

S. L. McCall and E. L. Hahn, Phys. Rev. **183**, 457 (1969)

Fig. 2.1. Pulse area as a function of distance into the absorber (McCALL and HAHN [1969]). Arrows denote the direction of evolution for the two input areas shown in the computer solutions in Fig. 2.2. The area is denoted by θ instead of A as in the text.

Fig. 2.2. Evolution of pulses with areas just above and below π as a function of z (MCCALL and HAHN [1969]). Distance is in units of $\pi\alpha^{-1}$ both in this figure and in Fig. 2.1. The time scale depends on the electric dipole moment of the excited transition.

The "Hg-Rb" Experiment

R. E. Slusher and H. M. Gibbs, Phys. Rev. **A5**, 1634 and **A6**, 1255E (1972)

Fig. 3.1. Schematic diagram of Hg-Rb SIT apparatus (see SLUSHER and GIBBS [1972]). M_1 is a 3-m totally reflecting mirror; V_p is a 1-usec voltage pulse causing 1-usec single-
M₁ is a 3-m totally reflecting mirror; V_p is a 1-usec voltage pulse causing 1-usec single- M_1 is a 3-m totally relieving film of, r_p is a 1 psee voltage perception of the set m_0 mode laser pulse; A_1 is the aperture to select TEM₀₀ mode; SMS is single-longitudinalmode laser pulse, A_1 is the applicate to select range across the piezoelectric transducer; M_2
mode selector; V_T is the modetuning voltage across the piezoelectric transducer; M_2 mode selector; V_T is the moderning voltage decess one process intensity profile;
is a 4% transmission flat output mirror; P_1 is the Gaussian transverse intensity profile; pc is the Pockels-cell gating 5–10 nsec portion of the laser pulse; LP and QW are linear and PC is the Pockels-cell gating 5–10 nsec portion of the laser pulse; LP and QW are linear and PC is the Pockets-centrality of the posterior of the method.
 L_1 , L_2 and L_3 are imaging lenses; B

circular polarizers; S is a superconducting solenoid; L_1 , L_2 and L_3 are imaging lenses; B is the magnetic field (\approx 74.5 kG); C is the Rb vapor cell; P₂ is the stripped Gaussian pro-
is the magnetic field (\approx 74.5 kG); C is the Rb vapor cell; P₂ is the stripped Gaussian prois the magnetic next (\approx 74.5 kg), \approx 6 km contraction.
file after SIT interactions in the Rb cell; A₂ is the limiting aperture used to observe a uniform transverse intensity; and D is an avalanche photodiode or cross-field photomultiplier detector.

The "Hg-Rb" Experiment (cnt'd) R. E. Slusher and H. M. Gibbs, Phys. Rev. **A5**, 1634 and **A6**, 1255E (1972)

Fig. 3.2. Diagram of the relevant energy levels of ⁸⁷Rb as a function of magnetic field strength. The Zeeman interaction at 74.5 kOe lifts the low-field degeneracy and increases the absorption frequency to coincide with the Hg laser emission frequency.

The "Hg-Rb" Experiment

R. E. Slusher and H. M. Gibbs, Phys. Rev. **A5**, 1634 and **A6**, 1255E (1972)

Fig. 3.3. SIT nonlinear transmission in Rb vapor with $\alpha L = 5$. Solid curve is a uniform Fig. 3.3. SIT nonlinear transmission in No vapor with ∞
plane-wave computer solution. Solid dots are data taken with 200-µm output apert ure to
 π is and the same data with no aperture corresponding to plane-wave computer solution. Solid dots are data taken minimized post-
approximate uniform plane wave. Triangles are data with no aperture correspond ing to
intervals are the circled points are approximate uniform plane wave. Triangles are data with the approximate points are
a plane-wave with Gaussian intensity profile. The pulse shapes for the circled points are shown in Fig. 3.4.

Additional References:

- R. E. Slusher, in Progress in Optics XII, E. Wolf, ed., 1974.
- M. Sargent III, M. O. Scully, and W. E. Lamb, *Laser Physics*, Addison-Wesley, 1974-1993.