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Introduction

Background

Recently, both the scientific  and popular (e.g., NYT and NPR) media have paid much attention
optical phenomena dubbed "slow" and "fast" light. When a pulse of weak probe light
gates through a nonlinear medium in the presence of a strong drive field, the light  pulse
under certain circumstances, be transmitted without much distortion, and the apparen
velocity  can  be  very  slow  (∼1  ms-1  in  some  experiments),  faster  than  c,  or  negative
recent  comprehensive  reviews  by  Matsko  et.  al.,  2001;  Boyd  and  Gauthier,  2002).  Although  the
studies of these phenomena have been in the context of nonlinear optics, in which at least
light  fields  interact  with  an  atomic  medium,  these  effects  can  be  understood  by  considering
the simpler case of linear optics.

In this tutorial, we use considerations from linear optics to show how the variation  in
velocity  comes  about.  Although  the  physics  is  quite  straightforward,  and  has  been  worked
out in detail both theoretically (Garrett  and  McCumber,  1970) and experimentally (Chu and Wong,

we attempt to remove any remaining mystery from the subject by discussing it in very
language  and  illustrating  each  step  with  graphics  derived  directly  from the  discussion.
also Sprangle et. al., 2001; McDonald, 2001; Dogariu et. al. 2001).

Approach

We consider an optical medium consisting of an atomic vapor, with light whose frequency
tuned  near  an  isolated  resonance.  We  introduce  the  complex  refractive  index,  and
describe the propagation of a monochromatic light wave through a slab of the  medium.
imaginary part of the refractive index leads to light absorption, while the real part affects
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light's phase. Next, we consider a smooth (Gaussian) pulse incident on the slab of our
medium. We decompose the pulse into Fourier components,  and analyze the  propagation
each  of  these  components  through  the  medium  separately.  This  is  justified  in  the  case
linear medium whose optical properties are independent of the presence of light.  Finally,
recombine  the  resulting  Fourier  components  into  a  "new" pulse,  and  analyze  its  spatial
temporal distribution. Clearly, this discussion does not contain any physical or mathematical
concepts  beyond  those  found  in  any  introductory  physics  course.  Nevertheless,  this  will
sufficient to illustrate all of our conclusions.

Mathematica Setup
Discussion of light propagation in linear media

Monochromatic waves, phase velocity

Definition of the light field
Any  plane  light  wave  propagating  in  the  z  direction  can  be  decomposed  into  a  number
sinusoidal waves. We use the complex notation in which each field is described by an
tude times the real part of

EField[k_, ω_] = 
 (k z - ω t)


 (k z-t ω)

where

k[n_, ω_] =
n ω

c

n ω

c

is the wavenumber, which depends on the light frequency ω and the index of refraction
medium n(ω). c is the speed of light in vacuum. The real field is given by
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ReEField[k_, ω_] = ComplexExpand[Re[EField[k, ω]], k]


-z Im[k] Cos[t ω - z Re[k]]

Table[Plot[ReEField[2 π, 2 π], {z, 0, 8},

PlotRange  {{0, 8}, {-1.25, 1.25}}], {t, 0, .9, .1}];

A monochromatic wave 
(double-click plot to view as a function of time)

Phase velocity — general medium
The phase velocity is the velocity of a point of constant phase of the electric field, for
ple,  a  zero  crossing.  To  find  the  phase  velocity  we  solve  for  z  such  that  Re[E(z)] =
function of time:

zConstPhase = Solve[ReEField[k, ω]  0, z]〚1〛

z 

-
π

2
+ t ω

Re[k]


The phase velocity is given by d z
d t

Vph[k_, ω_] = D[z /. zConstPhase, t]

ω

Re[k]

In terms of the index of refraction

VphOfN[n_] = ComplexExpand[Vph[k[n, ω], ω], n]

c

Re[n]
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In a vacuum, n = 1 and the phase velocity is 

VphOfN[1]

c

Wave propagation through linear atomic media
In a linear medium near an atomic resonance of frequency ω0 and width Γ, the index of
tion is given by (see, for example, Lipson, 1995, Ch. 13.3.2; Griffiths, 1999, Ch. 8.4)

nMedium[ω_] = 1 -
α c

ω - ω0 +  Γ / 2

Γ

4 ω0

1 -
c α Γ

4 
 Γ

2
+ ω - ω0 ω0

where α  is  the absorption coefficient  on resonance.  The real  part  of  the index of  refraction,
responsible for phase shifts, is given by

RenMedium[ω_] =

CollectComplexExpand[Re[nMedium[ω]]] /.
c α Γ


Γ
2

4
+ (ω - ω0)2

 4 ξ , ξ

1 + ξ 1 -
ω

ω0

where we have defined the parameter ξ to be

ξ[ω_] =
c α Γ

4 
Γ
2

4
+ (ω - ω0)2

c α Γ

4 
Γ2

4
+ (ω - ω0)2
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In a physical medium, the real and the imaginary parts of the refractive index are related through the Kramers -  Kronig

relations (Landau et. al., 1995, Sec. 82). In a simulation, we can easily create an artificial medium that does not  posess

this property; however, our results immediately become nonphysical, and causality is violated.

The  following  function  plots  the  real  and  imaginary  parts  of  the  index  of  refraction
frequency:

IndexPlot[Parameters_, opts___] :=

PlotEvaluate[Join[{Re[nMedium[ω]] - 1, Im[nMedium[ω]]},

If[PlotEnvelope /. {opts} /. PlotEnvelope  False,

{Γp / 7 Envelope[Δ1 Γ]}, {}]] /. ω  ω0 + Δ1 Γ /. Parameters], {Δ1, -4 , 4},

PlotStyle  {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]},

DisplayFunction  $DisplayFunction,

FrameLabel  {"Detuning (ω-ω0)/Γ", "Index of refraction"},

FrameTicks  {True, False, False, False}, PlotLegend  {"Re \!\(\*

StyleBox[\"n\",\nFontSlant->\"Italic\"]\) - 1", "Im \!\(\*

StyleBox[\"n\",\nFontSlant->\"Italic\"]\)",

StyleForm["Pulse spectrum", FontSize  12]}, LegendPosition  {.23, .2},

LegendSize  {.6, .25}, LegendShadow  {.015, -.015}, Axes  True

IndexPlot[{c  1, α  1, Γ  2, ω0  2 π}];

The real and imaginary parts of the index of refraction in a medium as a function of frequency.

The phase velocity in the medium is given by

VphMedium[ω_] = Vph[k[RenMedium[ω], ω], ω] // ComplexExpand

c

1 + ξ 1 -
ω

ω0


Since ξ is always positive, we see that the phase velocity is c on resonance, less than c
resonance, and greater than c above resonance. To illustrate this, we can plot the  light
tric field as it traverses a medium. The wavenumber in the medium is given by
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kMedium[ω_] = k[nMedium[ω], ω] // Simplify

ω

c
-

α Γ ω

4 
 Γ

2
+ ω - ω0 ω0

and the electric field is given by

EFieldMedium[z_, t_, ω_] = EField[kMedium[ω], ω] // Simplify



-
1

4
 ω 4 t-

4 z

c
+

z α Γ

 Γ

2
+ω-ω0 ω0

The light intensity is proportional to AbsE2,  where Abs stands for absolute value.  We

verify that the intensity has the correct dependence on the absorption coefficient:

AbsEFieldMedium[z, t, ω0]2
 // ComplexExpand // PowerExpand


-z α

The  following  function  produces  an  animation  of  a  monochromatic  wave  traversing
medium. 

Superlum_NoPix.nb 6



PlotMonochromatic[{z0_, z1_, z2_, z3_},

{tMin_, tMax_, tStep_}, Parameters_] := 

SetOptions[Plot, MaxBend  6, DisplayFunction  Identity];

FieldOptions = PlotStyle  {AbsoluteThickness[2]};

GhostFieldOptions =

PlotStyle  {AbsoluteThickness[1.5], AbsoluteDashing[{2, 5}]};

Region1Field[z_, t_] = EFieldMedium[z, t, ω] /. {α  0} /. Parameters;

Region2Field[z_, t_] =

Region1Field[z1, 0] × EFieldMedium[z - z1, t, ω] /. Parameters;

Region3Field[z_, t_] =

Region2Field[z2, 0] × EFieldMedium[z - z2, t, ω] /. {α  0} /. Parameters;

Table

Show

Plot[Re[Region1Field[z, t]], {z, z1, z3}, Evaluate[GhostFieldOptions]],

Plot[Re[Region1Field[z, t]], {z, z0, z1}, Evaluate[FieldOptions]],

Plot[Re[Region2Field[z, t]], {z, z1, z2}, Evaluate[FieldOptions]],

Plot[Re[Region3Field[z, t]], {z, z2, z3}, Evaluate[FieldOptions]],

DisplayFunction  $DisplayFunction, Epilog  {AbsoluteThickness[3],

Line[{{z1, -1.4}, {z1, 1.4}, {z2, 1.4}, {z2, -1.4}, {z1, -1.4}}]},

PlotRange  {{z0 - 0.000001, z3}, {-1.5, 1.5}}

,

{t, tMin, tMax - tStep, tStep};

SetOptionsPlot, MaxBend  10, DisplayFunction  $DisplayFunction;



Here is a plot of the electric field for a light wave tuned above resonance. The  phase
wave  at  the  output  is  advanced  relative  to  what  it  would  have  been,  had  there  been
medium (dotted  line).  The  amplitude  of  the  wave  is  reduced  because  of  absorption  (imagi
nary part of the index of refraction). Try changing the parameters and re-evaluating.  Tuning
the light frequency closer to resonance reduces the phase shift and increases absorption.
ing below resonance (i.e. making ω < ω0), one sees that the phase of the wave at the output
retarded relative to what it would have been, had there been no medium (dotted line) because
the phase velocity is < c in this case.
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PlotMonochromatic[{0, 3, 5, 8}, {0., 0.95, .05},

{c  1, α  3., ω  2.1 π, Γ  1, ω0  2 π}]

A monochromatic wave propagating through a linear medium.
(double-click plot to view as a function of time)

Light pulses, group velocity

Constructing a light pulse

■ Introduction

To construct a Gaussian pulse of width Γp, we superpose waves with amplitudes given by

Envelope[Δ_] =
1

Γp 2 π


-

Δ
2

2 Γp2


-

Δ2

2 Γp2

2 π Γp

where  Δ  is  the  detuning  from  the  central  frequency  ω,  and  the  first  factor  provides  overall
normalization. The more waves of different frequencies we add, the more the resultant
lope looks like a pulse, as we will now show.

■ Discrete frequencies

◼ Two Frequencies

For illustration, let us look at waves traveling in vacuum, in which n = 1. A "pulse" with
frequencies is given by
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TwoFreq =

Sum[Envelope[Δ] × EField[k[1, ω + Δ], ω + Δ], {Δ, -3 π / 2, 3 π / 2, 3 π}] //

ComplexExpand // FullSimplify


-

9 π2

8 Γp2
- t-

z

c
 ω 2

π
Cos

3 π (c t-z)

2 c


Γp

The envelope is given by the absolute value of the field

TwoFreqEnvelope = Abs[TwoFreq] // ComplexExpand // Simplify // PowerExpand


-

9 π2

8 Γp2
2

π
Cos

3 π (c t-z)

2 c


Γp

Re[TwoFreq /. c  1] // ComplexExpand


-

9 π2

8 Γp2
2

π
Cos

3

2
π (t - z) × Cos[(-t + z) ω]

Γp

Here is the plot. The sinusoidal envelope is an indication of the pulse-like behavior that
come when we add waves of more frequencies.

Table[Plot[Evaluate[Re[TwoFreq /. {c  1, ω  15 π, Γp  π}]],

{z, -8 / (2 π), 8 / (2 π)}, PlotRange  {{-8 / (2 π), 8 / (2 π)}, {-.1, .1}},

PlotPoints  70], {t, 0, 4 / 3 - 1 / 9, 1 / 9}];

Superposition of two monochromatic waves 
(double-click plot to view as a function of time)

◼ Three frequencies

Superposing waves of three frequencies, we get
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ThreeFreq = Sum[Envelope[Δ] × EField[k[1, ω + Δ], ω + Δ], {Δ, -π, π, π}] //

ComplexExpand // FullSimplify


-

π2

2 Γp2
- t-

z

c
 ω



π2

2 Γp2 + 2 Cosπ t -
z

c


2 π Γp

Abs[ThreeFreq] // ComplexExpand // Simplify // PowerExpand


-

π2

2 Γp2 

π2

2 Γp2 + 2 Cosπ t -
z

c


2 π Γp

Re[ThreeFreq] // ComplexExpand // FullSimplify // PowerExpand


-

π2

2 Γp2 

π2

2 Γp2 + 2 Cosπ t -
z

c
 Cos-t +

z

c
 ω

2 π Γp

Table[Plot[Evaluate[Re[ThreeFreq /. {c  1, ω  20 π, Γp  π}]], {z,

-12 / (2 π), 12 / (2 π)}, PlotRange  {{-12 / (2 π), 12 / (2 π)}, {-.3, .3}},

PlotPoints  70], {t, 0, 2 - 1 / 9, 1 / 9}];

Superposition of three monochromatic waves 
(double-click plot to view as a function of time)

◼ Four frequencies

With four frequencies:
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FourFreq = Sum[Envelope[Δ] × EField[k[1, ω + Δ], ω + Δ], {Δ, -3 π / 2, 3 π / 2, π}]



-
9 π2

8 Γp2
+ -t -

3 π

2
+ω+

z -
3 π

2
+ω

c

2 π Γp
+


-
π2

8 Γp2
+ -t -

π

2
+ω+

z -
π

2
+ω

c

2 π Γp
+



-
π2

8 Γp2
+ -t 

π

2
+ω+

z 
π

2
+ω

c

2 π Γp
+


-
9 π2

8 Γp2
+ -t 

3 π

2
+ω+

z
3 π

2
+ω

c

2 π Γp

Table[Plot[Evaluate[Re[FourFreq /. {c  1, ω  20 π, Γp  π}]], {z, -12 / (2 π),

12 / (2 π)}, PlotRange  {{-12 / (2 π), 12 / (2 π)}, {-.5, .5}},

PlotPoints  70], {t, 0, 6 / 3 - 1 / 9, 1 / 9}];

Superposition of four monochromatic waves 
(double-click plot to view as a function of time)

Note that we see periodic "pulse trains" because the frequencies that we use have small
common  multiples.  We  could  vary  the  frequencies  to  remove  this  periodic  behavior,
expense  of  destroying  the  smooth  "pulse-like"  appearance.  Or,  by  adding  more  and
frequencies,  we  can  obtain  nonperiodic  pulses  with  smooth  shape,  as  shown  in  the
section.

Many short-pulse lasers operate in the so-called mode-locked regime, emitting a continuous train of pulses separated by

a  fixed  time  interval,  the  round  trip  time  of  light  in  the  laser's  cavity.  The  spectrum of  such  a  laser  corresponds  to

"frequency comb," a series of sharp uniformly spaced peaks extending over a spectal range corresponding to the recipro

cal of the duration of an individual pulse, so the shorter the pulse, the broader the "comb."

■ Continuous frequency - Gaussian pulse

A real pulse contains every frequency within its  bandwidth.  Integration over all  frequencies
yields the formula

GaussianPulse[z_, t_] =

(Integrate[Envelope[Δ] × EField[k[1, ω0 + Δ], ω0 + Δ], {Δ, -∞, ∞},

Assumptions  Γp > 0] // FullSimplify)


-

(c t-z) (c t-z) Γp2+2  c ω0

2 c2
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The envelope is, not surprisingly, a Gaussian:

Abs[GaussianPulse[z, t]] // ComplexExpand // Simplify // PowerExpand


-

(-c t+z)2 Γp2

2 c2

Table[Plot[Evaluate[Re[GaussianPulse[z, t] /. {c  1, Γp  π, ω0  20 π}]],

{z, -12 / (2 π), 12 / (2 π)},

PlotRange  {{-12 / (2 π), 12 / (2 π)}, {-1.5, 1.5}},

PlotPoints  70], {t, 0, π, π / 16}];

A Gaussian pulse
(double-click plot to view as a function of time)

Group velocity — general transparent medium
 Consider two waves with slightly different frequencies

Tableωq = ωc + (-1)q δ / 2, {q, 1, 2} // TableForm

-
δ

2
+ ωc

δ

2
+ ωc

Since  the  difference  δ  between  the  freqencies  ω1  and  ω2  is  small,  we  can  approximate
frequency dependence of k by a series about the central frequency ωc:

kSeries[ω_] = Series[k[ω], {ω, ωc, 1}]

k[ωc] + k′[ωc] (ω - ωc) + O[ω - ωc]2

Here k '[ωc] = d k
d ω ωc. The wavenumbers of the two waves are given in this approximation
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Tablekq = kSeriesωq // Normal, {q, 1, 2} // TableForm

k[ωc] -
1

2
δ k′[ωc]

k[ωc] +
1

2
δ k′[ωc]

Table[Plot[Evaluate[{Re[EField[k1, ω1]], Re[EField[k2, ω2]]} /.

{ωc  6, k[ωc]  6, k′[ωc]  1, δ  1}], {z, 0, 2 π},

PlotStyle  {RGBColor[0, 0, 0], RGBColor[1, 0, 0]},

PlotRange  {{0, 2 π}, {-2.5, 2.5}}, PlotPoints  30],

{t, 0, 2 π (17 / 20), 2 π / 30}];

Two monochromatic waves with different frequencies and wavenumbers
(double-click plot to view as a function of time)

We see that the two waves are "in phase" at some regions of space and time, and are
phase in others. Now let us look at the field corresponding to the sum of the two waves
by

EField[k1, ω1] + EField[k2, ω2]


 -t -

δ

2
+ωc+z k[ωc]-

1

2
δ k′[ωc]

+ 
 -t 

δ

2
+ωc+z k[ωc]+

1

2
δ k′[ωc]

Simplifying:

SumField = % // FullSimplify

2 
- (t ωc-z k[ωc]) Cos

1

2
δ (t - z k′[ωc])

The real field is given by

Re[SumField] // ComplexExpand // PowerExpand

2 Cos[t ωc - z k[ωc]] Cos
1

2
δ (t - z k′[ωc])
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and the envelope is given by

SumFieldEnv = Abs[SumField] // ComplexExpand // PowerExpand

2 Cos
1

2
δ (t - z k′[ωc])

We assume here that k is real, i.e. that the medium is transparent.

Table[Plot[Evaluate[{Re[SumField], SumFieldEnv, -SumFieldEnv} /.

{ωc  6, k[ωc]  4, k′[ωc]  1, δ  1.}], {z, 0, 8 π},

PlotRange  {{0, 8 π}, {-2.5, 2.5}}, PlotPoints  50,

PlotStyle  {RGBColor[0, 0, 0], RGBColor[1, 0, 0], RGBColor[1, 0, 0]}],

{t, 0, 4 π (19 / 20), 4 π / 20}];

Two superposed monochromatic waves in a medium, plotted with their envelope. Note that since the 
group velocity does not equal the phase velocity, a phase difference between the light field and the 
envelope is acumulated in time.
(double-click plot to view as a function of time)

To determine the velocity of the pulse, we consider the motion of a given point on the
lope, for example, a zero crossing: z[t] such that the E[t] = 0:

zConstantEnv = Solve[SumFieldEnv  0, z]〚1, 1〛

z 
-π + t δ

δ k′[ωc]

The derivative of z with respect to time is the group velocity

Vg[k_] = D[z /. zConstantEnv, t]

1

k′[ωc]

as a function of ω, k is given by 

Superlum_NoPix.nb 14



kOfω[ω_] = k[n[ω], ω]

ω n[ω]

c

so the group velocity is given in terms of the index of refraction by

VgOfn[n_] = Vg[kOfω] // Simplify

c

n[ωc] + ωc n′[ωc]

This derivation is for the case of a transparent medium. As is pointed out in most optics
one has to be careful when applying the concept of group velocity to a medium with
absorption, because pulse reshaping will occur as the pulse travels through the medium.
will look at this more closely next.

Pulse propagation in linear atomic media

■ Nontransparent media

We would like  to  determine when our  formula  for  group velocity  in  transparent  media
apply to nontransparent media. For a Gaussian pulse, the group velocity refers to the velocity
of the peak of the pulse. Although inside an absorptive medium the pulse shape is  distorted
spatially, we can still measure the group velocity by comparing the times at which the
reaches a maximum at different points inside the medium. Our formula for the group velocity
should hold as long as there is not too much distortion of the pulse shape, which would
der the concept of a "group" velocity (the velocity at which the entire pulse travels) meaning
less.  Distortion  is  caused  when  resonant  spectral  components  are  absorbed  much
strongly than off-resonant ones.

Absorption is governed by the imaginary part of k:
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ImkMedium[ω_] =  Im[kMedium[ω]] // ComplexExpand // FullSimplify

 α Γ2 ω

2 Γ2 + 4 (ω - ω0)2 ω0

Let's consider a Gaussian input pulse. The spectrum of the input intensity is given by

Abs[Envelope[Δ]]2 // ComplexExpand


-

Δ2

Γp2

2 π Γp2

The spectrum of the output intensity is given by

Transmission[Δ_] =

Abs[Envelope[Δ] × EField[ImkMedium[Δ + ω0], ω] /. Δ + ω0  ω0]2
//

ComplexExpand // PowerExpand


-

Δ2

Γp2
-

z α Γ2

Γ2+4 Δ2

2 π Γp2

We assume here that ω ≃ ω0.

A Gaussian spectrum has  a  maxium only  in  the  center.  If  we require  this  to  be  true
output spectrum, we can obtain a condition for avoiding pulse reshaping. Setting the deriva
tive with respect to Δ equal to zero, we can find the extrema:

Extrema = Solve[D[Transmission[Δ], Δ]  0, Δ]

{Δ  0}, Δ  - -
Γ2

4
-
1

2
z α Γ Γp , Δ  -

Γ2

4
-
1

2
z α Γ Γp ,

Δ  - -
Γ2

4
+
1

2
z α Γ Γp , Δ  -

Γ2

4
+
1

2
z α Γ Γp 

The first  solution is  zero,  and the second and third are  imaginary.  To find the condition
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excluding the last two (i.e., requiring them to be imaginary), we solve for Δ = 0 in the
solution:

Solve[Δ  0 /. Extrema〚4〛, α]

α 
Γ2

4 z Γp2


So we need α z << Γ2 Γp2  to avoid significant pulse reshaping. If this condition is satisfied,

the  formula  we  derived  for  group  velocity  in  a  transparent  medium  will  remain  approxi
mately correct.

IndexPlot[{c  1, α  1, Γ  1, ω0  2 π, Γp  .1},

PlotEnvelope  True];

The real and imaginary parts of the index of refraction in a medium as a function of frequency, plotted 
together with the Gaussian pulse spectrum of width Γp.

■ Group velocity

We now apply the expression for  group velocity that  we derived for  transparent  media
linear atomic medium near resonance. Substituting our formula for the real part of  the
of  refraction  in  a  atomic  medium  into  the  expression  for  group  velocity,  we  obtain  for
group velocity in a linear atomic medium near resonance

VgOfn[RenMedium]

c

1 -
ξ ωc

ω0
+ ξ 1 -

ωc

ω0


Using our definition of ξ and assuming that we are directly on resonance gives

VgMedium = % /. ξ  ξ[ωc] /. ωc  ω0

c

1 -
c α

Γ

We can  see  that  on  resonance,  when  α c < Γ  the  group  velocity  is  greater  than  c  and
α c > Γ the group velocity is negative. While at first glance, these results may seem unphysi
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cal  (especially  the  second,  which  implies  that  the  pulse  moves  backwards  in  the  medium!)
they actually have simple, consistent interpretations. We illustrate this below.

It  is  important  to  note  that  there  is  a  change  in  the  spatial  width  of  the  pulse  upon  propagation  through  an  interface

between  vacuum  and  the  medium  --  the  pulse  compresses  or  expands  depending  on  the  value  of  the  group  velocity.

Clearly,  while  the  pulse  is  going  through  the  interface  it  is  severely  reshaped;  however,  we  may  still  discuss  the

behaviour of the pulse when most of its spatial extent is contained within the medium or one of the two vacuum regions

-- before and after the medium.

■ Setup for plotting

There is a fast-oscillating phase - ω0 (t-z)  in the electric field that we don't need to include
if we are plotting the envelope. We'll divide it out of the expression for the E-field:

MapFactor, ExpandAllEFieldMedium[z, t, ω0 + Δ] 
 ω0 (t-z/c)

, {2}


-

z α Γ

2 (Γ-2  Δ)
- t Δ+

 z Δ

c
-

z α Γ Δ

2 (Γ-2  Δ) ω0

Assuming that Γ << ω0, we can set the term containing Γ /ω0 to zero:

EFieldEnv[z_, t_, Δ_] = % /. Γ / ω0  0


-

z α Γ

2 (Γ-2  Δ)
- t Δ+

 z Δ

c

This function plots a pulse traversing a medium

PlotField[FieldFunction_, {z1_, z2_}, EnvelopePlotOptions_] :=

Plot[Abs[FieldFunction], {z, z1, z2}, Evaluate[Join[EnvelopePlotOptions,

{DisplayFunction  Identity, PlotDivision  2, PlotPoints  10}]]]

NPlotField[FieldFunction_, {z1_, z2_}, IntRange_, EnvelopePlotOptions_] :=

Plot[

Abs[NIntegrate[FieldFunction, {Δ, -IntRange, IntRange}, PrecisionGoal  3,

WorkingPrecision  12, MaxRecursion  12, MinRecursion  2]],

{z, z1, z2}, Evaluate[Join[EnvelopePlotOptions,

{DisplayFunction  Identity, PlotDivision  2, PlotPoints  10}]]]
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PlotPacket[{z0_, z1_, z2_, z3_}, {tMin_, tMax_, tStep_}, Parameters_] := 

(* Define styles for plotting *)

FieldOptions = {PlotStyle  {AbsoluteThickness[2]}};

EnvelopeOptions = {PlotStyle  {AbsoluteThickness[2], RGBColor[1, 0, 0]}};

GhostFieldOptions =

{PlotStyle  {AbsoluteThickness[1.5], AbsoluteDashing[{2, 5}]}};

GhostEnvelopeOptions = {PlotStyle 

{AbsoluteThickness[1.5], RGBColor[1, 0, 0], AbsoluteDashing[{2, 5}]}};

(* Define the field for each phase *)

NoMedField[z_, t_] = GaussianPulse[z, t] /. ω0  0 /. Parameters;

Region1Field[z_, t_, Δ1_] = EFieldEnv[z, t, Δ1] /. {α  0} /. Parameters;

Region2Field[z_, t_, Δ1_] =

Region1Field[z1, 0, Δ1] × EFieldEnv[z - z1, t, Δ1] /. Parameters;

Region3Field[z_, t_, Δ1_] =

Region2Field[z2, 0, Δ1] × EFieldEnv[z - z2, t, Δ1] /. {α  0} /. Parameters;

R3Mag = Region3Mag /. Parameters /. Region3Mag  0;

Env[Δ1_] = Envelope[Δ1] /. Parameters;

IntRange = 4 Γp /. Parameters;

(* Draw plots for each region *)

Table

Show

PlotField[NoMedField[z, t], {z0, z1}, EnvelopeOptions],

PlotField[NoMedField[z, t], {z1, z3}, GhostEnvelopeOptions],

NPlotField[10^(R3Mag (z - z1) / (z2 - z1)) Env[Δ] × Region2Field[z, t, Δ],

{z1, z2}, IntRange, EnvelopeOptions],

NPlotField10R3Mag Env[Δ] × Region3Field[z, t, Δ],

{z2, z3}, IntRange, EnvelopeOptions,

DisplayFunction  $DisplayFunction,

Axes  {True, False}, Epilog  {AbsoluteThickness[3],

Line[{{z1, -1.4}, {z1, 1.4}, {z2, 1.4}, {z2, -1.4}, {z1, -1.4}}],

If[R3Mag ≠ 0, {Text[\!\("×10" \^ R3Mag\), {z2 + .2 (z3 - z2), 1.3}]}, {}]},

PlotRange  {{z0 - 0.00001, z3}, {0, 1.5}}

,

{t, tMin, tMax, tStep};



■ Plots of pulse propagation

◼ Superluminal pulse

We start with the case in which α c < Γ. Here α c /Γ = 0.5, and the group velocity is 
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VgMedium /. {α  1 / (2 c), Γ  1}

2 c

For all the plots below, we set the light frequency to resonance. We see that even though
pulse is partly absorbed (i.e. its amplitude at the output is smaller than that at the input),
output pulse has approximately the same shape as the input. The peak of the output  pulse
advanced  relative  to  where  the  peak  would  have  been  hand  there  been  no  medium  (dashed
line), i.e., the pulse appears to travel faster than c inside the medium. No photons travel
than c  here, rather, the trailing edge of the pulse is absorbed more strongly than the  leading
edge creating the illusion of superluminal propagation. 

PlotPacket[{0., 25., 35., 60.},

{-30., 90., 3.}, {c  1, α  .5, Γp  .1, Γ  1.}]

A Gaussian pulse propagating through a linear medium.
(double-click plot to view as a function of time)

◼ Negative group velocity

When α c < Γ, the group velocity is negative:

VgMedium /. {α  6 / c, Γ  2}

-
c

2

This  implies  that  the  peak  of  the  output  pulse  will  exit  the  medium  before  the  peak
input pulse enters it:

PlotPacket[{0., 25., 35., 60.}, {-30., 90., 3.},

{c  1, α  6., Γp  .1, Γ  2., Region3Mag  8}]

A Gaussian pulse propagating through a linear medium.
(double-click plot to view as a function of time)

The absorption is  now so large  that  we have to  scale  the  amplitude  of  the  output  pulse

108  in order to see what is  going on.  Inside the medium the  scaling is  ramped up exponen
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tially so that the plot remains smooth.

By adjusting the parameters, we can actually see the pulse moving backwards in the medium,

although the 1034scaling required to observe the output  makes this  situation rather  unphysi
cal. We can also see that the pulse is compressed inside the medium.

VgMedium /. {α  16 / c, Γ  4}

-
c

3

PlotPacket[{0., 25., 35., 60.}, {-30., 90., 3.},

{c  1, α  16., Γp  .1, Γ  4., Region3Mag  34}]

A Gaussian pulse propagating through a linear medium.
(double-click plot to view as a function of time)

Actually, the spatial pulse-like shape in the medium is an artifact of our scaling. The electric
field at any given time is, in fact, a monotonically decreasing function of z.  However,
look at the value of the field at a given point as a function of time, we can observe pulse-like
behavior even inside the medium.

Negative group velocities can be observed in experiments in linear optics. A situation
closer  to  the  common  experimental  setup  than  the  above  case  is  one  in  which  the
advance is much smaller than the total pulse width. Here the pulse is much wider than
previous examples, but we still see that the output pulse peaks at the output before the
pulse peaks at the input. 

PlotPacket{0., 25., 35., 60.}, -3. × 1010, 3. × 1010, 3. × 109,

c  1, α  1., Γp  10-10, Γ  10-9, Region3Mag  2

A Gaussian pulse propagating through a linear medium.
(double-click plot to view as a function of time)

Non-Gaussian pulse

The pulse shape is not restricted to a simple Gaussian, as long as the pulse shape is analytic,
the  entire  pulse  spectrum  is  within  the  region  of  linear  anomalous  dispersion,
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α z << Γ2 Γp2,  as  derived  above.  Although  complex  pulse  shapes  can  pass  through

medium with group velocity greater than c, information does not travel faster than the
of light, since the requirement that the pulse shape is analytic means that all the  information
in the pulse is contained in the front "tail" of the pulse.   The fact that the peak of  the
moves faster than c does not mean that the information in the pulse does.

We illustrate  the propagation of  a  non-Gaussian pulse with a  double-peaked pulse  (the
of two Gaussians).
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■ Setup for plotting

Plot2Packets[{z0_, z1_, z2_, z3_}, {tMin_, tMax_, tStep_}, Parameters_] := 

(* Define styles for plotting *)

FieldOptions = {PlotStyle  {AbsoluteThickness[2]}};

EnvelopeOptions = {PlotStyle  {AbsoluteThickness[2], RGBColor[1, 0, 0]}};

GhostFieldOptions =

{PlotStyle  {AbsoluteThickness[1.5], AbsoluteDashing[{2, 5}]}};

GhostEnvelopeOptions = {PlotStyle 

{AbsoluteThickness[1.5], RGBColor[1, 0, 0], AbsoluteDashing[{2, 5}]}};

(* Define the field for each phase *)

NoMedField[z_, t_] =

GaussianPulse[z, t] + GaussianPulse[z, t + ts] /. ω0  0 /. Parameters;

Region1Field[z_, t_, Δ1_] =

EFieldEnv[z, t, Δ1] + EFieldEnv[z, t + ts, Δ1] /. {α  0} /. Parameters;

Region2Field[z_, t_, Δ1_] =

Region1Field[z1, 0, Δ1] × EFieldEnv[z - z1, t, Δ1] /. Parameters;

Region3Field[z_, t_, Δ1_] =

Region2Field[z2, 0, Δ1] × EFieldEnv[z - z2, t, Δ1] /. {α  0} /. Parameters;

R3Mag = Region3Mag /. Parameters /. Region3Mag  0;

Env[Δ1_] = Envelope[Δ1] /. Parameters;

IntRange = 4 Γp /. Parameters;

(* Draw plots for each region *)

Table

Show

PlotField[NoMedField[z, t], {z0, z1}, EnvelopeOptions],

PlotField[NoMedField[z, t], {z1, z3}, GhostEnvelopeOptions],

NPlotField[10^(R3Mag (z - z1) / (z2 - z1)) Env[Δ] × Region2Field[z, t, Δ],

{z1, z2}, IntRange, EnvelopeOptions],

NPlotField10R3Mag Env[Δ] × Region3Field[z, t, Δ],

{z2, z3}, IntRange, EnvelopeOptions,

DisplayFunction  $DisplayFunction,

Axes  {True, False}, Epilog  {AbsoluteThickness[3],

Line[{{z1, -1.4}, {z1, 1.4}, {z2, 1.4}, {z2, -1.4}, {z1, -1.4}}],

If[R3Mag ≠ 0, {Text[\!\("×10" \^ R3Mag\), {z2 + .2 (z3 - z2), 1.3}]}, {}]},

PlotRange  {{z0 - 0.00001, z3}, {0, 1.5}}

,

{t, tMin, tMax, tStep};



■ Plots

Superlum_NoPix.nb 23



Here we plot  a  double-peaked pulse propagating through a  linear  medium. The  entire
propagates  at  the  same  group  velocity,  and  exits  the  medium advanced  relative  to  where
would have been, had there been no medium.

Plot2Packets[{0., 25., 35., 60.}, {-30., 90., 3.},

{c  1, α  .5, Γp  .1, Γ  1., ts  25., Region3Mag  1}]

A double-peaked pulse propagating through a linear medium.
(double-click plot to view as a function of time)

Conclusion
We hope that this tutorial has demonstrated that:

★ All the "unusual" light propagation effects in this system follow directly from the form
complex refractive index and elementary Fourier analysis.

★ Even  though  it  may  appear  as  if  the  peak  of  the  light  pulse  is  moving  faster  than  c
certain  conditions),  nothing  is  actually  traveling  that  fast.  The  "superluminal"  effects
because the back of the pulse is absorbed more than the front,  shifting the apparent  peak
the pulse forward.

★ The usual formula for the group velocity 

vg = Re dω
d k

=
c

Re n + ω Re d n

d ω

,

where ω is the light frequency, k is the complex wavenumber, and n is the complex refractive
index, remains valid even in the cases where such velocity becomes infinite or negative,
all the seemingly strange consequencies to which this leads. 
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