Special topics in Atomic Physics: Interaction of Atoms with Polarized Light
When and where: TuTh 11-1230P, 203 WHEELER
Format: two 1.5-hr class meetings per week (student participation strongly encouraged); discussion on individual basis (by appointment)
Instructor: Professor Dmitry Budker
- Office: 273 Birge, Labs: 217, 219, 221, 230, 241, 245 Birge
- tel. 643-1829
- e-mail: budker@Berkeley.edu
- research group web page
Office hours: by appointment; in 273 Birge
Course credit will be given on the basis of optional homework (0-50%) and oral presentations (50%-100%). Each student is required to make at least one presentation during the semester; more presentations are encouraged! A brief one-page (professionally formatted and edited) abstract of the presentation should be turned in at the time of presentation. Please include the presenter's name and the date of the presentation in the abstract. The abstract should be composed as if it was for a talk to be presented at the American Physical Society meeting, and should give your colleagues a convincing reason to attend your talk. It should contain important keywords that will help them identify the subject area of your research and the most important result(s) to be presented.
Synopsis of the course:
This course will consist of two components:
1. Lectures based on a new textbook by M. Auzinsh, D. Budker, and S. M. Rochester (in preparation);
2. Discussion of selected "hot" topics in AMO physics along the lines of what was done in Spring 2007, Spring 2006 or Spring 2000
The course is open for both graduate and advanced undergraduate students.
Tentative course outline:
- Motivation and preliminaries
- Atomic states
- Atoms in external electric and magnetic fields
- Polarized light
- Atomic transitions
- Coherence in atoms
- Density matrix
- “Maxwell-Bloch” equations
- Examples
Required text: none
Recommended texts (general):
- Bransden & Joachain, PHYSICS OF ATOMS AND MOLECULES, 2nd edition, Longman
- D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics. An Exploration through Problems and Solutions, Oxford University Press, 2004 [ISBN:0198509499, 0198509502 (pbk.); Physics QC776 .B83 2004)]
- Foot, C.J., ATOMIC PHYSICS, Oxford
Recommended texts (good textbooks on specific subfields):
- C. Cohen-Tannoudji, Atoms in Electromagnetic Fields, 2nd ed., World Scientific, 2004.
Physics (and not-quite-physics) bed-time reading:
- Charles H. Townes, How the Laser Happened: Adventures of a Scientist, Oxford University Press, 1999 (ISBN: 0195122682)
- Seabrook, W. Doctor Wood, Modern Wizard of the Laboratory. New York, Harcourt, Brace and company, 1941 (Physics Library QC16.W6 S4)
- Margarita Ryutova-Kemoklidze, The Quantum Generation: Highlights and Tragedies of the Golden Age of Physics, Springer Verlag, 1995 (ISBN: 0387532986)
- Segrè, Emilio. A Mind Always in Motion: The Autobiography of Emilio Segre. Berkeley: University of California Press, c1993.
News flash!
- Find out about the most recent Nobel Prizes in Physics!
Seminars and Colloquia
- Department of Physics Colloquia (with videos)
- Physics Department Colloquia, Seminars, and Special Events
- Physics 290 F "Atomic" Seminar
Lecture Notes, Viewgraphs, Electronic Tutorials
- Dr. Brian Patton Spin-exchange optical pumping of solids (April 8, 2008)
- Professor Marianna Safronova's lecture on Atomic PNC Theory: current stsus and future prospects (March 18, 2008)
- Professor Angom Dilip Kumar Singh's lecture on Atoms in Isolation and with Company (March 13, 2008)
- Professor Bhanu Das lecture on Quantum Phase Transitions in Ultracold Bosonic Atoms
- Professor Marianna Safronova's lecture on Atomic Calculations: Methods, Applications, and Recent Advances
- Professor Chris Green's lecture on cold collisions
- Viewgraphs from selected lectures
- We use a Zeldovich Pendulum [see B. Ya. Zeldovich and M. J. Soileau, Physics-Uspekhi 47(12) 1239-1255 (2004)] to illustrate many physical concepts and phenomena in this course, as well as in many other courses. One example is optical birefringence.
- Guest lecture by M. G. Kozlov on Nuclear Anapole Moments
- Check out our upper division and graduate physics tutorials
- Download MathReader from Wolfram
- Software for visualization of atomic orbitals
Assorted Physics-Related Links, Web Resources
- Budker group web tutorials
- Qwiki: quantum physics wiki from Caltech
- NIST atomic spectroscopy databases
- Animated demonstrations of various states of light polarization, dichroism, birefringence, etc.
- A classic book by Arnold Sommerfeld: Atomic Structure and Spectral Lines is available online !
- Molecular Expressions -- a collection of very cool optics and physics interactive tutorials, including Powers of Ten
- Physics137A: Quantum Mechanics
- Physics124: Introductory Nuclear Physics
- Physics 250: Selected hot, cool, and ultracold topics in modern atomic physics
- Web Elements Periodic Table
- Nuclear Science Division, LBNL
- Particle Data Group (PDG)
- Radioactivity and radiation protection (from PDG) (pdf)
- Eric Weisstein's World of Physics
- Eric Weisstein's World of Mathematics
- Eric Weisstein's World of Chemistry
- Eric Weisstein's World of Astronomy
- Mathematical Special Functions
Individual research topics and presentations:
- Atomic Magnetometers for MRI by Hattie Ring
- Principles of magnetic-resonance imaging by J. Peter Mustonen
- Parahydrogen induced nuclear polarization by Thomas Theis
- What makes a cavity good? by Daniel Brooks
- Frequency Combs by Jennie Guzman
- Spin Squeezing of a Room Temperature Atomic Ensemble by Kasper Jensen (Niels Bohr Institute, Denmark)
- Time-modulation of electron-capture decay factor detected at GSI, Darmstadt by Byung Kyu (Andrew) Park
- The Sokolov efect by Nathan Leefer
- Orbital angular momentum of light and Laguerre-Gaussian modes by Dimitri Dounas-Frazer
- Iodine molecular spectroscopy and inversion symmetry by Mat Leonard
- Field operation of a nonlinear magneto-optical rotation magnetometer by Eric Corsini
- Measuring fine-structure constant in recoil experiments by Victor M. Acosta
- Towards an electronic kilogram by Victor M. Acosta
- Cavity ring-down spectroscopy (before and after frequency combs) by Kater Murch
- Feshbach resonances in ultracold atoms by Lorraine E. Sadler
- High-harmonic generation by Corin Michael Ricardo Greaves
- Casimir Effect by Eric Corsini
- Introduction to MRI/MRI with atomic-magnetometer detection by David Michalak
- Nuclear polarization using parahydrogen (PASADENA) by Chip Crawford
- Reality of spin-1/2 phase flip upon 360-degree rotation from neutron interferometry
- Recent measurements of (g-2) by the Gabrielse group at Harvard
- Light-Induced Drift (LID) of atoms
- Modern Optical Parametric Oscillators as light sources for spectroscopy
- Superfluorescence
- Discovery of the Lamb shift
- Most recent precision measurements of Lamb shift in hydrogen
- Electromagnetically-induced transparency
- Resarch with antiatoms
- How does gravity affect anti-matter (a survey of past, present, and planned experiments)
- Gravitation measurements with atomic interferometers
- Chaos in atoms
- Laser spectroscopy of neutral clusters
- Circular states in atoms
- Atomic-beam scattering from solid surfaces: from the Stern/Esterman experiment [Z. Phys. 61, 95 (1930)] and on
- Precision experiments with muonic atoms
- Spin and orbital angular momentum of light beams
- Novel artificial "atoms": whispering gallery-mode resonators, microdisks, photonic-bandgap cavities
- Measurements of magnetic-field direction in plasma using the Stark shift induced by the vxB electric fields
- Spinor Bose-Einstein condensates
- Make up your own topic !
Homework (optional):
- TBA (Due: before the end of instruction)
Acknowledgment and Disclaimer: This material is based in part upon work supported by the National Science Foundation. Any opinions, findings and conclusions or recomendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation (NSF).