les shown in Fig. 4.11

would fall upon each other; however, it is clear that the pro¯le of the high-¯eld sec-

tion is narrower, and falls to zero from its central value faster than the pro¯le of the

low-¯eld region. We have presented the data on a semi-log plot to better emphasize
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the di®erence between the pro¯les. This demonstrates that the plasma is smaller in

radius in the high-¯eld region than would be obtained by following the magnetic ¯eld

lines from the low-¯eld region. Also the scale length of density fall-o®, the Debye

length, is smaller in the high-¯eld pro¯le, indicative of the greater density in that

region.

In the axial trap position chosen for the measurements in Figure 4.11, the ratio

of the (averaged) ¯elds in the high-¯eld and low-¯eld regions is 1.35. For the plasma

parameters shown, the ratio of the low-¯eld radius to the high-¯eld radius is about

1.25. This is larger than the ratio ¼ 1:1, inferred from Figure 4.11. We have no

explanation for this discrepancy other than that the plasma may not have reached

global thermal equilibrium, and that ! may not be constant across all the ¯eld lines.

(It also appears that the `center' of the high-¯eld radial pro¯le does not coincide with

the center of the low-¯eld pro¯le. A plausible explanation for this is that the high-

¯eld (and low-¯eld) sections of the plasma may be slightly displaced from the trap

axis during the splitting process. When the two sections are dumped, they follow the

magnetic ¯eld lines out of the trap and arrive at slightly di®erent positions on the

charge collection diagnostic.
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Chapter 5

Diocotron oscillations in an Axial

Field Gradient

5.1 Introduction

Perhaps the simplest and most commonly studied collective mode in a pure elec-

tron plasma is the m = 1 diocotron mode oscillation. In this mode, the plasma's

rod of charge revolves around the trap axis. When the plasma rod of charge is dis-

placed from the axis of the grounded conductors of the trap, it interacts with the

electric ¯eld of its image charge on the trap walls, which together with the axial mag-

netic ¯eld B, causes the plasma to ExB drift about the trap axis. In conventional

Penning-Malmberg traps, with an axially uniform B this mode is very stable, lasting

for » 105 cycles or more, without growth or decay [36]. The frequency of the mode is

proportional to the line charge density of the plasma, and inversely proportional to

the magnetic ¯eld strength.

We have found that diocotron-like oscillations persist in our traps, over » 1000

cycles, even with a substantial axial gradient in the magnetic ¯eld. This is surprising

surprising, since we might expect the plasmas to smear out azimuthally on a much

shorter time scale.

In this chapter, we ¯rst provide some background on the m = 1 diocotron mode

in electron plasmas. Then, we describe our experimental observations of long-lasting
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modes in our trap with an axially varying magnetic ¯eld. Lastly, we discuss a plausible

explanation for why this mode survives for an unexpectedly long time.

5.2 The m = 1 mode

Azimuthal surface waves on a cylindrical plasma in a Penning trap take the form

±r / cos(mµ). For m = 1, this wave is accurately described as the bulk displacement

of the plasma from the axis of the trap. Since the plasma is in a conducting cylinder,

it sees the radial electric ¯eld of its image charge on the wall, and performs ExB drift

motion about the trap axis. This is shown in the axial view of the trap in Figure 5.1

Figure 5.1: The m = 1 diocotron mode

For small displacements of the plasma from the trap axis, the angular frequency

of (an in¯nitely long) plasma revolving about the trap axis can be shown to be [36]

!d =
2ec

B

¼nrp
2

rw2
(5.1)
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In this calculation the plasma, and its image on the wall, are treated as line charges

with the same linear charge density, a model that works well even for larger displace-

ments (greater than the plasma radius rp) from the trap center. The mode frequency

is proportional to the line charge density of the plasma, and inversely proportional to

the magnetic ¯eld strength.

The diocotron mode is typically diagnosed by observing the signal on the az-

imuthal sectors on the gates, as shown in Figure 5.1. When the plasma is near one of

the sectors, the capacitance of the sector produces a voltage relative to ground; this

voltage may be ampli¯ed and observed on a scope. As the plasma revolves around

the trap axis, the voltage signal appears as a sine wave at the diocotron frequency.

The frequency of this sinusoid gives us the line charge density of the plasma. The

m = 1 mode is a non-destructive diagnostic of the total charge in the plasma [22]. As

the plasma gets closer to the wall, the motion becomes more non-linear and higher

harmonics appear on the sector signal.

The diocotron mode may be grown and damped out by using feedback, as ¯rst

demonstrated in [36]. In Figure 5.1 if the signal from the sector is ampli¯ed and

fed to the other sector placed at 90o to it, it produces an electric ¯eld which (along

with the B ¯eld) causes the plasma to drift radially outward, increasing the mode

amplitude. If the input signal is inverted before ampli¯cation it has the opposite e®ect

and causes the mode to be damped. By using such feedback, the mode amplitude

can be adjusted to the desired level.

Without feedback, the diocotron mode remains neutrally stable, lasting for » 105

cycles or more [36].

5.3 Diocotron oscillations with an axial gradient

in B

When a plasma is displaced o®-axis in a trap with a uniform axial B ¯eld, its

charge per unit length remains constant along its length. From Eq. 5.1, this means

that any section of the plasma revolves around the trap axis at the same frequency,
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!d, and the plasma stays together over many cycles. Further, all the plasma electrons

zip to and fro between the trap ends at the bounce frequency !b, which is much faster

than the diocotron frequency. The electrons `bounce-average' their azimuthal drifts

across the entire length of the plasma, ensuring that all the particles experience the

same motion in the µ direction over time.

If the axial magnetic ¯eld B varies along the plasma length, however, it is not

obvious that the plasma should stay together as a coherent structure over many

cycles. We may assume that the o®-axis plasma, for small displacements, may be

approximated by the on-axis equilibrium described in Chapter 2. For a cold, high-

density plasma, the line-charge density in the high-¯eld region is less than the line-

charge density in the low-¯eld region (For a mirror ratio of 2, for example, this ratio

is usually between 0.5 and 1). Since the diocotron frequency is directly proportional

to the line-charge density of the plasma, and inversely proportional to the magnetic

¯eld strength we may expect that the high-¯eld end of the plasma will drift at slower

rate, causing the the low-¯eld end to move ahead in µ position. We also expect (from

the description of the on-axis equilibrium) that there are trapped particles at either

end of the plasma, and that bounce averaging will not work for a substantial fraction

of the plasma particles. It may seem then that the displaced plasma should smear

out in azimuth over a few diocotron cycle times.

Such a smearing out, in fact, is not observed until much longer, and the plasma

maintains its integrity and continues to orbit around the trap axis for more than

» 1000 cycles. We have observed such long-lived oscillations in three di®erent axial

positions of the trap in the solenoid magnetic ¯eld; the three positions produced

di®erent gradients across the trap length. To diagnose these diocotrons we have

measured the frequency of the oscillations on the sectors.

We made these observations on cold plasmas (T ¼ 0:7eV), with low-¯eld densities

about 6x107 cm¡3. The plasmas were trapped in the length of the trap between G2

and G12. The high-¯eld end plasma radius was ¼ 0:3 cm. Since the plasmas were

always injected slightly o®-axis, there was an observable diocotron from the very

beginning of the hold period. The displacement of the plasmas from the trap axis

remained less than the plasma radius rp.
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In Figure 5.2,we show the variation of the diocotron amplitude with time for the

three di®erent axial positions. The ratio of the ¯elds at the ends of the trap in these

positions was 1.4:1, 3:1 and 5:1 and we can call them respectively, the `low-gradient',

`medium gradient' and `high-gradient' positions. A qualitative understanding of the

results in Figure 5.2 is easy; the diocotrons last longer in smaller gradients. The

frequency of the diocotrons was typically ¼ 3 kHz; the mode of the plasma in the

entire length of the trap survives for between few hundred to nearly 1000 cycles,

depending on the gradient across it.

The damping of the diocotron due to the gradient in the magnetic ¯eld did not

appear to be a®ected by the trap pressure. The diocotrons seemed to last just as long

with the trap cold, where the ambient pressure would be lower, as they did without

any cooling.

Figure 5.2: The decay of the diocotron signal at three di®erent axial positions of the
trap

We also split the plasmas in two, soon after they are created, by applying a -80

V bias to G7, which is located in the middle of the trap. (See Fig. 4.5) One of the

sections is, of course, in a higher average ¯eld than the other. The diocotrons on the
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G2-G7 section were observed through the sector on G3, and the G7-G12 section was

seen on the sectors on G11. The results are shown in Figure 5.3 and Figure 5.4 for

the case of the `medium-gradient' and `high-gradient' region, respectively.

Figure 5.3: The dioctron signal amplitude for the unsplit plasma and the two split
sections. The axial position of the trap corresponded to `medium-gradient'

We can see that the shorter split sections last considerably longer than the full-

length plasma, in both gradient levels. This makes sense because it is simply much

harder to keep a long plasma coherent than a short one, the change in the drift

velocity being greater over a long plasma. The split sections last for » 1 second, and

so survive more than » 1000 cycles.

We present in Table 5.1 the measured frequencies of the diocotrons, before and

after the splitting occurs.

The diocotron frequency formula given by Eq. 5.1 is for the axis of an in¯nitely

long rod of charge, and does not include ¯nite-length e®ects that produce a slightly

di®erent measured frequency. As described in [37], the mode frequency of a ¯nite

length plasma is greater than the frequency predicted by Eq. 5.1, the di®erence de-
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Figure 5.4: The diocotron signal amplitude for the unsplit plasma and the two split
sections. The axial position of the trap corresponded to `high-gradient'

Gradient Field Ratio Unsplit Split Hi Split Low
low 1.4:1 2.56 2.77 3.45
medium 3:1 2.77 2.38 4.25
high 5:1 3.03 0.96 3.85

Table 5.1: The measured frequencies (in kHz) of the diocotron mode for various axial
positions of the trap, before and after the plasmas are split.

pending on the ratio of the trap wall radius to the plasma length, rw=Lp, and the

plasma radius to the wall radius, rp=rw. We have made such corrections to our

measured frequencies to estimate a `diocotron frequency' that corresponds to Eq. 5.1,

which assumes no ¯nite length e®ects. The values, corrected to eliminate ¯nite length

e®ects, are shown in Table 5.2.

We assume that since we had diocotrons with small amplitude their charge dis-

tribution was similar to that of an on-axis plasma. So we are able to estimate the

variation of the line charge density of the plasma across its length. For the plasmas

we considered this ratio (depending on the trap axial position) was in the range 0.65-
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Gradient Field Ratio Unsplit Split Hi Split Low Weighted Avg.
(corrected) (corrected) (corrected)

low 1.4:1 2.32 2.13 2.87 2.45
medium 3:1 2.52 1.98 3.54 2.71
high 5:1 2.75 0.80 3.21 2.3

Table 5.2: The diocotron frequencies (in kHz) of the unsplit plasma, and its split
sections, after correcting for the ¯nite length e®ects. The weighted average of the
frequencies in the two section is shown in the last column.

0.85. The high-¯eld section of the plasma would have a lower frequency both due to

the higher ¯eld magnitude and the lower line charge density.

In our analysis, we have taken the frequencies of the two sections (corrected for

¯nite length e®ects), and then calculated their average, weighting them appropriately

to include the variation of the line charge density as predicted by the theory of

Chapter 2. If !L and !H were the frequencies of the split sections in the low-¯eld

and the high-¯eld, and ¸L and ¸H the (z-averaged) line-charge densities, then the

weighted average would be given by

! =
¸L!L + ¸H!H
¸L + ¸H

(5.2)

In Table 5.2 we show the frequencies corrected for the ¯nite length e®ects, and in

the ¯fth column, the weighted average of the two sections, according to Eq. 5.2.

We can see from Table 5.2 that agreement between the weighted average and the

`corrected' diocotron frequency of the unsplit plasma is good to within 15¡ 20%.

This suggests that when a diocotron mode exists in a trap with an axially varying

magnetic ¯eld, the plasma particles are bounce averaging their azimuthal drifts across

the length of the plasma, so that the plasma moves as a coherent whole for many

diocotron cycles. The relative line charge densities may be used as a rough estimate

of the fraction of time spent by the typical plasma particle in each section.

How does this bounce averaging come about? We expect that a plasma displaced

slightly o®-axis will also have trapped particles at either end, much like the on-axis

equilibrium of the plasma. However, we believe that since there is a tendency for

the low-¯eld end to revolve faster around the trap axis than the high-¯eld end this
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equilibrium is perturbed enough that the trapped particles are untrapped and are able

to allow the bounce averaging mechanism to continue. The particles are trapped in

the high-¯eld region by a potential di®erence that tends to keep low-energy particles

in that end. If the low-¯eld end moves slightly ahead of the high-¯eld this potential

di®erence (of order T ) may be reduced or reversed slightly to cause particles to become

untrapped and bounce average through the entire length of the plasma. Similarily, the

tendency of the low-¯eld end to get ahead of the high-¯eld end will perturb it enough

that its particles are no longer re°ected back by the space charge of the high-end.

There is another mechanism that also helps preserve the plasma's integrity. If one

end of the plasma begins to lag behind the other end in azimuth (the µ direction),

then the particles from that end will begin to smear out behind the leading end, as

the particles will bounce back and forth along the ¯eld lines. However, we have to

consider that even as the plasma revolves around the trap axis, it also rotates about

its own axis on a much faster time scale. Thus any particles from the high-¯eld

end that have smeared out behind the low-¯eld end will be `wrapped around' to the

front of the low-¯eld end in a time that is much shorter than the diocotron period.

On average these particles do not lag behind the bulk plasma. The scheme for this

mechanism is shown in Figure 5.5, where we are looking down the axis of the plasma

from the low-¯eld end.

The latter mechanism will not be e®ective if a substantial fraction of the particles

at either end are trapped. It is possible that the charge distribution of the plasma

is modi¯ed according to the ¯rst mechanism to allow bounce averaging to happen,

while the second healing mechanism `wraps' the plasma around on itself so that it

does not spread in azimuth.

Even though the diocotron mode persists for a long period, we surmised that the

low-¯eld end of the plasma might be slightly ahead of the high-¯eld end in azimuthal

position. We have no estimate of the value of this phase lead between the two ends,

but devised a method of looking for this e®ect, if it existed in a measurable amount.

We compared the diocotron signals on the sectors of gates G3 and G11, located at

opposite ends of the trap, looking for a noticeable phase di®erence between the two

sinusoidal signals as observed on a scope. There will always be an instrumental phase
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Bulk plasma 

lagging particles are
pushed in front

.direction of
diocotron drift

initial position of plasmaplasma displaced
by diocotron drift

Figure 5.5: The `healing mechanism' for the plasma. The particles that are lagging
behind from the high-¯eld end, are `wrapped around' to the front of the low-¯eld end
in half a plasma rotation time.

shift between the two sector gate signals because they were not aligned perfectly

with respect to each other, an o®set that must be subtracted out to reveal any real

e®ect. We arranged to account for the misalignment by reversing the magnetic ¯eld

direction of the solenoid for the trap. In principle, this reverses the direction of

the(ExB) diocotron drift, and the sign of a real phase di®erence would be reversed.

The sum of the phase shifts measured on the scope from the two ¯eld directions would

give us the value of the real phase angle lag. Although we got this technique to work

reasonably well, we saw no consistent di®erence in the µ position of the plasma at the

two ends. Any e®ect, if it existed, was certainly less than a few degrees, the resolution

of our diagnostic.

5.4 Magnetic Pumping

When an axisymmetric magnetic ¯eld has a gradient along its axis, the Maxwell

equations require that the magnetic ¯eld strength also vary slightly as function of

radius at a given axial position. We have demonstrated that even with substantial

axial gradients there exist diocotron oscillations that are quite long-lived. As pointed
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out earlier, the plasma rotates about its own axis even as it revolves about the trap

axis at a slower rate. The e®ect of this rotation in a trap with an axial ¯eld gradient

is that the electron plasma °uid is advected through regions of varying magnetic ¯eld

strength. We suggest that this should lead to the phenomenon of `magnetic pump-

ing', analogous to the experimentally observed `rotational pumping' in the electron

plasmas at UCSD [38]. We discuss the mechanism behind magnetic pumping and its

signi¯cance in Appendix B.
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Chapter 6

Further Work

6.1 Introduction

The Cryogenic Electron Trap, as described in Chapter 3, was constructed with

the intention of studying electron plasmas at very cold temperatures, in an axially

varying magnetic ¯eld. Although no cryogenic plasmas were studied for this thesis,

they will be integral to future research on this trap. In this chapter we will describe

some of the novel phenomena that are exihibited by these plasmas, while suggesting

the possibilities for further study.

When a pure electron plasma is cooled to low temperature in a strong magnetic

¯eld it enters the `strongly magnetized regime'. This regime is characterized by an

exponential decrease in the anisotropic temperature equilibration rate. The physics

behind this steep decline is discussed in this chapter. When the electrons cool to

cryogenic temperatures, they populate the lowest quantized cyclotron orbits, or Lan-

dau levels. The separation between these energy levels is equal to the energy required

to °ip the intrinsic spin magnetic moment in the external magnetic ¯eld. Therefore,

this is a regime where the electron-spin is expected to have observable e®ects. Chen

and Dubin have calculated the equilibration rate of spin-temperature in a cryogenic

`strongly-magnetized plasma'. This has motivated many ideas for experiments that

involve consideration of the electron's spin in the collisional dynamics of the plasma

electrons. We will discuss some of these ideas in this chapter, providing a background
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for the description of the Spin experiment in Appendix A.

Plasma physics has perhaps been the one realm of modern physics where quantum

mechanics has historically been irrelevant. This situation may be about to change

since Planck's constant ¯nds a natural place in the study of the `extreme' plasmas

discussed in this chapter.

6.2 Strongly Magnetized Plasmas

Electrons performing cyclotron motion in a magnetic ¯eld, radiate away their

perpendicular kinetic energy in cyclotron photons. As the parallel temperature of

the plasma electrons Tk equilibrates with the cooled perpendicular temperature T?

the entire pure electron plasma can cool and come into thermal equilibrium with the

walls of the trap, which can be be cooled by liquid helium, for instance, to 4.2 K.

This cooling mechanism was discussed theoretically in [39], and has been observed

experimentally in [29]. For a su±ciently strong magnetic ¯eld the time-scale to cool

to near the wall temperature (¼ 1.6s for a 3 Tesla ¯eld), is much smaller than the

plasma lifetime .

As the plasma cools, it enters a regime where the typical cyclotron orbit radius

rc becomes smaller than the typical distance of closest approach b = e2=T between

two colliding electrons. When the ratio ² = rc=b ¿ 1 the plasma is said to be in

the `strongly-magnetized' regime [40]. Since rc / T 1=2=B, ² / T 3=2=B, this regime is

achieved only with strong magnetic ¯elds and low plasma temperatures. (Typically

B > 1 Tesla and T < 100K). Even for a magnetic ¯eld as high as 10 T, the temper-

ature has be much lower than 0.1 eV for the plasma to be 'strongly-magnetized'; at

these low temperatures a neutral plasma will have recombined. Therefore, the novel

physics of this regime is not relevant to typical neutral plasmas in the laboratory and

is only observed in pure electron plasmas.

The most remarkable feature of the `strongly-magnetized' regime is the sharp

decrease in the anisotropic temperature equilibration rate in these plasmas. The

theory of the collisional dynamics of such a weakly-correlated plasma was worked

out by Hjorth and O'Neil in [41], and a more comprehensive numerical treatment is
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included in [42]. We describe the basic physics here.

Equilibration between Tk and T? occurs through the energy exchange between

these degrees of freedom when electrons collide with each other. The total perpen-

dicular kinetic energy of two colliding electrons is conserved through the magnetic

moment adiabatic invariant (the magnetic moment is proportional to E?=B). The

perpendicular motion must be perturbed at a frequency higher than the cyclotron

frequency for the invariant to be broken and for energy exchange to occur between

the parallel and perpendicular motions of the colliding electrons. When the plasma is

`weakly-magnetized' i.e. when b is typically smaller than rc, most collisions between

electrons cause a breaking of this adiabatic invariant, and parallel and perpendic-

ular degrees of freedom can equilibrate e±ciently. However, when the plasma is

strongly-magnetized, this is no longer possible. As shown in Figure 6.1, typical colli-

Figure 6.1: Electron-electron collision in a strong B ¯eld

sions between electrons occur such that b À rc which means that vth=b ¿ vth=rc, or

vth=b¿ c, the cyclotron frequency (vth is the electron thermal velocity). The typi-

cal collision produces electric ¯elds with characteristic frequencies much smaller than

the cyclotron frequency. Thus each (typical) collision causes only an exponentially

small breaking of the magnetic moment adiabatic invariant; and only collisions with

the (exponentially) small number of electrons in the Maxwellian tail of the veloc-

ity distribution can cause a substantial breaking of the magnetic moment invariant.

Equilibration, therefore, occurs over an exponentially long time scale.

The decrease in the equilibration rate was experimentally observed by Beck, Fa-

jans and Malmberg. These measurements agree well with the theory in [41] and [42]

and are reported in [1]. The results are reproduced in Figure 6.2
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Figure 6.2: The measured anisotropic temperature relaxation rate for B=6.1 Tesla
from [1]. The mean density was 8x108 cm¡3. The strongly magnetized data is on the
left. The theory is shown for comparison.

6.3 Electron-spin in cold plasmas

At low trap temperatures and strong magnetic ¯elds the electrons cool to the

lowest quantized cyclotron orbits, or Landau levels. The cooling rate, proportional

to B2, is well described by the classical Larmor formula for electric dipole radia-

tion, slightly modi¯ed at low temperatures when quantum e®ects become signi¯cant

[29].The energy levels are given by

EnL = 2¹BB(nL +
1

2
) (6.1)

where nL = 0; 1:: and ¹B is the Bohr magneton. At T ¼ 4K and B ¼ 3 Tesla the

thermal energy kT is comparable to the energy di®erence between these levels. The
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intrinsic spin magnetic moment of the electron is (g=2)¹B, which, since g = 2:002::, is

very nearly ¹B . The energy of spin-°ip in the magnetic ¯eld is then very nearly 2¹BB,

the energy di®erence between the Landau levels. Therefore, at low temperatures and

strong ¯elds one expects electron spin-dependent e®ects in the plasma.

At high temperatures the electron spins point parallel or anti-parallel to the mag-

netic ¯eld in equal proportion. As the plasma is cooled, more spin moments will

tend to relax to the thermal equilibrium state where more moments are aligned par-

allel with the external magnetic ¯eld. Chen and Dubin calculated the equilibration

rate of the spin-temperature, Ts, to the kinetic temperature. This equilibration rate

is rather slow, even when compared with the Tk ¡ T? equilibration rate, but for a

di®erent reason.

The intrinsic moment of the electron, like any magnetic dipole, precesses about the

magnetic ¯eld direction. To cause the spin of the electron to °ip, it must be perturbed

by a magnetic ¯eld perturbation with a frequency component resonant with the spin-

precession frequency p. This ¯eld perturbation must be in the plane perpendicular

to the precession axis, de¯ned by local direction of the magnetic ¯eld B. The spin-

precession frequency p = (g=2)c ¼ 1:001 c, where c is the cyclotron frequency.

As an electron gyrates in the magnetic ¯eld (See Fig. 6.3) at the cyclotron frequency,

an axial variation in the ¯eld will produce in the electron's rest frame a perturbation

±B which rotates in the perpendicular plane at c, as shown in Figure 6.4

Figure 6.3: Electron gyrating in an axially varying magnetic ¯eld

Although c ¼ p, the di®erence between them is still large enough that sponta-

neous coupling between the perpendicular orbital motion and spin precession remains
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impossible. However, a close collision with another electron in an non-uniform B ¯eld

can perturb the cyclotron motion enough to produce frequency components which can

drive a resonant spin-°ip. Therefore, to produce coupling between the perpendicu-

lar kinetic temperatures and the spin-temperature of the electrons, we require close

collisions between electrons in a non-uniform B ¯eld.

Figure 6.4: The magnetic ¯eld perturbation in the electron rest frame

The equilibration rate between the spin-temperature Ts and the kinetic tempera-

ture is calculated exactly in [2], using time-dependent perturbation theory. Some of

the main points of their calculation are mentioned here.

The electron's gyration in an axially inhomogeneous ¯eld produces, in its rest

frame, a small time-dependent ¯eld ±B ¼ r(t) ¢B, where

r(t) = rc(cos(ct+ µ)x̂+ sin(ct+ µ)ŷ) (6.2)

is the radius vector of the electron and µ = µ(t) is used to include the time-dependence

of a collision. It is this time-dependence that will add to the cyclotron motion to make

±B(t) resonant with the the precessional motion at frequency p.

In the transverse (perturbation) ¯eld the spin rotates through an angle given by

¢£ ¼ eg

2mec
j±BRj¢t (6.3)
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where ±BR is the resonant component of the rotating magnetic ¯eld perturbation

in the electron rest frame, and ¢t ¼ b=vth is the duration of the collision. In time-

dependent perturbation theory, the probability amplitude for a spin °ip j¢Cj is equal

to the angle precessed ¢£, where ¢£¿ 1. We may assume that the spin direction

di®uses in a random walk and the spin depolarization rate is estimated as

ºspin ¼ ºcj¢Cj2 (6.4)

where ºc = ¼n¹vb2 is the `large-angle' scattering frequency.

The depolarization rate equation

(
d

dt
x¡)

coll
= ºspin(x+ ¡ x¡) (6.5)

where the x's are concentrations of spin-up and spin-down electrons. The exact result

is in [2]. We reproduce a plot from this reference showing the depolarization rate

as the function of the parameter ², the ratio of the typical Larmor radius rc to

the distance of closest approach b in the plasma, which is less than unity for such

`strongly-magnetized' plasmas. The rates due to other depolarization mechanisms

are also shown for comparison in Figure 6.5.

We can estimate from Figure 6.5 that in a typical plasma, say with density 107

cm¡3, T = 10K, in magnetic ¯eld 3 Tesla with scale length 10 cm, the typical spin-°ip

time is about 100 seconds. Since this is less than the typical lifetime of such plasmas,

we may be able to conceive of two experiments to observe this spin-°ip rate.

If the plasma were cold enough (T (K)/B(Tesla)· 1), then a substantial frac-

tion of the spins would tend to align themselves with the magnetic ¯eld in thermal

equilibrium. By measuring the polarization of an (initially) unpolarized plasma after

sucessively longer hold times, we can observe the approach to thermal equilibrium.

Alternatively, we can start with a polarized plasma, produced by a polarized electron

source, and measure the relaxation to the equilibrium distribution.

The interaction energy of the spin magnetic moment with the external ¯eld ¡¹s ¢B
acts an e®ective potential for the electrons along a magnetic ¯eld line. (By conven-

tion, the spin direction of an electron is antiparallel to that of its intrinsic magnetic
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Figure 6.5: The spin depolarization rate as a function of ² = rc=b = 10¡3T 3=2=B
for di®erent processes. (1)collisional depolarization in a nonuniform magnetic ¯eld.
(2) spin exchange e®ect during electron-neutral collisions. (3) Thomas precession
(4) spontaneous magnetic dipole radiation (5) spin-°ip due to mutually generated
magnetic ¯eld. (6) spin °ip due to electron-neutral collision in a nonuniform magnetic
¯eld. The electron density is assumed to be 107 cm¡3, the neutral density is taken
to be 104 cm¡3; the magnetic ¯eld is 1 Tesla and the scale length of magnetic ¯eld
inhomogeneity is taken to be 10 cm. This plot is reproduced from [2]

moment) It has been suggested in [2] that if there is axial gradient in the ¯eld, then

as the spatial distribution of electrons thermalizes along each magnetic ¯eld line, the

`down'-spins collect in the region of larger magnetic ¯eld while the `up'-spins move

to the region of lower ¯eld, provided that the parallel kinetic temperature kTk is less

than ¹s¢B = ¹h¢p. Here ¢B is the di®erence in the ¯eld magnitude across the

plasma length. This would cause either end of a cold plasma to get polarized, the

degree of polarization depending on Tk, and ¢B.

The experiments described above may be attempted on the apparatus described

in the appendix on the Spin Experiment.
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6.4 Extraction of polarized electrons from an un-

polarized plasma

The energy levels of cold electrons in a magnetic ¯eld are shown in Figure 6.6. We

suggest that the magnetic moment of the electrons, associated with the orbital motion

in the Landau levels, may be obtained by dividing the energy (given by Eq. 6.1) by

B

¹nL = 2¹B(nL +
1

2
) (6.6)

Figure 6.6: Energy levels of an electron in a magnetic ¯eld. The orientation of the
spin-moment relative to the B is shown at right

In the lowest Landau level (nL = 0), the magnetic moment associated with the

orbital motion of the electron is then the Bohr magneton ¹B, and is always pointed

anti-parallel to the magnetic ¯eld. The intrinsic spin magnetic moment of the electron

is g=2¹B, which, since g = 2:002::, is very nearly ¹B. Each Landau level is split into

two further levels, depending on the orientation of the spin magnetic moment in the

external ¯eld B, as shown in Figure 6.6. There is a small energy di®erence, equal to

2¹h!a = (g¡ 2)¹BB between the energy split of the spin orientations, and the energy

split of the Landau levels. This is shown in Figure 6.6, although not to scale.

We have noticed a remarkable fact about the electrons in the ground state. Since

(g ¡ 2)=2 ¼ 0:001 ¿ 1 the electrons in the lowest Landau level, with spin moment
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pointing parallel to the magnetic ¯eld, have a (nearly) zero total magnetic moment.

These plasma electrons would not be re°ected by a magnetic mirror ¯eld, and we

suggest that this property can be exploited to separate them from the rest of the

electrons in the plasma, creating a polarized beam of electrons. All electrons above

the ground state have a total magnetic moment that is at least 2¹B , pointed anti-

parallel to the ¯eld, and will be re°ected in a magnetic mirror. We envision having

the trap axial magnetic ¯eld increasing in the direction away from the plasma in

the dump gate region, creating a magnetic mirror there. As the negative potential

of the gate is raised to ground, almost all the electrons initially making it out of

the plasma through the magnetic mirror will be those with the negligible magnetic

moment. These electrons will have a de¯ned spin-orientation, and a beam of polarized

electrons is obtained.

This method, of course, works best when 2¹B¢B À kTk, where ¢B is the ¯eld

increment in the magnetic mirror( If ¢B = 10 Tesla, easily realized, then 2¹B¢B

then is about 10¡3 eV¼ 10 K) plasma temperatures well below that would be required

for this technique to work well. The temperature of the traps, and consequently of

the plasma, may be lowered below 2 K by pumping on the L He reservoir of the trap.

The polarized electrons will, of course, be drawn from the radial center of the plasma,

where the plasma is most negative, and the number of polarized electrons that can be

extracted at a time is limited by the space charge potential of the plasma, which, after

a certain point, will tend to eject electrons regardless of their spin-orientation. Since

the plasma potential changes by ¼ kT in a radial distance of the Debye length, one

may usefully extract electrons with a de¯ned polarization only from radii r < ¸D. A

10 cm long plasma with density 107 cm¡3, temperature below 10 K, will yield between

104¡105 polarized electrons each time the dump gate potential is lowered. Electrons

removed from the plasma's radial center will be replenished by °uid instabilities which

will ¯ll in the center of the plasma on a fast time scale (100¡ 1000¹s), and collisions

will rethermalize the electron energy distribution on a slower time scale. Since the

electrons will exit the plasma in 100 ¹s or less, it is possible to produce short pulses

of highly polarized electrons. The electrons left behind will be initially depleted of

electrons in the ground state and will reach a higher equilibrium temperature as they
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equilibrate; the electron plasmas are subject to `evaporative' heating. By leaking out

only the electrons in the lowest energy level, and trapping them in a separate section

at a much lower magnetic ¯eld it may be possible to produce separate electron plasmas

with much lower temperatures.

While such a source may not be able to compete with the GaAs-based sources

of partially polarized electrons used as accelerator sources and in surface science

studies, and described in Appendix A, it may be useful in speci¯c cases where a

highly polarized target is needed. The principle of the Penning trap has also been

sucessfully used to trap positrons [43], and the method we have described makes

possible a similar source of polarized positrons, through the modi¯cation of such

traps. This is signi¯cant because there exist no photocathode for producing polarized

positrons, and a source based on such traps may be able to compete with sources

based on radioactive emitters [44].

This method of producing polarized electrons becomes more e®ective if there is an

e±cient way to `drain' electrons into the ground state. As described earlier, plasma

electrons in a cold trap cool by emitting cyclotron photons. The electrons in high-

quantum number classical orbits decay to the lowest Landau levels through electric

dipole transitions, which occur on a fast time scale. If the trap is cold enough,

essentially all electrons, regardless of their initial spin direction, will end up in the

lowest Landau level. The ground state of electrons in a magnetic ¯eld is in the lowest

Landau level (nL = 0), with spin-moment pointed along the magnetic ¯eld, as shown

in Figure 6.6. Electrons that start with their moments aligned with the ¯eld end up

in the ground state, but electrons with spins in the opposite direction get stuck in

the lowest Landau level with spin pointed down. The spin-°ip required to reach the

ground state is a magnetic dipole transition, and occurs on a very slow time scale. If,

however, the plasma is excited by a radio-frequency signal at the 'anomaly' frequency

of !a = (g ¡ 2)=2c, these electrons can be 'drained' out by exciting them to the

nL = 1, with spin-up, from which they can decay quickly to the ground state through

the emission of a cyclotron photon. This method has been suggested in [45]. However,

it is important to keep the plasma cold to make this possible, and it is very likely that

the RF excitation will cause heating of the plasma. Further theoretical investigation
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is needed to determine if this heating will be large enough that the plasma cannot be

maintained at a low temperature (< 10 K).

6.5 Spin-°ips in astrophysics

It has been suggested that the electrons, protons (and some positrons) on the

surfaces of neutron stars may constitute strongly-magnetized non-neutral plasmas.

The extreme gravitational ¯eld (these stars have a radius ' 10 km) and rotational

velocities can produce a large charge separation in the star's magnetosphere [46]. The

temperatures may be very high, T » 106K, but the magnetic ¯elds in the vicinity

of these compact objects are even more extreme and in the range of 108 ¡ 109 Tesla,

and essentially all the electrons will be in the lowest Landau level. The parameter ²

could be less than 10¡3; these plasmas would be `very' strongly-magnetized. When ²

gets down to this level, typical electron-electron collisions only cause an exponentially

small breaking of the adiabatic invariant associated with the spin-precession, and the

spin-equilibration rate declines exponentially.

Although this regime is di±cult to achieve in the laboratory, it may be found in

these pulsar magnetospheres. The energy of the photon emitted as an electron °ips

to align its moment with a 108 Tesla ¯eld is 1-10 keV, and there is speculation that

some of the sharp X-ray emission lines observed in spectra from neutron stars may be

due to such spin-°ip phenomena [47]. Although the spin-°ip rate is greatly reduced

as ² is likely very small, the densities involved (1010¡1012cm¡3) may be large enough

to produce observable emission from such spin-°ips.

Electrons which spin-°ip to align their intrinsic moments parallel with the ¯eld

may no longer be trapped by the magnetic ¯eld lines of the star; this may have

consequences for the star's plasma magnetosphere.
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Appendix A

The Spin Experiment

A.1 Introduction

In Chapter 6 we described the signi¯cance of electron-spin dependent e®ects in

plasmas that have been cooled in strong magnetic ¯elds to near liquid He temperature.

In this `strongly-magnetized' regime the energy to °ip the electron-spin magnetic

moment in the external magnetic ¯eld becomes comparable to the energy in the

quantized cyclotron orbits, or Landau levels.

We have set up the experiment to study such spin-related e®ects in these plasmas.

Although no new physics results were acquired on these plasmas for this thesis, I have

detailed in this appendix the various considerations that have gone into the setup of

this spin experiment. Besides the Cryogenic trap, any such experiment must necessar-

ily have two other main components - a calibrated source of polarized electrons, and

a means of detecting and measuring the polarization in a given collection of electrons.

The GaAs-based photocathode and the Mott polarimeter are devices that have been

proven to meet these needs. We have constructed these devices for this experiment

from modi¯ed designs provided by other groups. Along with the Cryogenic Trap they

make up the main parts of the Spin Experiment.

In this chapter I have detailed the numerous experimental considerations that

arose in the planning and design of this experiment. I have also described the prin-

ciples behind the design and operation of the Mott polarimeter. Similarly, the pho-
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tocathode is described in detail for completeness. Further, I have described how the

experiment is put together around these components.

A.2 Vacuum Requirements

In any experiment involving spin-polarized electron plasmas it is important to

ensure that the electron spins are not °ipped by collisions with neutral gas molecules,

that are present in any trap to lesser or greater extent. Such collisions would interfere

with observation of the interesting spin-dependent e®ects, such as the equilibration of

the spin temperature through electron-electron collisions in an non-uniform B ¯eld.

Of course, this is achieved by maintaining a very good vacuum in the trap region. It is

clear from the Figure 6.5, that the spin-exchange depolarization rate through electron-

neutral collisions will compete with collisional depolarization in a non-uniform ¯eld

when neutral gas densities are 105cm¡3 or more. This density corresponds to a

pressure in the 10¡14 torr range,if the gas temperature were assumed to be near the

temperature of liquid helium, 4K but in the 10¡12 torr range, for the gas temperature

of 300K, assumed near a measuring ion gauge. . However, the vacuum requirement

need not be that stringent since not all gas molecules can cause the undesirable

depolarization of electron spins. The residual gas in a typical ultra-high vacuum is

mostly composed of molecules such as H2 and N2, which only have paired electrons

in their electronic con¯gurations. Each occupied orbital in these molecules has two

electrons, one in each spin direction, as per the Pauli exclusion principle. A molecule

with all its electron spins paired o® cannot cause spin-depolarization. This is due to

the fact that any plasma electron, with de¯ned spin-direction, can only replace an

molecular electron which has the same spin-direction. It cannot replace an electron

with the opposite spin-direction because to do so would put two electrons in the same

spatial wavefunction, but with parallel spins, which is prohibited by Pauli's rule. The

electron exchange would be possible if one of the electrons were excited to another

spatial state, yet the typical plasma electron will not have the energy required to

cause this excitation. As a result, the main residual gas components in a ultra-high

vacuum, such as H2, N2 and He will not a®ect the polarization of the plasma.
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Paramagnetic molecules such as O2, however, have unpaired electrons, in di®erent

spatial valence orbitals. One of these electrons can easily be replaced by a plasma

electron with the opposite spin, a®ecting the net spin of the electron ensemble over

time. In any spin experiment, therefore, it is important to keep the partial pressure

of paramagnetic molecules and atoms below 10¡12 torr. The fraction of such para-

magnetic molecules in the residual gas can be less than 0.1 of the total present and

we may be able to tolerate total gas pressures of 10¡11 torr or more. This is usually

achieved even in room-temperature UHV systems, where the main residual gas is H2

(Molecular hydrogen having both electron spins parallel exists only in a negligible

fraction at room temperature thermal equilibrium. Similarily, the amount of atomic

hydrogen in the residual gas is also negligibly small). When the trap is maintained at

liquid He temperature, all gases except He are condensed on the walls [48], and even

the Helium is removed by the activated charcoal in the trap which is cooled to liquid

He temperature. Thus, keeping the trap cooled by liquid Helium is enough to ensure

that the neutrals concentration is low enough not to be a concern in this experiment.

There is also another important reason to keep a very low level of certain molecules

in the trap. Gases such as O2 and CO are oxidizing agents which can degrade the

quantum e±ciency of the GaAs photocathode, described in Section A.5, over time.

When the photocathode chamber is open to the rest of the trap especially, it is

important that a good vacuum is maintained therein. It is often suggested that

the ion gauge in the system be turned o® during photocathode operation, since the

tungsten ¯laments in some gauges can be a source of oxidizing CO. This is not known

to be a problem with the iridium ¯laments that we use commonly [49].

A.3 Measuring the Polarization

A spin-polarized plasma (or electron-beam) has an greater number of electron-

spins pointing in a given direction (such as along an external magnetic ¯eld) than

the number pointing opposite to it. Any experiment that involves such a plasma

must have a means of measuring the di®erence between `spin-up' and `spin-down'

populations reliably. The standard technique to measure the `polarization' is to em-
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ploy `Mott scattering'. This measures the left-right asymmetry in the scattering of

a beam of transversely polarized electrons o® the nuclei of high-Z materials, such

as gold. The e®ect, which comes about through the coupling of the electron spin

and angular momentum, becomes signi¯cant only at semi-relativistic energies, and is

observed through a Mott polarimeter. It requires that the spins of the electrons be

perpendicular to the momentum; the electron spins must be rotated to transform a

longitudinally polarized beam into a transversely polarized one, and this is achieved

by the `Spin Rotator'. In the Spin Rotator, a magnetic ¯eld is imposed perpendicular

to the beam which causes the spins to precess by 90o, while an electric ¯eld compen-

sates for the magnetic force which, taken alone, would tend to de°ect the beam. The

Mott Polarimeter and Spin Rotator constructed for our experiment are described in

the following sections.

A.3.1 The Mott Polarimeter

Mott scattering is used to measure the polarization, the di®erence between the

number pointing up versus the number pointing down, in a beam of electrons. This

technique and the apparatus used for it are described in detail in two review articles

[3, 50]. Yet I will provide a brief overview here, for completeness.

Mott polarimeters take advantage of the left-right asymmetry in the scattering

cross-section when transversely polarized electrons are backscattered at large angles

by the nuclei of atoms in a target foil. We are looking at the cross-section for backscat-

tering at angles near 120o, so we consider scattering of the electron at small impact

parameter from a nucleus in the target. The origin of this asymmetry may be under-

stood through the means of a classical picture. As shown in Figure A.1, the electrons

incident upon a gold-foil can scatter to the right or left of a gold nucleus.

The motion of the electron in the electric ¯eld E of the nucleus results in a

magnetic ¯eld B in the electron rest frame given by B = ¡v=c £ E, where v is the

electron velocity. If r is the nucleus-electron radius vector, and Ze the nuclear charge,

E = (Ze=r3)r and B becomes B = (Ze=cr3)r£v = (Ze=mcr3)L. Here L is the orbital

angular momentum of the electron, which would carry opposite sign depending on
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Figure A.1: Schematic of Mott scattering

whether the electron scatters to the left or right of the nucleus. The interaction of the

electron-spin magnetic moment ¹s with this magnetic ¯eld introduces an additional

term in the scattering potential Vso = ¡¹s ¢ B. The electron magnetic moment

is related to the electron spin S by ¹s = ¡(ge=2mc)S, where g is the spin-factor

(g = 2:002:: ¼ 2). Vso is therefore given by (Ze2=2m2c2r3)L ¢ S, where an additional

factor of 1
2

is included to account for Thomas precession.

This spin-orbit term in the scattering potential introduces a spin-dependence in

the scattering cross-section ¾(µ) which may be written [51]

¾(µ) = I(µ)(1 + S(µ)P ¢ n̂) (A.1)

where S(µ) is the asymmetry function, I(µ) is the total (including both spins)

scattered intensity, and P is the polarization of the incident electrons. The unit vector

n̂ is normal to the scattering plane, that is, it points in the direction k £ k0 where

k and k0 are the wave vectors of the incident and scattered electrons respectively.

Thus, the direction of n̂, which is parallel to L, depends on whether the scattering

proceeds to the right or to the left, and the sign of the second term in Eq. A.1 is

a®ected accordingly.

The component P of the incident electron spin polarization normal to the scat-
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tering plane is simply,

P =
N" ¡N#
N" +N#

(A.2)

where N" and N# are the number of incident electrons with spin up and spin down

with respect to an axis chosen to be normal to the scattering plane. Scattering

produces counts NL and NR in the left and right detectors as shown and the scattering

asymmetry is

A(µ) =
NL ¡NR

NL +NR
(A.3)

Eq. A.1 would suggest that NL is proportional to N"[1 +S(µ)]+N#[1¡S(µ)]( and

vice versa for NR). Substituting into Eq. A.3 yields,

A(µ) = PS(µ) (A.4)

This expression is the basis of Mott scattering polarimetry. If the asymmetry function

S(µ) is known, measurement of the scattering asymmetry A(µ) yields the polariza-

tion component P normal to the scattering plane being considered. S(µ), termed

the `Sherman' function, after the person who ¯rst undertook the study of relativistic

electron scattering in a point Coulomb ¯eld. This work, and subsequent experimen-

tal measurements, have shown that, for high-Z targets and large scattering angles,

S(µ) can be signi¯cant (» -0.3 to -0.6) suggesting that under appropriate conditions

the left-right asymmetry in the scattering of polarized electrons should be easily de-

tectable. S(µ) has a broad maximum near 120o, and the scattered signal is typically

measured in a range around this angle.

The e®ect is most signi¯cant at semi-relativistic energies (greater than 20 kVolts),

and most polarimeters are operated at this voltage or higher. The scattering asymme-

try increases with the square of the atomic number Z, hence gold foils (Z = 79) are

chosen as the most common scattering target. Generally, the foils need to be thick

enough to maximise the scattered-electron signals. Use of thick targets, however,

introduces e®ects due to multiple scattering within the target. This confounds the

observation of the scattering asymmetry and results in "e®ective" Sherman functions,
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Seff (µ), that are below those expected from the theoretical treatment of single nu-

cleus scattering. As a result, it is important to calibrate Seff (µ) for each polarimeter

design, with its particular choice of target and electron detectors. A known source of

polarized electrons is used for this purpose, and is described in Section A.5.

An important parameter in comparing polarimeter performance is the e±ciency

², de¯ned as [51]

² =
µ
I

I0

¶
Seff

2 (A.5)

where I0 is the current entering the polarimeter, and I is the total scattered current

measured by the left and right detectors. This `¯gure of merit', is proportional to the

inverse square of the statistical error in an electron counting experiment to measure

the polarization of an incident beam. Thus, maximization of ² minimizes the error in

the measured polarization for a given number of incident electrons.

The `micro-Mott' design that we have chosen has ² » 2x10¡5 [3] Although, larger

`conventional' polarimeters have somewhat higher values for ², the small size of this

design is a critical advantage for the experiments we would like to undertake.

The Mott polarimeter is designed to cause a focussed electron beam to scatter

on a gold foil at high energies (¼ 30 kV), and to measure the left-right asymmetry

in the scattered signal near 120o. The e®ective value of this constant is usually

experimentally determined for each type of Mott polarimeter to calibrate it. Our

polarimeter is a slightly modi¯ed version of the 'Micro-Mott' design, provided to

us by the Spin-Physics group at Rice University [3]. A cutaway schematic of this

polarimeter is shown in Fig. A.2 This 'retarded-potential' polarimeters consist of two

concentric hemispheres; the inner one holds the gold foil and is at high voltage of »
30 kV, while the outer is near ground. The electrons are accelerated by the strong

¯eld between the hemispheres, which also strongly focusses the beam at the center

of the foil. One or more lens elements situated before the large hemisphere provide

initial focussing; the voltages on the elements are chosen to optimise the beam focus,

as determined by a charged-particle optics program SIMION provided by DOE, and

are usually between 1 and 3 kV. The focussed electron beam is scattered by the nuclei
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in the target and the backscattered signal is measured by channeltron detectors (from

Galileo Electro-Optics)symmetrically placed in the outer hemisphere, at an angle near

120o.

Figure A.2: Cutaway of a Micro-Mott polarimeter, from [3]

Most of the polarimeter components are machined from 316 non-magnetic stain-

less steel. The inner hemisphere is held by a Macor (machineable ceramic) insulator,

which isolates it from the outer hemisphere. The lens elements are insulated through

the means of sapphire beads, which also provide precise alignment of these parts in

the polarimeter. The 0.005" thick gold foil we used was held in place by a SS ring

which was press ¯t into the center of the inner hemisphere. The entrance apertures to

the channeltrons are held at the potential of the outer hemisphere, i.e., a few hundred

volts above ground. This essentially eliminates the secondary electron emission from
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the gold foil from entering the channeltrons, while still providing enough energy to

the scattered electrons that they excite the channeltron detector. We use the Galileo

model 4716 channeltron which has a gain of about 106 near an operating bias of 2000

V. We require the detector to be always operated in the linear regime, when a pulse

of electrons is incident on it, and a larger bias may drive this electron multiplier into

saturation. A channeltron is essentially a hollow glass tube with a semiconductor

resistive layer on the inside. An incident electron at the entrance excites secondary

electrons which drift toward the positive bias end of the tube, exciting more secon-

daries along the way. The tube is curved to provide a higher gain, as almost all

secondaries are trapped within the tube and do not exit through the opening in front.

So as not to damage the delicate glass we held these channeltrons ¯rmly in place by

caps made of Te°on.

Although we operate both left and right channeltrons at the same voltages, it

is very likely they do not provide exactly the same gain, at any given time. We

also noticed that the gain of these detectors varies slowly with time. It is important

therefore to eliminate such systematic e®ects from the measurement of an actual

scattering asymmetry. Further, it is always likely that there are other instrumental

asymmetries which a®ect the measurement of the actual electron signals in the right

and left detectors. If the incident electron beam is slight misaligned with respect to

the polarimeter axis, or if the beam gets focussed slightly away from the center of

the gold foil, both would result in an apparent scattering asymmetry, which would

interfere with any e®ect related to the polarization of the incoming beam. It is

important to eliminate these systematic errors from any polarization measurement.

This is done by using a calibrated source of polarized electrons, whose polarization

can be reversed easily, without a®ecting any other beam conditions. The part of

the asymmetry between the left and right signals that remains unchanged when the

polarization is reversed is the part that is due to the instrumental errors, since the

scattering asymmetry due to polarization reversal will change sign while retaining the

same magnitude. We have built such a standard source, to be described in Section A.5.



116

A.3.2 The Spin Rotator

The electrons from a photocathode source or electron trap are usually extracted as

longitudinally polarized beams; the spins are de¯ned in the direction of the electron

beam momentum. The spins must be rotated by 90o to make them transversely

polarized. Like a top in a (transverse) gravitational ¯eld, an electron spin magnetic

moment precesses about the direction of a transverse magnetic ¯eld, so this rotation

is e®ected by applying a perpendicular magnetic ¯eld to the beam. If the (angular)

precession frequency is p and time the electron is in the ¯eld is ¢t, the electron

precesses through angle p¢t. The precession frequency is very nearly the cyclotron

frequency (since g ¼ 2) and ¢t = v=l, where v is the electron velocity and l is the

extent of the applied ¯eld B. The angle of precession is then (eB=mc)(v=l); the

electron energy and the applied ¯eld should be set such that this equals 90o.

Since the Lorentz force from the transverse ¯eld will tend to bend the beam, it

must be compensated for by a crossed electric ¯eld. Hence the design of the Spin Ro-

tator is similar to that of an E£B ¯lter, used for mass or velocity selection of charged

particles. In our device a magnet, supplied with a current of few amps, maintains a

nearly uniform ¯eld of about 20 gauss (for electron energies of 500V-1kV) over about

3". The yoke (constructed from magnet iron recovered from the Berkeley Bevatron)

provides a good magnetic circuit. A pair of copper plates placed perpendicular pro-

vide the compensating electric ¯eld; voltages of 200-300 V are applied between the

plates about 1.5" apart. Copper strips, placed on the edge between these plates, and

connected to a string of high vacuum compatible resistors, make sure the voltage

drop is linear between the plates, and ensure that the electric ¯eld is uniform. (A

similar scheme using high-vacuum resistors is now used in the plasma imaging system

in another trap at Berkeley to ensure that the voltage drop is linear and that there

non-axial electric ¯elds in the acceleration region are negligible). Another such set of

plates, placed along the other axis, provides steering in that direction. These steer-

ing plates were placed inside a SS square tube which was attached to the vacuum

chamber housing the Mott polarimeter.
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Figure A.3: Scheme for the Spin Experiment

A.4 Extraction of Trap Electrons

As seen in Fig. A.3, electrons leaving the trap to enter the polarimeter will tend

to follow the divergent magnetic ¯eld lines at the edge of the solenoid. As we move

away from the trap then, the electrons would be collected over a wider and wider

area, with less and less being captured by the narrow optics of the Polarimeter. The

e±ciency of measuring the polarization P of a number of electrons N is determined

by P 2N , and it is important to capture enough trap electrons into the polarimeter

to measure this e±ciently. For this reason, (and also to keep the vacuum chamber

as compact as possible) it is very necessary to situate the Spin Rotator and Mott

Polarimeter as close as possible to the Electron Trap.

A.4.1 The Magnetic Shield

We want the Spin Rotator and Mott Polarimeter to be as close as possible to the

Electron Trap. This means that they would need to be placed in a region where the
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axial component of the magnetic ¯eld, due to the the trap solenoid, would normally

be a few kilogauss. A smaller radial component of the ¯eld would naturally also be

present. The Spin Rotator works by imposing a ¯eld of » 20 gauss perpendicular to

the beam direction. Since electron spins precess about the local direction of the mag-

netic ¯eld, the axial component of the magnetic ¯eld (i.e. along the beam direction)

must be much less than this for the Rotator to work e®ectively. Therefore, a means

must be found to shield the Rotator and Polarimeter from the very strong ¯eld of the

solenoid, i.e. reduce it to a few gauss or below. This is achieved through the Magnetic

Shield, which keeps the polarization detection apparatus in a nearly ¯eld-free region,

yet physically proximate to the electron trap.

Typically, magnetic shielding is provided by materials with very high magnetic

permeability. Magnetic ¯eld lines tend to prefer `°owing' through high-permeability

materials in much the same way that a region of high electrical conductivity draws

away electric current from a nearby region of much lower conductivity. Nickel alloys

such as mu-metal have very high permeability, and multiple layers of these can be to

attenuate ambient ¯elds to very low levels. Such materials provide a `low-impedance'

path for magnetic ¯eld lines and draw them away from the region that needs to be

¯eld-free. However, these materials are also expensive, and only thin sheets (less

than a mm thick ) are easily a®ordable. As they sweep up the ¯eld lines, the ¯eld

density in their bulk becomes very high and they can be saturated easily even with

relatively small values for ambient magnetic ¯elds, a few tens of gauss. Therefore, an

e®ective approach is to use thick layers of cheaper magnetic materials such as steel

to reduce the ambient ¯eld from the kilogauss range to well below 100 gauss, and

then use a layer (or two) of mu-metal to reduce it further to tolerable levels. We used

cylindrical shells of cold-rolled steel, closed at the end facing the magnet, to enclose

the Spin-Rotator and the Mott Polarimeter. It was important that the °anges that

closed o® the shield at the magnet end were welded to the rest of the shield. This

ensured that a continuous high-permeability path was available for the magnetic ¯eld

lines which were diverted from the polarization detector; even a very thin air gap

between the °anges and the body of the shield would have rendered it ine®ective.

The steel shield is made of two coaxial layers, 3/8" and 1/4" thick, each split into
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two halves for ease of assembly. Each layer was also annealed to make it magnetically

soft. A 1" hole was provided in the front °ange, to admit the electrons from the

trap. The magnetic permeability of steel is not constant, i.e. ¹ = ¹(H), and it is

important to try to design the shield so that the °ux density in the bulk material is

close to the region where the permeability is the greatest, and the shielding e±cacy of

the material is at its maximum. Fig. A.4 shows the magnetization curve of a typical

cold-rolled steel alloy. The ¹(H) is, of course, a maximum in the sloping region of the

graphs, corresponding to a °ux density in the bulk material of 2-12 kilogauss and we

designed the shield thickness to make sure that the shield was operated in that range.

In this regime, the shielding ratios in the center of the shield were » 50, close to the

theoretical expectation, and reduced ambient ¯elds from a few kilogauss to below 100

gauss. This was further reduced by two coaxial cylinders of mu-metal, each 0.010"

thick. The 1" hole at the front of the shield allowed a small amount of °ux to leak

in, but this was attenuated toward the interior of the shield. The mu-metal is always

necessary because steel does not have the very high permeability, and may have some

remanent magnetization. We managed to reduce the ambient ¯eld at the position of

the Spin Rotator to below 5 gauss. We may have to use another layer of mu-metal

sheet to reduce to this further. More e®ective shielding is achieved by using multiple

sheets of thin material than a single thick layer, as pointed out in [52] and references

therein.

The shield is composed of nearly 70 lbs of magnetic steel. When it is placed near

the superconducting solenoid magnet, there will be a strong attractive force between

them. We have measured the strength of this force, and it was about 85 lbs when the

central ¯eld of the solenoid was 3 Tesla. This force is much less than the maximum

strain that can be sustained by the supports of the superconducting coil. However, it

is quite likely that the coils were being slightly shifted along its axis, as the shield was

brought into its proximity, a®ecting the charged-particle optics through the trap and

detector. However, once the optics was tuned for e±cient transmission of electrons

through the experiment it remained stable.
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Figure A.4: The magnetization curve - B versus H, in Cold Rolled Commercial
Quality Steel - 24 Gage [4]

A.4.2 Transmission of Electrons through the Shield

As the magnetic ¯eld lines are swept away from the axis of the spin-detection

apparatus, it is , of course, important that the electrons which would tend to follow

the ¯eld lines not be lost to the walls. We have been able to alleviate this problem by

placing a narrow tube, biased at a high voltage, in the part of the vacuum chamber

that passes through the entrance aperture of the magnetic shield. As the electrons

from the trap are accelerated to a high axial velocity, we expected that they will

be able to traverse the region of rapidly changing magnetic ¯eld strength in a time

comparable to the cyclotron orbit period in that region. As this happens we expected

that the electrons may be coaxed o® the magnetic ¯eld lines and enter the spin-

detection region with only a small radial component of the velocity.

We have used this method e®ectively to capture up to 20% of the electrons that

exit the trap. In principle, the transmission is most e±cient when this tube is biased
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at a high-voltage of 10-20 kV. However, we found capture e±ciencies of a few percent

even at voltages as low as » 1 kV.

A.5 The GaAs Polarized Electron Gun

An electron source of known polarization is needed to calibrate the instrumental

asymmetries of the Mott Polarimeter. As described in Chapter 6 using an polarized

electron source we may also create a plasma of known initial polarization and observe

the depolarization rate in this plasma. The most sucessful technology to produce

large currents of polarized electrons are photocathodes made from Gallium Arsenide

crystals. This technology has been developed over the past 20 years and has been

used for two main purposes. Beams of polarized electrons are used to probe the

properties of surfaces through polarized low energy electron di®raction (PLEED) [53].

GaAs cathodes are also used to produce polarized beams for electron accelerators,

such as the Stanford Linear Accelerator, where spin-dependent high-energy scattering

physics is studied. The design we use for this our own experiment is a modi¯ed

version of the SLAC design, provided to us by Greg Mulhollan of SLAC [54]. In

the following sections, I will describe the construction and operation of our polarized

electron source.

A.5.1 GaAs as a photocathode

The source mainly consists of a GaAs-based photocathode: when excited by cir-

cularly polarized light, the electron emission from the photocathode is partially po-

larized, along the axis of the incident light beam. Gallium Arsenide is used to make

reliable polarized electron sources for two prominent reasons:

1. The band structure of this direct band gap III-V semiconductor permits a

given electron spin state to be preferentially pumped from the valence band into the

conduction band, when excited by photons of a given polarization.

2. Its surface can be treated to lower its work function, to permit e±cient emis-

sion of photoelectrons. The band structure of GaAs at the energy maximum of the
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valence band and energy minimum of the conduction band is shown in the left-side of

Fig. A.5. The band energy versus momentum is shown in this ¯gure. The band gap

of the material is Eg=1.52eV; photon energies in the near infra-red or greater pro-

duce photoemission. The electron wavefunctions at the minimum of the conduction

band have S symmetry, while the wavefunctions at the maximum of the valence band

have P symmetry. Spin-orbit splitting causes the P3=2 to be above the P1=2 state

by ¢=0.34 eV. The selection rules for the absorption of right- and left- circularly

polarized photons are ¢mj = +1 and ¢mj = ¡1, respectively, indicated by the solid

and dashed arrows in the drawing on the right-side of Fig. A.5. Photon absorption

proceeds through an electric dipole transition, and the orbital angular momentum

changes by one unit, leaving the electron spin unchanged.

Figure A.5: Band structure of GaAs, from [5]

When a photon, say right-circularly polarized, is incident upon a GaAs crystal,

the photon momentum direction de¯nes the axis of the system. All projections of

vectors refer to this axis. For photon energies E° such that Eg · E° · Eg + ¢

transitions can only occur from the P3=2 states to the S1=2 states. Two transitions

are possible: the P state with mj = ¡3=2 can make a transition to the S state with
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m= ¡ 1=2, and the P state with mj = ¡1=2 can make a transition to the S state

with mj = +1=2. In the ¯rst case, the emitted photoelectron has spin anti-parallel

to the incident photon (and parallel to its momentum direction); in the second case,

the electron spin is parallel to the incident photon momentum (and anti-parallel to

its own momentum). The P state with mj = ¡3=2 is a pure spin state while the

state with mj = ¡1=2 is not; the Clebsch-Gordon coe±cients make the ¯rst transition

three times more likely than the second. The circled numbers in Fig. A.5 indicate the

relative transition rates. Right circularly polarized light incident on a GaAs crystal,

will then ideally produce right-handed electrons with polarization

P =
N" ¡N#
N" +N#

=
3¡ 1

3 + 1
= 50% (A.6)

Absorption of polarized photons excites polarized electrons into the conduction band,

and to make an e®ective photocathode source, these electrons must make it out

of the crystal with su±cient energy. In normal GaAs, electrons at the bottom of

the conduction band need 4 eV to reach the free electron state. Even with a large

applied electric ¯eld, GaAs is a poor photoemitter. However, addition of cesium to

the surface reduces this energy gap; and the further addition of Oxygen produces

the negative electron a±nity (NEA) required for e±cient photoemission. This is

shown schematically in Fig. A.6. The e®ective electron a±nity, de¯ned as the energy

di®erence between the vacuum level and the conduction band minimum in the bulk

becomes negative with the creation of a layer of Cs2O on top of the bulk GaAs. (The

vacuum level remains above the conduction band minimum at the surface). NEA

surfaces are very e±cient photoemitters because the depth from which electrons can

be emitted is not limited by the hot electron mean free path (» 10 ºA) but rather

by the di®usion length (» 1¹m) for electron thermalized to the conduction band

minimum. Quantum e±ciencies (the probability that an electron is emitted when a

photon is incident upon the photocathode surface) can be as high as 10% when the

GaAs surface has been treated with Cs2O. At the near infrared photon energies (800-

950 nm) appropriate for polarized electron production, quantum e±ciencies in the

range 0.1%-0.5% are typical. The quantum e±ency typically increases with incident

photon energy, but usually the polarization of emitted electrons is much less than
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Figure A.6: Energy levels in GaAs, from [5]

the theoretical 50% when the crystal is excited by visible (or higher energy) photons.

[54].

In practice, even with photons tuned to the band-gap, polarizations below the

theoretical best of 50% are observed. This is because the polarized photoelectrons

undergo depolarizing spin-°ip scattering processes in the crystal before they leave

the bulk material. Typically, polarization in the range 40%-45% are common, with

the theoretical 50% degraded somewhat. The crystal has been known to produce

polarizations of 43+/-2% [53], when processed as per instructions from the SLAC

group, and we assume this number for our calibration purposes. The maximum

observed quantum e±ciency (photoelectrons per incident infrared photon) is 10%,

but typically a few percent is easily attainable. More recently, [54], photocathodes

based on `strained' crystals of GaAs have been developed with polarizations in the

range 60-80%. Yet, greater care has to be taken in the treatment of these crystals,

and their quantum yield is much smaller, so we have decided to use the simpler

`unstrained' versions.
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As depicted in Figure A.3 the cathode crystal in the photocathode chamber will

be in a strong magnetic ¯eld. Since these GaAs cathodes have never been operated

in such ¯eld before there is an issue if they will remain una®ected by it. We have

not tested our cathode in the strong ¯eld region, but expect that the magnetic ¯eld

should have no signi¯cant e®ect [55]. A heuristic argument for this is that the spin-

interaction energy 2¹BB ¼ 4 £ 10¡4 eV is much less than the 1.6 eV band gap of

GaAs.

A.5.2 The Construction of the Cathode

Mirror

Polarizer

λ/4 plate 

Cesiator

electron beam axis

30 mW diode laser

In-line Ion pump

Pump cells

HV feedthrough

(Removable) magnets

Photocathode chamber

Figure A.7: The photocathode chamber and the in-line ion pump

Cleaning, activating and maintaining the photocathode requires ultra-high vac-

uum, which stays in the high-10¡11 to low-10¡10 torr range. We have achieved this by

placing the cathode tower, which holds the GaAs crystal, in a stainless steel chamber

8" in diameter. It is was pumped by a 30 l=s ion pump, and had St707 Gettering

strips for additional pumping of CO and other oxidizing gases. The gettering mate-

rial provides pumping when the pumping e±ciency of the ion pump is reduced in the

UHV range. The scheme for this is shown in Fig. A.7.

We used the standard 30 l=s ion pump for testing purposes. When we want to

operate our photocathode in the magnet as shown in Figure A.3, this ion pump will

not ¯t into the magnet bore along with the photocathode chamber. Although not
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yet constructed we have designed an in-line ion pump to provide adequate pumping

between the Cryogenic trap and the photocathode chamber. This design, based on

a similar apparatus developed for beam experiments at SLAC [56], has pump cells

arranged in a circular ion pump chamber that is enclosed by removable magnets

which provide the » 1 kGauss ¯eld needed for e±cient ion pump operation. When

the experiment is moved into the axial magnetic ¯eld of the solenoid, the magnets

are removed, and the ion pump operates e±ciently by means of the external solenoid

¯eld (This ¯eld is typically much greater than 1 kGauss, yet this does not seem to

a®ect the pumping speed of a similar pump demonstrated in our lab).

Figure A.8 shows the `cathode heater tower' which holds the assembly that is used

to heat-clean and activate the crystal. The GaAs crystal is clamped down on to the

Ta holder bottom (3), with the Mo ring (4). Three Moly screws (7) are tightened

against Moly nuts on the other side of the Heater block (1). A Type K thermocouple

(Chromel-Alumel) is attached to the base of (1) with the help of one of these screws.

This thermocouple allows us to monitor the temperature of the heater block during

the heat cleaning procedure. The tungsten ¯lament (10) provides the heating. The

¯lament is supplied by (a pair) of Mo conductor rods (6). The ¯lament passes through

alumina tubes in the heater block which insulate it, and is attached to the ¯lament

conductor rods by screw pads. The heater block is held in place by the hollow cathode

biasing tube (Mo), to which it is tack welded. The entire assembly is held in place

on the °ange with a SS ring (with alumina spacers provide the insulation). It is

placed on the Tantalum base of the cathode heater tower shown in Fig. A.8. The

Molybdenum ring on top holds down the crystal onto this Tantalum base. We use only

refractory metals in the construction of the cathode tower because they have little

oxide contamination and can withstand the high-temperatures of the heat cleaning.

The cathode should only be in contact or close to refractory materials , especially

if those parts are going to get hot. GaAs is very reactive at high temperatures and

should not be in contact with any stainless steel or copper. The heating is done

by a tungsten ¯lament located underneath the Ta base. The Ta base provides good

thermal contact to maintain a uniform temperature over the area of the crystal.

A leak-valve is used to introduce oxygen into the chamber. The leak-valve is at-
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Figure A.8: The cathode heater tower assembly
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tached to the chamber, and the other end is attached through a needle valve to the

oxygen bottle. The needle valve remains closed, with the leak valve all the way open

during the bakeout. We use stainless steel tubing everywhere. It is highly recom-

mended that all tubes and other apparatus are °ushed with the °ow of dry oxygen

before the valves are closed o®. Use of plastic hose here may bring in undesirable

hydrocarbons which may accumulate in the chamber over time. While UHP - ultra-

high purity oxygen (99.994%) is recommended, we had good results with commercial

products which are better than 99% pure.

The cesiator we used was a standard 0.5" SAES Cesium evaporator source, which

was attached to vacuum current feedthroughs, and placed about 1" away from the

GaAs crystal, with the emitting edge pointed towards it. We were able to achieve

adequate cesiation of the cathode by passing currents » 4 A through the cesiator. It

is recommended to pass nearly this much current through the cesiator during the tail

end of the vacuum bakeout to degas it. Since we use a very small heating current,

releasing only a small fraction of the Cesium contained in the evaporator at any given

time, a single evaporator source may be used in the photocathode chamber essentially

forever.

A.5.3 Preparing the GaAs crystal

As described in the previous section, the GaAs crystal must be treated with Ce-

sium and Oxygen to lower its e®ective work-function and increase its quantum e±-

ciency. This processing increases the photoemission of the GaAs crystal substantially.

While the production method for such photocathodes is well-documented in [53], I

will describe some of the main steps below, along with special precautions that we

took.

The technique of cathode activation requires the preparation of an oxide- and

carbon-free surface in an ultra-high vacuum system. The clean surface is then coated

with an alkali, Cs being the most e®ective, while monitoring the photoemission with

a light source such as a laser until the photocurrent peaks. A tremendous further

improvement in yield is accomplished by adding an oxidizer (both O2 and NF3 have
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been used with similar results) at low pressure. The Cs and O2 may be applied

simultaneously, or alternating the two, until the maximum photocurrent is achieved.

Before activation, the crystal must be cleaned to eliminate any oxides or carbon

traces, and to expose a fresh layer of GaAs for activation with Cs and O. The 600 ¹m

crystals are fragile and are typically bonded with para±n to a thicker glass substrate

which protects them during transport and storage. The crystal is separated from

the glass by dissolving away the wax in a beaker of boiling trichloroethane. The

0.5" diameter crystal was then etched in a solution of concentrated sulfuric acid and

hydrogen peroxide, as per the steps described in [54], to eliminate oxides and carbon

contamination. It is then rinsed in high-purity methanol and dried with ¯ltered

nitrogen gas.

The etched crystal, now dry, is now ready for the heat-cleaning procedure in the

ultra-high vacuum cathode chamber, which is pumped down as soon as possible.

While initial rough-pumping is performed by cryo-sorption pumps, the ion pump

produces a higher vacuum. We bake the chamber at a minimum of 250oC for two-

three days. During the bakeout the leakvalve is kept open all the way. A high-

pressure of oxygen on one side of the valve may cause unacceptable oxidation. During

the cooldown after the bakeout, the St707 getter is activated by passing a 35-50 A

heating current through it. It is best to activate the getter when the ambient pressures

are lower than 10¡8 torr, to keep from saturating it at higher pressure. During the

bakeout, and cool down, we typically keep the heater block (and GaAs crystal) warmer

than the rest of the chamber by 40-50oC. The cesiator may be degassed by passing

about 4 A through it for 2 minutes (when the pressure begins to decline) during the

tail end of the bakeout, after the getter has been activated. (A repeat of this degassing

procedure just before reaching chamber base pressure is sometimes helpful) When the

chamber temperature has fallen below about 70oC, the leak valve may be closed and it

is safe to introduce Oxygen gas to the other side. Heat-cleaning of the cathode is done

to create a fresh surface of GaAs for activation to make a photocathode. We typically

increase the ¯lament current until we read a temperature of about 600oC through

the thermocouple at the bottom of the heater block. The basic idea is to heat the

crystal to the range of temperature where the Ga and As evaporate congruently, that



130

is, in equal proportions. Above the maximum congruent evaporation temperature,

which is about 660oC, the As evaporates preferentially as As2, leaving behind small

Ga droplets on the surface. This creates a frosty appearance on the crystal. It is

important to go as close as possible to this point, without crossing it. We established

the operating point by sacri¯cing a crystal to ascertain the amount of heating current

which got us into the right temperature range, about 620oC as measured by the

thermocouple. When the heater block is at temperature it glows a dull red. However,

an IR pyrometer is ine®ective in determining the temperature because the emissivity

is not very well-known.

It is important to keep the chamber pressure below 10¡8 torr as much as possible

during this time. The heat-cleaning is completed by maintaining the heating current

through the ¯lament for a few minutes.

A.5.4 Making the Cathode

When the heat-cleaning concludes, the block is allowed to cool to room temper-

ature. We get the cesium going by passing about 4 A through the cesiator. We

monitor the photocurrent. The light source we used to the make the cathode was

a simple 5mW He-Ne red laser. (Although the quantum e±ciency is essentially the

same between the red and infrared lasers, the red laser does not produce polarized

electrons since it is not tuned to the band gap). When the photocurrent begins to

saturate, open the leak valve and let the oxygen pressure rise to the mid-10¡9 torr

range while leaving the Cesium on. We watch the photocurrent rise sharply and keep

it going till it appears to saturate. Once the photocurrent appears to have leveled o®,

close the valve. The photocurrent will begin to drop and we turn o® the Cs when the

current has dropped by 10-20%. This ensures a surplus of cesium which is bene¯cial

in the long run because the cathode tends to become de¯cient in cesium over time.

Depending on the residual pressure in the chamber, the photoemission will slowly

decline over time. The emission may be recovered by turning on the Cesium brie°y

to recesiate the cathode. This procedure may be repeated several times, until no

improvements are seen. It is easy to get about 10¹A from the 5mW red laser. If the
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cathode is not up to expectations , it may be best to heat clean over again and make

another cathode. It is not unreasonable to expect about 100¹A with a 10mW laser

(at 830 nm) shining on it; dirty vaccums and poorly cleaned cathodes may yield less.

We used a 30 mW (at 830 nm) diode laser from Melles Griot to excite our cathode.

The light was incident through a quartz port into the trap through a linear polarizer

and quarter-wave plate, which render the beam circularly polarized (having photons

of de¯nite helicity). The polarizer reduces the incident intensity of the laser light to

15 mW.

With a reasonably clean cathode and good vacuums we should be able to generate

a few hundred ¹A of photocurrent. Based on our experience with similar current

densities from tungsten ¯laments, we can expect produce 107 cm¡3 density plasmas

from such cathodes. These densities should be adequate for the experiments we have

described earlier.
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Appendix B

Magnetic Pumping

B.1 Rotational Pumping

The m = 1 diocotron oscillations of an electron plasma have been observed to

damp out due to 'rotational-pumping' in the CV trap at UCSD [38]. Due to the

shape of the end-gate equipotential surfaces, the end shape of the plasma in a m = 1

mode is such that the plasma end radially closer to the trap gates extends further

axially into the con¯ning gate than the side of plasma closer to the trap center. As the

plasma rotates about its own axis, through the self E£B rotation, the length of a °uid

°ux tube is modulated at this rotation frequency !R, which is typically much faster

than the diocotron frequency !D, as shown in Figure B.1 Due to the longitudinal

motion adiabatic invariant J = `vk, the parallel temperature of the electrons Tk is

modulated. Since `vk =constant Tk is modulated at the rotation frequency according

to,
d

dt
Tk = ¡2

`

d`

dt
Tk (B.1)

Since the frequency of modulation is typically much faster that the collisional equili-

bration rate º?k between T? and Tk, the two temperatures can diverge substantially

from thermal equilibrium. This leads to irreversible heating of the plasma. Since

energy is conserved, the temperature rise of the plasma must be accompanied by an

radial expansion of the plasma, which lowers its electrostatic potential energy. As the

plasma radius expands, it must reduce its diocotron orbit radius, in order to conserve
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Figure B.1: Length of a plasma tube in an o®-axis column is pumped by the E£B
rotation. The curvature of the con¯ning equipotentials makes the tube longer near
the trap wall than near the trap axis. Figure reproduced from [6].

total angular momentum. Thus, this `rotational-pumping' causes diocotron oscilla-

tions to damp out, the damping-rate being proportional to the Tk ¡ T? equilibration

rate. These observations are reported in [38].

B.2 Magnetic Pumping

When a plasma undergoes a diocotron-like oscillation in a trap with a axial gra-

dient in the magnetic ¯eld, we suggest that the analogous phenomenon of `magnetic

pumping' must also occur. When the magnetic ¯eld strength varies along the axis,

the ¯eld strength at a given axial position must also vary as a function of radius. We

may make an estimate of the magnitude of this variation using the Maxwell equations

in the vacuum. From r ¢B, ignoring signs, we have,

Br ¼ ¡
r

2

@Bz

@z
(B.2)

and from r£B,
@Bz

@r
=
@Br

@z
¼ r

2

@2Bz

@z2
(B.3)
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Taking Bz ¼ B, the magnetic ¯eld magnitude, the magnitude of the fractional vari-

ation in the magnetic ¯eld with radius is

±B

B
¼ ±Bz

Bz
¼ r2 1

Bz

@2Bz

@z2
¼ r2

L2
(B.4)

where L is the scale length of the magnetic ¯eld in the axial direction. Taking a

typical value L ¼ 10cm and a plasma o®-axis plasma with radial extent of ¼ 1cm,

gives a fractional variation of 1%.

An o®-axis plasma will rotate about its own 'axis' at a faster rate than the 'dio-

cotron oscillation' about the trap axis. If we consider the case where the axial bounce

motion is slower than the rotational frequency of the plasma (this happens at low tem-

peratures, and low magnetic ¯elds) we may ignore the bounce motion of the electrons

along the plasma length and this means that electron plasma °uid will be advected

radially through regions with a slightly varying magnetic ¯eld strength. Since the

magnetic moment ¹ = 1
2
mv?2=B of the electrons is an adiabatic invariant, we may

expect the perpendicular temperature kBT? =< 1
2
mv?2 >, to be modulated at the

frequency of the self-rotation of the plasma about its own axis !R.The ¹ invariant

relates the perpendicular temperature to a changing magnetic ¯eld, leading to mod-

ulation of T? according to,
d

dt
T? =

2

B

dB

dt
T? (B.5)

Since this frequency is typically faster than the equilibration rate º?k, irreversible

heating must occur, as in the rotational pumping case, and the plasma expands as

total energy is conserved. Since the total angular momentum must also be conserved,

the plasma must move towards the axis. Although we have not made an estimate

of the strength of this e®ect in our plasma diocotrons in axial gradient ¯elds, it is

expected to be a real e®ect.

B.3 The Ideal Gas Analogy

Both equations B.1 and B.5 resemble the equation relating the temperature to

volume changes in an ideal gas of volume V given by TV °¡1=const, where ° is the
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ratio of speci¯c heats,
dT

dt
= ¡(° ¡ 1)

V

dV

dt
T (B.6)

We may then imagine the two temperatures in the plasma as an ideal gas, each

con¯ned separately, with a movable piston on one side of each compartment. The

compartments are thermally insulated, but we may imagine that the wall separating

the two gases is a weak conductor of heat. Then, if any one piston is moved at a rate

faster than the thermal equilibration rate between the two gases, heat is transferred

irreversibly between the two gases leading to heating of both the con¯ned gases over

time. This analogy may help in understanding why phenomena such as rotational

pumping or `magnetic pumping' can only lead to heating of the plasma, and can never

cool it. Imagine that one complete cycle of pumping the parallel or perpendicular

temperatures has led to the entire plasma being cooled by ¢T . In these pumping

mechanisms only work is performed on the plasma (or performed by it). Therefore,

because energy must be conserved, at the end of this cycle a net amount of work

¢W = 3
2
Nk¢T would be done by the plasma. Then, it appears that an amount

of heat Q, which initially would have been used to heat the plasma by the amount

¢T , would have been completely converted into work. This would be a violation

of the Second Law of Thermodynamics, and therefore we can assume that all such

mechanisms can only cause the plasma temperature to rise. The only way to cool the

plasma through a cyclic process which mechanical work is transferred to and from it

is through the presence of an external low-temperature reservoir. No such heat sink

is present in this scheme.
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Appendix C

Feedthrough scheme for the

Cryogenic Electron Trap & Dewar

This section records the feedthrough connections on the Dewar and Cryogenic

Trap as of July 15, 1998.

R1

R2

R3

Figure C.1: Connection scheme for the dewar temperature sensor resistors: R1- LN2

tank; R2 - LHe vapor shield and R3 - exit pt. of LHe tank. All resistances are
nominally 120k at room temperature.
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G1 G2 G4 G3-S1 G3 G3-S2

G11-S1 G11 G11-S2 G10 G12 G13
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G7-S1 G7

G9
G5

G7-S2

G8

Right side feedthru (face-on  view)

drift tubes
 near camera

drift tubes
 near trap

gnd for
 coax braids

Up

to trap

HV to
phosphor

pin-hole plate

back plate

SHV

SHV

BNC

BNC

Linear feedthrough flange scheme

Figure C.2: Connection scheme for the trap gates and drift tubes
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