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Two- and Three- level systems and All That 
 
In order to understand oscillation, waves, and all kinds of other phenomena, it is essential 
to know your mass on a spring.  A system of similar fundamental importance in atomic 
physics is the 2-level system (although many would argue that this is again nothing else 
but a mass on a spring). 
 
In any event, we have our 2-levels (Fig. 1), all atoms are in the 
ground state A at t=0. We want to know what is the system’s 
evolution if we apply a laser field of frequency L. 
 
The Hamiltonian of the light-atom interaction in the E1-
approximation is: 
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We will use the matrix notation: 
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The field-free Hamiltonian is: 
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and the full Hamiltonian is: 
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Now the Schroedinger equation reads: 
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With the initial condition 
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)0(ψ , this is enough for performing numerical 

calculations.  You can play with this using the online Mathematica™ tutorial that is 
available on the course web site. 
 
For this simple case, the analytical solution is also possible (see Ramsey, “Molecular 
Beams”, p.119). 
 
The most simple case is that of L=0.  In this case, 
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This is the well-known Rabi oscillation. The formulae are still manageable even for non-
zero detuning: 
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This shows that the “Rabi frequency” is  
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i.e. the frequency of oscillation increases with detuning.  On the other hand, the amplitude 
of the oscillation falls with detuning (see eq. (6)). 
 
It is very important to understand how these results modify if one includes decay of the 
upper state.  The most important result is that when the decay rate γ0 becomes sufficiently 
large (with respect to dE0), instead of an oscillatory solution, one gets an overdamped 
solution.  This can be further explored in the online tutorial. 
 
 

Adiabatic Passage 
 
Perhaps it is a good time to mention that our “optical” 2-level system also describes a 
particle with angular momentum 1/2 and an associated magnetic moment in a magnetic 
field.  Actually, many ideas from this realm (nuclear magnetic resonance, NMR) were 
very successfully applied in optics, including seminal contributions by a pioneer in both 
fields, Prof. Erwin Hahn of our Department. 
 
Let us consider a classic NMR problem in which you have an ensemble of spin 1/2 
particles, all of which are “spin down” in a dc magnetic field (i.e. in the state A in our 
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picture).  Our task is to flip all the spins, i.e. put all of them into state B.  How can this be 
done? 
 
The first idea that may come to mind is to apply an oscillating auxiliary magnetic field 
with frequency in resonance with the A→B transition.  It is clear that, in order to flip the 
spins, the direction of this field has to be orthogonal to that of our “leading” dc field.  It is 
actually easier to consider the auxiliary field not as an oscillating field, but as a field 
rotating with the Larmor frequency A=ΩL=gµB0, where g is the Land! factor, and B0 is 
the leading field (Fig. 2). Going to the frame rotating with this frequency, we eliminate 
the leading field, so our spins just see the auxiliary field. Moreover, they see this field as 
dc.  Now our spins precess around the auxiliary field with frequency 
 

ΩR=gµBA .           (8) 
 
It is not an accident that we write this 
as ΩR. Indeed, this is a direct analog of 
the Rabi frequency we have just 
discussed. 
 
Now, to get all spins that are originally 
down to flip, we can just apply our BA 
for a time τπ , so ΩR⋅τπ=π, i.e. all spins 
are now pointing up.  This is called a 
“π”-pulse. 
 
This is an OK method, but it is not 
very robust.  In fact, we have to fine-
tune the product BA⋅τ to the π-pulse condition.  This may also run into additional 
problems if not all particles in our ensemble see exactly the same magnetic fields.   
 
Can we do better? 
 
I would not be asking if we couldn’t! Suppose that instead of using a field BA rotating at 
the resonance frequency A=ΩL, we start with AΩL, and then sweep it smoothly to 
AΩL . (Actually, it would work equally well if we started with AΩL and then swept 
it to AΩL , or if we change ΩL instead by adjusting the leading field Bo). 
 
Turns out, that under certain rather nonrestrictive conditions which we will specify in a 
moment, this operation leads to complete inversion of all spins, which is extremely 
robust, i.e. does not depend on the detials of the sweep: sweep speed, exact value of BA, 
etc. 
 
Let’s see how this comes about.  It is convenient to work in a frame co-rotating with BA, 
in which our spins see an effective magnetic field: 
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Note that this equation shows explicitly that for A=ΩL=gµB0, going to the rotating frame 
“eliminates” the leading field B0 (of course, we have chosen the geometry so that 

0|| BA

!!ω ). 

 
OK, now we can sketch how the effective field looks in the rotating frame as a function 
of time as we sweep A: (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How do spins behave in such a time dependent field?  We know that if we change the 
field slowly enough, the spins follow adiabatically, i.e., if they were pointing essentially 

opposite to totalB
!

, they remain that way.  Our rotating frame picture tells us then, that this 

procedure flips all spins. 
 
What are the conditions on fields that ensure adiabaticity? 
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, i.e. a time interval during which there is significant change in the field: 
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If the sweep rate is constant, the most “dangerous” place is when we go though the 

resonance and Atotal BB
!!

≈ . 

 
Therefore, with (8) we have: 
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Now let’s see how this method can be applied in the optical domain. 
 
Say we have an atomic beam of two-level atoms, which are all in the ground state. 
 
 
 
 
 
 
 
 
         
 
        
 

 
We need to invert the atoms, i.e. put them into the upper state (notice the one-to-one 
correspondence with the spin-1/2 in a magnetic field).  An elegant method to achieve this 
is to shine a diverging laser beam with frequency tuned to resonance onto the atoms as 
shown in Fig. 4.  As an atom flies into the laser beam, it first sees light that is up-shifted 

from resonance by 0~ ωθ ⋅⋅
c

v
, where v is a characteristic speed of atoms in the beam.  As 

an atom flies through the beam, the frequency goes through resonance, and becomes 

00 ωθω ⋅⋅−≈
c

v
 as the atom leaves.  The adiabatic condition (11) can be now written if 

we recall that in this case (see (7)) 
 

ΩR=dE ,        (12)  
 
and we also use the fact that the quantity analogous to Aω#  in eqn. (11) is now 
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Note that we also need to make sure that the light-atom interaction time is shorter than 
the upper state lifetime.  Adiabatic passage inversion using this method is used in our 
group in experiments with dysprosium  (A.T. Nguyen et al). 
 
 

Three-level Systems 
 
Suppose now that we have a three-level system 
(Fig.5) and two pulsed lasers.  One is tuned on 
resonance with the A→B transition, and the other 
– in resonance with B→C.  Both laser pulses are 
sufficiently strong to saturate their respective 
transitions, and their bandwidths are greater than 
the transition widths. The questions are:  
 
!"What is the optimum pulse sequence?   
!"What is the maximum amount of atoms that we 

can put into C?   
!"How will this amount change if state B is 

"lossy" i.e. has large decay rate? 
 
The answers may seem surprising at first glance.  It turns out that it is possible to put all 
atoms into C, even when B is lossy.  To achieve this, one has to use the “counter-
intuitive” pulse sequence (Fig.6), i.e. pulse II driving the B→C transition has to come 
first.  How this comes about is well explained in the articles in the Reader. The basic idea 
is this.  Consider first the 
time when pulse II is 
already on, but pulse I is not 
yet on.  Out of 3 atomic 
states A, B, C, we have two 
interacting with light (B, C), 
and one “dark” (A).  Our 
atoms happen to reside in 
the dark state.  Now pulse I 
gradually turns on and we 
have a light field consisting 
of two frequencies.  However, it turns out, there is still a dark coherent combination of A, 
B, and C.  Moreover, atoms adiabatically follow the field change remaining in the dark 
state.  As pulse II subsides, and we only have pulse I left, the dark state evolves into C, 
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and at the end of the day, or at least at the end of the pulse sequence, we find our atoms in 
C.  Upon this discussion, we can rename this pulse sequence (Fig.6) as “intuitive”.   
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