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The physics of quantummaterials
B. Keimer1* and J. E. Moore2,3*

The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons
interact at a fundamental level. Although these quantum e�ects can in many cases be approximated by a classical
description at the macroscopic level, in recent years there has been growing interest in material systems where quantum
e�ects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors,
graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties
from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend
to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise
to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical e�ects fundamentally alter
properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the
electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and
phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such
as ferromagnetism.

The way we think about manifestations of quantum physics
in materials has recently undergone a profound change of
perspective. Although materials scientists and engineers have

long exploited quantum effects in a range of electronic devices—
well-known examples are the quantized electronic energy levels
and optical selection rules at the heart of optoelectronics, and
the tunnel effect that underlies the upcoming generation of hard-
disk drives1,2—the past decade has seen a dramatic increase in
our understanding of how subtle quantum effects control the
macroscopic behaviour of a whole range of different materials.

Two strange and beautiful aspects of quantum mechanics have
come to the fore. One is the topological nature of quantum wave-
functions. A familiar example is the existence of quantized vortices
in superconductors. These vortices exist because of the requirement
that the superconducting condensate have a well-defined phase, and
gauge invariance fixes how this phase couples to magnetic flux. The
phase can wind only by an integer multiple of 2π around a vortex,
and this integer winding number is a simple example of a topological
invariant: a quantity that remains fixed under smooth changes of
a system. Similar topological quantities turn out to govern many
other kinds of materials, not just superconductors, and these sup-
port phenomena ranging from dissipationless transport to novel
quasiparticle excitations.

Another deep feature of quantum mechanics is the non-local
entanglement of some quantum states that is spectacularly high-
lighted in teleportation experiments with two photons separated
over macroscopic distances3. Even the wavefunction of two spins
in a singlet is entangled, in that the wavefunction of either spin
by itself is not well defined. In the words of Schrödinger4, who
coined this term: ‘‘Another way of expressing the peculiar situation
is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts.’’ Thinking about
entanglement in a solid is mind-boggling even in seemingly simple
materials: the states of all∼1023 electrons in a typical chunk ofmetal
are superposed in such a way that the many-body wavefunction

covering the entire solid changes sign whenever two electrons are
interchanged, as required by their fundamental nature as fermions.

The Fermi statistics forcing this specific, antisymmetric entangle-
ment also implies that only electronswith energies close to the Fermi
level contribute significantly to the transport and thermodynamic
properties of metals. However, this still leaves a massive number
of such ‘conduction electrons’ whose wavefunctions are intricately
entangled. Quantum materials can be defined as those with novel
entanglement or topological properties—that is, materials with
entanglement beyond the requirement of Fermi statistics and with
topological responses such as the vortex formation described above.
For example, the entanglement between spins in complex magnets,
or electrons in a Cooper pair, is an important part of how these fail
to be captured by conventional pictures (we prefer this definition to
simply invoking strong correlations or strong interactions, because,
for example, a Fermi liquid renormalized by strong interactionsmay
have very different correlations from a conventional metal but is
ultimately in the same phase—they are, so to speak, ‘adiabatically
connected’). Topology and entanglement lead to new kinds of quan-
tum order that are sharply distinguished from conventional states
by the existence of phase transitions. Today’s materials science has
barely scratched the surface of these remarkably complex quantum
states of matter.

While Fermi statistics is a basic and immutable property of
electronic wavefunctions, a feature of many classes of quan-
tum materials is the emergence of new kinds of particles—
quasiparticles—whose propertiesmay be rather different from those
of the underlying electrons. Again superconductors provide a ready
example: the Bogoliubov quasiparticles of a superconductor are
complex superpositions of electron and hole without a well-defined
electric charge. These quasiparticles are still fermions, but topo-
logical quantum materials support other kinds of emergent quasi-
particles with new kinds of exchange statistics. Similarly, there is
increasing experimental evidence that in some bulk magnets the
conventional spin-wave excitation, known as a magnon, breaks up
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Figure 1 | Collective order of electrons on a two-dimensional square lattice. Black lines in a–d indicate the crystallographic unit cell in real space, black
lines in e–h indicate the first Brillouin zone in momentum space. a, Uniform d-orbital order (red) and antiferromagnetic spin order (blue) in 3d electron
systems. b, Antiferromagnetic order of spin–orbit isospins in 4d and 5d electron systems. The colours indicate the admixture of di�erent d-orbitals to the
spin–orbit-entangled wavefunction. c, ‘Chequerboard’ charge order. The colours indicate di�erent valence states of the constituent metal ion.
d, ‘Intertwined’ state of di�erent order parameters A and B. Examples are the ‘striped state’ for A= uniform metal (e) and B= antiferromagnetism (a),
and the ‘pair density wave’ for A= uniform metal and B= superconductivity (f or g). e, Uniform metallic state. The blue line indicates the Fermi surface,
and the blue shading indicates filled electron states. f, s-wave superconductivity. The superconducting gap is indicated in red. g, d-wave superconductivity.
The di�erent shadings of red indicate di�erent signs of the superconducting gap function. h, Nematic order. The open Fermi surface is a hallmark of the
nematic state which spontaneously breaks the four-fold rotational symmetry of the electron system without breaking the translational symmetry.

into spinon excitations whose existence was previously only estab-
lished in one-dimensional materials.

Of course there are good reasons for our failure to notice (let
alone take advantage of) the exotic quantum beauty lurking in
the materials that surround us. Scattering from random defects or
thermally excited lattice vibrations scrambles the phase of the elec-
trons’ quantumwavefunction.However, unique quantumproperties
become apparent even in an ordinary metal such as copper upon
cooling to temperatures of a few kelvin, where inelastic scattering
between electrons and lattice vibrations is frozen out. If an external
magnetic field then forces the electrons into circular orbits, var-
ious physical observables exhibit magnetic-field-dependent quan-
tum oscillations that have no classical analogue5. A more spec-
tacular manifestation of quantum entanglement is the supercon-
ducting state that appears in other elemental metals (including
aluminium and lead) at comparably low temperatures. Here, an
effective attraction between electrons mediated by lattice vibrations
triggers a reorganization of the many-electron wavefunction into
a phase-coherent superposition of Cooper pairs6. Although this
re-entanglement affects only a small fraction of the electron
states with energies close to the Fermi level, its stunning macro-
scopic manifestation—dissipationless charge transport—provides a
glimpse of the potential of quantum many-body physics for real-
world applications. Similar dissipationless transport, now associated
with exceptionally precise quantization of observables such as the
Hall conductance or Josephson frequency quantum, can also arise
for topological reasons.

The dramatic expansion of quantum materials research began
in 1986 with the discovery of high-temperature superconductivity
in copper oxides7, and with the consequent realization that super-
conductivity and other macroscopic quantum phenomena (beyond
simple ferromagnetism) need not be limited to extreme condi-
tions. This discovery emboldened the community to finally tackle
one of the grand challenges of modern physics: understanding the
influence of Coulomb interactions between conduction electrons,
which reach deep below the Fermi level and massively entangle
both spin and spatial components of the single-electron quantum
states. The intellectual challenge and the prospect for novel appli-
cations sparked an enormous research effort that has branched out
into many different fronts. Today’s quantum materials include such
unlikely candidates as hydrogen sulfide, a foul-smelling gas under
ambient conditions that becomes a superconductor with a record-
setting transition temperature exceeding 200K under high pres-
sure8, and diamond, where entanglement of electronic and nuclear

spins at defect centres enables quantum oscillations with coherence
times of several seconds at room temperature9,10.

A similarly dramatic expansion took place more recently in
research on topological quantum materials. The notion that there
could be a new kind of order, based upon the nontrivial topology
of electron wavefunctions, emerged in the 1980s through studies
of two-dimensional systems under extreme conditions of low
temperature and strong magnetic field. The topological tools
developed at that time, after suitable generalization to the case of
zero field, led theorists two decades later to predict that even bulk
materials could be in topological states—the ‘topological insulators’.
These also have signatures in terms of the entanglement of their
electronic wavefunctions: entanglement in a bulk wavefunction
effectively diagnoses whether a new metallic edge state will emerge
at a boundary.

Many other topological states are now being found, including
topological semimetals and strongly correlated topological states.
Theorists have invented models with ‘quantum liquid’ ground
states that are much more intricately entangled than those of
ordinary metals and superconductors, and experimentalists are
on the verge of identifying realizations of such states in actual
quantum materials11. There is a subtle topology-dependent piece
of long-ranged entanglement in these liquids that differentiates
them frommore conventional phases. So for both topological states
and superconducting states, entanglement is a useful lens to isolate
part of what makes them different from ordinary matter, and the
intersection between superconductivity and topology is one of the
most active areas at present.

This brief review cannot do justice to these diverse facets of
current quantum materials research12. Rather, we focus on two
generic aspects of electronic quantum states that generate phe-
nomena qualitatively distinct from the simpler quantum effects
utilized in today’s electronics: correlations due to Coulomb interac-
tions between electrons that promote entanglement beyond the one
resulting from Fermi statistics alone, and the topological properties
of single-electron Bloch wavefunctions in solids. These phenomena
may well empower a new era in which quantum materials are
broadly harnessed for device applications13,14.

Quantum collective phenomena
The condensation of interacting electron systems into ground states
with various forms of collective order has been an important
subject of solid state research for many years. Before delving
into some of the latest developments, it is useful to recall some
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basic aspects of electronic correlations that are already apparent
in the physics of small molecules. The simplest example is the
ground-state wavefunction of the hydrogen molecule, which is
almost entirely composed of the degenerate 1s-orbitals and spin-
1/2 states of the constituent atoms. The ground state is a spin-
singlet with a symmetric combination of atomic orbitals that
accumulates negative charge between the nuclei and thusminimizes
their Coulomb repulsion. The competition with the spin-triplet
state, which keeps the electrons apart and minimizes their mutual
Coulomb repulsion, is quite subtle, but this problem could be solved
with the limited computational tools available in the early days of
quantum chemistry15. The singlet molecular wavefunction cannot
be written as a product of single-electron states, thus illustrating
that correlations generically entangle spin and orbital degrees of
freedom. Remarkably, the ground state of the beryllium dimer
with a total of eight electrons is already at the limit of today’s
much more powerful computers16. Although the Be2 molecule is
somewhat anomalous because correlations between electrons in the
fully occupied, nearly degenerate 2s and 2p valence orbitals of the Be
atoms are particularly pronounced, this simple example shows that
the computational power required to analyse correlated-electron
systems grows extremely rapidly with the number of electrons.

Solid state scientists have beaten these odds through many years
of research with continuous back and forth between experiment
and theory. As a result, the field has progressed from a qualitative
understanding of electronic ordering phenomena to a point where
theory-guided manipulation and design of specific properties
resulting from electronic correlations are becoming more and
more realistic. This development spans a wide range of materials,
including Mott insulators where the Coulomb correlations are so
strong that electrons remain tightly localized around atomic sites,
and metals where electrons are highly delocalized and Coulomb
correlations are effectively screened; some forms of electronic order
are displayed in Fig. 1. Already in the 1950s, for instance, researchers
had worked out a set of semi-empirical rules (now known as
Goodenough–Kanamori rules) for the sign and magnitude of the
effective spin–spin interactions in Mott insulators17,18. Today, the
magnetic interactions and magnetic ordering patterns of common
transition metal compounds with localized electrons in the 3d
atomic shell (including, for instance, the prototypicalMott-insulator
LaMnO3) can be reliably computed using ab initio methods,
which include a comprehensive set of single-electron quantum
states and treat the electronic correlations in an approximate, but
increasingly accurate manner19. Ab initio methods now also yield
accurate values for the transition temperatures of conventional
superconductors with weakly correlated electrons, ranging from Pb
to MgB2 (refs 20,21).

Novel magnets. However, even these seemingly mature areas of
quantum materials research have recently seen surprising devel-
opments. These include the discovery that Mott insulators with
4d and 5d valence electrons exhibit an entirely different type of
magnetic interaction than their well-known 3d-electron counter-
parts. In these materials, the relativistic spin–orbit coupling of
the valence electrons is comparable to the correlation strength, so
that the magnetic moments arising from the electrons’ spin and
orbital motion are firmly locked (Fig. 1b). The resulting spin–orbit-
entangled wavefunctions give rise to magnetic interactions that are
highly frustrated22 even in the simple honeycomb lattice architec-
tures realized in stoichiometric quantum materials such as RuCl3,
Li2IrO3 and Na2IrO3 (refs 23–25). Figure 2 shows resonant X-ray
scattering data that directly demonstrate the presence of such inter-
actions in a honeycomb iridate. As frustration inhibits the formation
of conventional magnetic order, spin–orbit entanglement provides a
new route towards the realization of model Hamiltonians with ‘spin
liquid’ ground states—solid-state analogues of liquid helium where

quantum fluctuations obliterate crystalline order even in the zero-
temperature limit (see below).

In the course of the past decade, magnetic Mott insulators have
also developed into a model platform to investigate electronic cor-
relations near quantum phase transitions which are driven by an
external control parameter at zero temperature. Figure 3 shows two
examples of quantum transitions that separate conventional antifer-
romagnetic order from non-magnetic ground states composed of
singlets. At the transition between these two very different forms
of order, the ground-state wavefunction is entangled over macro-
scopic length scales. Recent neutron scattering experiments have
revealed the emergence of new bosonic quasiparticles at magnetic
quantum-critical points26–28. Ordinarymagnets exhibit well-defined
spin waves that modulate the direction of the magnetization, but
the longitudinal modes that modulate its amplitude (roughly anal-
ogous to the Higgs modes found in superconductors and in par-
ticle physics29) are usually found at much higher energies and are
strongly mixed with multimagnon excitations. Near the quantum-
critical point, however, the longitudinal magnons become soft,
and the neutron data demonstrate that they are protected against
decay into transverse spin waves in some regions of momentum
space. The Higgs mode and its dynamics can thus be studied in a
new condensed-matter setting. The quantitative confrontation of
neutron scattering data and theoretical work on insulating model
magnets (Fig. 3) provides a firm basis for research on the influence
of quantum-critical correlations on the properties of a much wider
class of quantum materials, including metals and superconductors.

Excitonic insulators. Research on metals with highly delocalized,
weakly correlated electrons has also yielded surprising recent dis-
coveries. One of the highlights is a set of experiments on semimetals,
including TiSe2 and Ta2NiSe5, which undergo phase transitions into
insulating ground states upon cooling30–32. Experimental evidence
suggests that this transition is induced by the formation of excitons
due to Coulomb attraction between electrons and holes in small
pockets near the Fermi level. The condensation of excitons into
an insulating many-body ground state is formally analogous to the
superconducting transition triggered by the formation of Cooper
pairs between two electrons—but it results in zero rather than
infinite conductivity in the zero-temperature limit33. Recent exper-
iments have provided evidence of a hidden connection between
these two antagonistic ordering phenomena by showing thatmodest
hydrostatic pressure or doping induce a superconducting phase in
TiSe2 (refs 34–36). This observation raises the question to what
extent superconductivity in TiSe2 and related materials can be
described in terms of the standard theory of lattice-mediated attrac-
tion between electrons, or whether collective electronic modes due
to Coulomb correlations play an essential role. Related investiga-
tions are now exploringwhether superconductivity in SrTiO3, which
has long been regarded as a conventional electron–phonon super-
conductor, is instead driven by quantum-critical ferroelectric soft
modes37 or plasmons38. New opportunities to test these predictions
arise from the emerging ability to control the dimensionality and
density of the electron system in TiSe2, SrTiO3 and other complex
materials in heterostructures39,40 and exfoliated layers41.

Unconventional superconductors. Research following the discov-
ery of high-temperature superconductivity in iron pnictides42 and
chalcogenides43 has created a model platform for the system-
atic exploration of electronically driven superconductivity and
its interplay with different forms of electronic order44. In these
materials, the correlation strength is moderate—that is, comparable
to the single-electron bandwidth but not large enough to induce
Mott localization. Electronic correlations manifest themselves in
ubiquitous, strong antiferromagnetic spin fluctuations45 whose key
influence on superconductivity is documented by their strong
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Figure 2 | Resonant X-ray scattering from a Kitaev magnet. a, Polarized X-rays (magenta) are scattered froma crystal of Na2IrO3, a material in which the
magnetic Ir ions are arranged on a honeycomb lattice. The photon energy is tuned to an absorption edge of the magnetic Ir ions, and the scattered intensity
is monitored as a function of the photon polarization (green) and wavevector Q (blue). b, Three fluctuating antiferromagnetic domains, with di�erent
directions of the Ir magnetic moments (arrows) and ordering wavevectors (indicated in the legend in reciprocal lattice units, r.l.u.). c, Intensity maps of the
scattered X-rays as a function of two Q components of Cartesian coordinates. The data were recorded in polarization geometries sensitive to magnetic
correlations, S, in the x, y and z directions. The correlation between the magnetic moment directions and the ordering wavevectors indicates predominant
bond-directional (Kitaev) exchange interactions. Kitaev interactions are highly frustrated and can generate a spin liquid ground state even in simple lattice
geometries. Adapted from ref. 25, Macmillan Publishers Ltd.

reaction to the onset of superconductivity, and by a sign reversal
of the superconducting order parameter in Fermi surface regions
that are strongly affected by spin fluctuations. Spurred in part
by experimental observations on iron-based superconductors, the
past years have seen rapid advances in theoretical methods—such
as the functional renormalization group46,47—that treat moderately
correlated-electron systems in an unbiased manner and with a min-
imum of uncontrolled approximations. Although these methods
do not yet yield quantitative predictions of the superconducting
transition temperatures, andmany important questions (notably the
role of lattice vibrations in driving superconductivity) remain to
be answered, there are good reasons to expect continuous progress
through systematic optimization of the material quality and the
experimental and theoretical methodology, analogous to research
on conventional magnets and superconductors discussed above.

Despite these advances, the understanding of strongly corre-
lated electron systems near the Mott metal–insulator transition
remains one of the greatest challenges in modern physics. The
transition leads to a massive re-entanglement of the many-electron
wavefunction, involving both spin and spatial degrees of free-
dom and reaching all the way to the bottom of the conduction
band48. Even the simplest model designed to capture the essence
of this transition—the two-dimensional Hubbard model—has thus
far defied a general solution by any analytical or numerical method,
even though tremendous progress has been made in elucidating its
phase behaviour49.

The interplay between short-range and long-range interactions
near the metal–insulator transition generically yields modulated
structures with ‘intertwined’ order parameters and a multitude

of spontaneously broken rotational and translational symmetries50
(Fig. 1). The resulting complex spin and charge textures resemble
partially ordered structures in classical liquid crystals, but the
winding of the quantum phase across these textures gives rise
to novel phenomena without analogues in classical physics. For
instance, the phase-coherent superposition of superconductivity
and charge order (‘pair density wave’) can engender spontaneously
decoupled superconducting sheets in three-dimensional materials
(recently observed in underdoped cuprate superconductors51) as
well as unconventional vortex excitations (a prediction that is yet
to be confirmed). Quantum phase transitions between modulated
structures driven by doping, pressure and external electric and
magnetic fields can profoundly affect the thermodynamic and
transport properties, as illustrated by recent experiments on
high-temperature superconductors (Fig. 4). Understanding and
controlling the influence of doping-induced disorder and lattice
strain on these transitions, and on the mesoscale properties of
correlated-electron systems in general52, remains an important
challenge for quantum materials research—not least because such
electronically inhomogeneous states provide fertile ground for
various applications by virtue of their high susceptibility to external
parameters (see the other reviews in this issue).

Yet the discovery of high-temperature superconductivity has
shown that beautifully robust, homogeneous many-electron states
can emerge out of the messy soup of strongly correlated electrons.
Much progress has been made since then in explaining unconven-
tional superconductivity and other ordering phenomena in the cop-
per oxides53, as well as related states in ruthenates, heavy-fermion
intermetallics, organic conductors, and other correlated-electron
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Figure 3 | Neutron scattering from Higgs modes. a, Quantum phase transition in a two-leg spin-1/2 ladder compound, driven by the strength of the
inter-ladder coupling α. At the quantum-critical point (α=αc), the ground state changes from a quantum disordered (QD) state composed of spin-singlets
(left) to a long-range ordered (LRO) antiferromagnet (right), and the entanglement between single-electron states becomes long-ranged. b, Inelastic
neutron scattering data on the spin-1/2 ladder compound C9H18N2CuBr4 as a function of crystal momentum and energy (left panel), and model
calculations that attribute the dispersive excitation to a longitudinal (‘Higgs’) mode (right panel). c, Competing ground states of a spin-1 magnet in a nearly
cubic lattice structure with three electronic orbitals of symmetry xy, xz and yz. For large crystal field splitting∆, the orbital angular momentum is quenched,
and the spin system is described by a Heisenberg Hamiltonian with an antiferromagnetic ground state (left). For large intra-atomic spin–orbit coupling λ,
the ground state is a non-magnetic spin–orbit singlet (right). A quantum phase transition between both ground states occurs as a function of λ/∆. The
relative influence of λ and∆ can be inferred from the dispersion of the magnetic excitations that are displayed as a function of momentum and energy.
d, Representation of inelastic neutron scattering data on the spin-1 antiferromagnet Ca2RuO4 together with the results of model calculations (dashed lines)
that confirm the dominant influence of spin–orbit coupling. The high-energy mode can be assigned to a Higgs mode which is stable over much of the
Brillouin zone but decays into transverse spin waves near the antiferromagnetic ordering vector. Adapted from ref. 28, Macmillan Publishers Ltd (a,b); and
ref. 27, Macmillan Publishers Ltd (c,d).

materials54. In particular, multiple lines of evidence akin to those
in the iron-based superconductors have demonstrated a key role of
collective electronic modes—especially spin fluctuations—in driv-
ing these transitions55. However, fundamental questions about the
nature of the collective dynamics remain at the frontier of current
research. Do they predominantly entangle electrons on nearest-
neighbour lattice sites, or is the long-range entanglement generi-
cally associated with quantum phase transitions between different
forms of collective order56 (Fig. 3) of crucial importance? And how
do they affect the anomalous normal-state properties, including
the enigmatic temperature-linear resistivity that has been observed
in a diverse set of quantum materials? These and other ques-
tions are now being addressed with innovative experimental tools
(including transport and thermodynamics in magnetic fields up to
100 T (Fig. 4)57–59, novel spectroscopies such as resonant inelastic
X-ray scattering60, andpump–probemethods that generate coherent
states far from equilibrium61) and clever computational schemes

(including machine-learning algorithms62 as well as ab initiometh-
ods that provide direct insight into the structure of the many-
electron wavefunction63). Quantum simulators based on cold-atom
systems are poised to generate additional insight into the many-
electron problem64,65. With any luck, this concerted effort will soon
enable the controlled manipulation of strongly correlated electron
systems, and eventually the theory-guided design66 of quantum
materials with collective electronic order sufficiently robust to with-
stand thermal decoherence at room temperature and beyond.

Novel phenomena due to geometry of electron wavefunctions
The simplest topological phases, which are based on the geometry of
single-electron wavefunctions, have seen a tremendous renaissance
in the past decade. The intellectual ancestor of these phases is
the integer quantum Hall effect (IQHE) discovered in 1980: two-
dimensional electron systems in strong magnetic fields can show
incredibly precise quantization in their transport properties67. It
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high-temperature superconductors. a, Electrical resistivity ofYBa2Cu3O6.6
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frequency reflects the dimensions of the Fermi surface. b, Fourier transform
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Adapted from ref. 58, Macmillan Publishers Ltd (a,b); and ref. 59, AAAS (c).

turns out that in addition to the standard textbook picture of
the IQHE, which is based on Landau levels (the eigenstates of
an electron moving in a magnetic field in free space), another
picture was developed around the same time by Thouless, Kohmoto,
Nightingale and den Nijs (TKNN) that is more directly relevant to
an electron moving in a crystal68.

This work explained that the integer quantum Hall effect is
associated with nontrivial topological properties (Chern numbers
or TKNN integers) of the Bloch states of the electrons in a crystal. A
few years later,Haldane gave an example of how the integer quantum
Hall effect could arise in a simple model of a crystal with zero
magnetic field on average69. The work of Haldane and Thouless was

recognized by the 2016 Nobel Prize in Physics, and turns out to be
crucial for many of the more recent developments in this area.

Topological insulators. Nontrivial electronic topology can be gen-
erated by spin–orbit coupling70 instead of a magnetic field, leading
to ‘topological insulators’71. Because spin–orbit coupling respects
time-reversal symmetry, unlike a magnetic field, there are some key
differences. There is a two-dimensional topological insulator phase,
which has edge states similar to those of the quantum Hall effect,
and in some limits these support a quantized spin Hall effect. A
difference is that the edge states are protected from backscattering
by time-reversal symmetry rather than by an energy gap as in the
quantum Hall case. This state was found in transport experiments
in HgTe quantum wells72 following theoretical predictions73.

The quantum Hall effect is fundamentally a two-dimensional
state, although there might be materials (‘Chern insulators’) that
could be viewed as stacks of quantum Hall layers. However, there
does exist a three-dimensional topological insulator phase in bulk
materials74–76. Its mathematical connection to the two-dimensional
case is fairly complicated, but the physical consequences are similar:
there are metallic surface states, and in the simplest case (realized
in Bi2Se3 (ref. 77), Bi2Te3 (ref. 78), and other more complicated
materials) the surface contains a single ‘Dirac cone’ of electrons,
similar to the cones in the electronic structure of graphene dis-
played in Fig. 5. The 3D topological insulator supports a quan-
tized magnetoelectric effect79,80, which may have been observed in
recent terahertz optical experiments81. Magnetically doping a 3D
topological insulator produces a quantum anomalous Hall state82,
which is similar to the IQHE except that orbital magnetic fields are
believed to be less important than spin–orbit coupling in driving
the effect.

Topological semimetals. Recent years have seen a great growth of
interest in topological semimetals, which embody twodifferentways
of generalizing the effectively massless electrons of graphene (a two-
dimensional semimetal) to bulk materials. Dirac’s original equation
for a massless fermion in three dimensions, when interpreted in
a solid-state context, describes a point where four bands touch
and as a result the effective Bloch Hamiltonian consists of four by
four matrices, similar to those in the 3D Dirac equation. The first
examples of such Dirac semimetals (the material is a semimetal
with a pointlike Fermi surface if the Fermi energy passes only
through Dirac points) were discovered just a few years ago83–85,
and the search for additional examples continues; of course, Dirac
quasiparticles famously arise in superconductors near nodes of the
gap function (Fig. 5).

Soon after Dirac’s celebrated equation was first written down,
Hermann Weyl pointed out that a massless particle can have a
fixed ‘handedness’, allowing the Dirac equation to be broken into
two-component halves. (A different way of separating the Dirac
equation, due to Majorana, is mentioned below.) These two-band
degenerate points can be realized in materials that break either
inversion or time-reversal symmetry. A recent realization is that
Weyl points have a topological meaning and can appear in phase
transitions between normal and topological insulators86,87: each
Weyl point can be assigned a topological number, directly related
to the Chern numbers described above in the IQHE, and the total
number of Weyl points in a material is always zero, as explained by
the Nielsen–Ninomiya theorem from particle physics88.

It is worth pointing out that, while the theoretical discussion
of Weyl semimetals goes back to the 1930s, the new topological
tools of theorists were crucial in their experimental discovery: there
are Fermi arc surface states89, and it was the detection of these
Fermi arcs in photoemission that gave strong proof that the phase
had indeed been found. Dirac and, particularly, Weyl semimetals
should support several transport and optical phenomena that are
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Figure 5 | Examples of massless fermions in quantummaterials. A measure of the rapid progress in correlated and topological materials is the
understanding of di�erent mechanisms that generate massless fermionic excitations. In a–d, black lines indicate momentum-space directions, energy is
vertical. a, The Bogoliubov quasiparticles of a d-wave superconductor are superpositions of electron and hole that can be created with arbitrarily low
energies above the ground state (Fig. 1g) at certain momenta. b, The band structure of graphene contains massless Dirac electrons at two points in the
Brillouin zone. c, Topological insulators are three-dimensional materials that intrinsically support massless electrons at their surfaces. The spin direction of
a surface electron (marked in red) is determined by (‘locked to’) its momentum. d, 3D Dirac (left) and Weyl (right) semimetals are both generalizations of
the Dirac cones in graphene; the di�erence is that in the Weyl case, the breaking of either inversion or time-reversal symmetry allows four-fold degenerate
Dirac cones to split into two-fold degenerate Weyl cones, each of which has a topological integer ‘charge’ (marked in red and blue). Surface electrons in
Weyl semimetals exhibit a line of zero-energy states (‘Fermi arc’) in momentum space. e, A long-sought state of frustrated magnets that may already have
been discovered has gapless fermionic excitations above the ground state. These are di�erent from the bosonic magnons (quanta of spin waves) that exist
in more conventional magnets. One model supporting such excitations is the spin-anisotropic Kitaev honeycomb lattice Hamiltonian (left), where only one
spin component is active on each set of bonds (x, y, z). Its phase diagram with gapped (white) and gapless (blue) excitations is shown on the right.

still being sought in experiments90–92. These phenomena in many
cases are related to the ‘chiral anomaly’ beloved of particle physicists.
A single Weyl fermion is anomalous in that its quantum theory,
when coupled to electromagnetism, does not conserve charge; there
are subtle implications of this in solids, where there are always
multiple Weyl points (so that the total charge cancels) but they may
occur at different energies.

There are several theoretically possible phenomena, such as
quantized nonlinear optical properties, that will become observable
if new materials can be found: the most studied Weyl semimetals
belong to the TaAs family93–95 and have many Weyl points plus
additional symmetries that forbid some of the most exciting
predicted effects. Similarly, better materials would enable improved
observation of the Fermi arc surface states by means other than
photoemission. Finally, Dirac and Weyl semimetals, just like
topological insulators, may serve as independent-electron starting
points for correlated phenomena such as superconductivity96 and
fractionalization, and to these we now turn. It should be noted
that even states that do not intrinsically require electron–electron
interactions might be helped to form by such interactions, as in
the possible topological Kondo insulator97 SmB6. Also, considerable
recent progress has happened at the intersection of crystalline
symmetry with topology—for example, in the discovery of surface
states in the topological crystalline insulator SnTe98.

Interplay of many-body physics and topology
Only a few years after the experimental discovery of the integer
quantum Hall effect, an even more unusual state of electrons
was discovered that also exists in two-dimensional electron gases
in a strong magnetic field99. The fractional quantum Hall effect
(FQHE), unlike the IQHE, cannot be understood in terms of nearly
independent electrons. Instead, strong Coulomb repulsion creates

an incompressible quantum liquid with remarkable properties. Its
fundamental excitations have fractional charge: for example, an
electron added to the FQHE state at 1/3 filling (that is, when only
1/3 of the empty orbitals in the lowest Landau level are occupied)
breaks up into three quasiparticles, each of charge e/3 (ref. 100).

Another unexpected feature of quasiparticles in this complex liq-
uid is fractional statistics: they have statistics that is neither bosonic
nor fermionic. Quantummechanics textbooks explain the two types
of statistics of point particles in three spatial dimensions as being
classified by even (bosonic) or odd (fermionic) representations of
the permutation group. Prescient theoretical work pointed out in
1976 that strictly two-dimensional particles could have many other
types of statistics101. Statistics can be observed by exchanging the
locations of particles, but in two dimensions the path by which that
exchange happened (the ‘braiding’) becomes relevant, and statistics
are classified by representations of the braid group rather than of the
permutation group.

We will say a bit more about exotic statistics because they have
become a major driver of research into the FQHE and, in recent
years, the topological superconductors mentioned below. The braid
group is a much more complicated beast than the permutation
group. FQHE states have been found that are believed to realize
both ‘Abelian’ and ‘non-Abelian’ statistics. The term Abelian just
means commutative, and in a state with Abelian statistics, such as
the FQHE state at filling 1/3mentioned above, each braiding process
of the quasiparticles gives a phase factor, not necessarily ±1, that
acts on the (non-degenerate) state.

That might well seem complicated enough, but in FQHE samples
of very high quality, new plateaus emerged that could not be
understood with any known Abelian state102. Theorists had written
down wavefunctions that supported non-Abelian statistics103: there
is a degenerate subspace of states when the system has many
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quasiparticles, and a braiding of the quasiparticles acts as a unitary
matrix on this subspace. In some FQHE states, there are so many
possible matrices for different braidings that braiding quasiparticles
can in principle serve as a universal quantum computer104.

Topological superconductivity. This area remained somewhat
abstruse until it was realized that even a simple superconduct-
ing wavefunction, of the type considered in the classic theory of
Bardeen, Cooper and Schrieffer3, could also support non-Abelian
statistics105. If the superconductor has the right pairing symme-
try (for example, px + ipy) then ordinary vortex cores actually
trap Majorana zero modes with non-Abelian statistics. (These zero
modes bear surprisingly little relation to the Majorana fermions
originally discussed as fundamental particles in the early days of
quantummechanics, which have ordinary fermionic statistics.) The
search for Majorana modes is mostly taking place at the moment
not in FQHE states but in what is normally meant by ‘materials’: we
would like very much to find a solid material that by itself super-
conducts and supports Majorana modes. Sr2RuO4 is an example of
a material that has been actively discussed in this context106. Such
a material would, aside from its fundamental interest by virtue of
non-Abelian statistics, offer a new path to quantum computation.

Another route is to combine relatively straightforward materials
into a heterojunction or other structure that supports Majorana
zero modes. One material is a standard s-wave superconductor,
and the other material can be either a topological insulator or a
semiconductor with strong spin–orbit coupling in a magnetic field.
Either way, the key feature of the non-superconducting part of the
heterojunction is that it only has a single Fermi surface sheet, even
including spin.

There are a number of promising experimental results indicating
zero-bias peaks in tunnelling107–109 that could be from Majorana
zero modes, but not yet any demonstration of braiding. An ‘exis-
tence proof ’ of topological superconducting states is provided by
one phase of superfluid helium, which can be understood as a
topological superfluid of neutral atoms, complete with zero modes
and surface states110. We now turn to how fractional quasiparti-
cles can exist in other kinds of materials, including those with no
mobile electrons.

Spin liquids. One can ask what made the partially filled Landau
level a fertile ground for the occurrence of exotic correlated FQHE
states. Part of the answer is that a partly filled Landau level has a very
large degeneracy if only kinetic energy is concerned, which means
that there is no energy barrier for interactions to overcome. Instead,
interactions form complicated superpositions of the degenerate
noninteracting states.

Another useful type of degeneracy in solids occurs as a conse-
quence of magnetic frustration. A frustratedmagnet is one in which
not all of the magnetic interaction energies can be simultaneously
minimized, and many of these have degenerate ground states at
least for simplified models of the interaction. Additional interac-
tions, or residual parts of the original interactions, can again form
superpositions of the originally degenerate spin configurations.
This mechanism leads in some models of frustrated magnetism
to quantum spin liquids that include topological order similar to
that in FQHE states and have fractional excitations with half-
integer spin rather than the integer spin of conventional magnons
(spin waves).

The search for quantum spin liquids has been a major goal of
the frustrated magnetism community for many years, and several
types are now understood. Chiral spin liquids are closely related
to simple FQHE states. Another type of spin liquid, called a
Z2 spin liquid, appears in quantum dimer models111, which are
intended to capture the singlet correlations relevant to cuprate
superconductors, and a spin liquid of this type may appear in

the nearest-neighbour Heisenberg model on the kagome lattice as
possibly realized in herbertsmithite112.

Perhaps most intriguing and mysterious are gapless spin liquids.
Topological order can be defined rigorously in states with an energy
gap above the subspace of ground states. The type of order in a gap-
less spin liquid is harder to define, but there are explicit examples of
models with gapless spin liquid ground states. A famous example on
the honeycomb lattice was introduced by Kitaev113 (Fig. 5) and has
been used as a basis for understanding inelastic neutron scattering
on RuCl3 (ref. 114). Even the kagome lattice antiferromagnet may
actually be a gapless state according to the most recent numerics,
which shows how even simple Hamiltonians can host competing
topological orders of various types.

Outlook
The convergence ofmany-body physics and topology is now driving
several frontiers of research on quantum materials. One such
frontier is the electronic structure of strongly correlated metals on
the verge of Mott localization. Theoretical research indicates that
‘doped Mott insulators’, where a small number of mobile charge
carriers propagate through a slowly fluctuating background texture
of correlated spins, share many of their topological properties
with insulating spin liquids and are topologically distinct from the
Fermi liquid that emerges for large carrier concentrations far away
from the Mott insulator115,116. At the quantum transition separating
these phases, the many-electron wavefunction is entangled over
macroscopic distances, and novel fractionalized quasiparticles
unlike those on either side of the transition have been predicted117.
To establish whether these phases and phase transitions are realized
in the copper oxides and other doped Mott insulators, and to what
extent they influence the anomalous physical properties of these
materials, it will be crucial to devise direct experimental tests of the
topological properties of correlated metals analogous to those that
have been reported for simple insulators and semiconductors. The
rapidly evolving capability to prepare complex d- and f -electron
materials in confined geometries118 will be a powerful resource for
experimental creativity.

Progress is also happening in theoretical methods. The concepts
of wavefunction geometry and topology that helped identify new
topological phases are now being used to analyse a wide variety
of phenomena and materials. Even properties such as polarization,
magnetoelectricity and photocurrent that are not thought of as
topological turn out to reflect Berry phases and other geometrical
concepts. Entanglement in electronwavefunctions is directly related
to the success of one class of numerical methods (‘tensor networks’)
for quantummaterials. Some entangled states with special structure,
such as Slater determinants of free fermions, are computationally
easy, but in complex states where simpler methods fail, the amount
of entanglement is a key determinant of computational difficulty.
The competing orders in complex materials such as cuprate
superconductors remain difficult, as do topological states with
strong correlations, and perhaps these are ideal ‘grand challenge’
problems for future exascale or quantum computers.

Quantum topology and many-electron physics also meet at the
frontier of research on ‘spintronic’ devices that operate with spin
(rather than charge) currents119. Both spin-polarized topological
edge currents and spin supercurrents carried by quantum conden-
sates of magnons120 offer tantalizing perspectives of data processing
with minimal dissipation. In a parallel development, skyrmions—
topological defects in complex magnetic ground states generated
by electronic correlations—are being explored as a novel platform
for data storage and spintronics121. Integrating these elements into
electronic devices will require a quantum materials research and
development effort comparable to the one that paved the way for
today’s semiconductor technology. Given the multitude of innova-
tive ideas, methods and materials that are currently being pursued,
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it seems safe to predict that electronic devices a generation from
nowwill take advantage of quantum entanglement and topology at a
much deeper level than today. And in the spirit of discovery that has
fuelled this field of research, more surprises are guaranteed in the
quest to understand and control quantum correlations in materials.
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